Internet-Draft Multicast YANG Data Model May 2025
Zhang, et al. Expires 8 November 2025 [Page]
Workgroup:
MBONED WG
Internet-Draft:
draft-ietf-mboned-multicast-yang-model-13
Published:
Intended Status:
Standards Track
Expires:
Authors:
Z. Zhang
ZTE Corporation
C. Wang
Individual
Y. Cheng
China Unicom
X. Liu
Alef Edge
M. Sivakumar
Juniper networks

Multicast YANG Data Model

Abstract

This document provides a generic multicast YANG data model that shows the relevant technologies or protocols used by multicast streams. It provides a management view for network administrators to obtain information about multicast services.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 8 November 2025.

Table of Contents

1. Introduction

Currently, there are many multicast protocol YANG models, such as PIM (Protocol Independent Multicast), MLD (Multicast Listener Discovery), and BIER (Bit Index Explicit Replication) and so on. But all these models are distributed in different working groups as separate files and focus on the protocol itself. Furthermore, they cannot describe a high-level multicast service required by network operators.

This document provides a general and all-round multicast model, which shows the relevant technologies or protocols used by multicast streams. It provides a management view for network administrators to obtain information about multicast services.

This document does not define any specific protocol model, instead, it depends on many existing multicast protocol models and relates several multicast information together to fulfill multicast service.

This model can be used along with other multicast YANG models such as PIM [RFC9128], which are not covered in this document.

1.1. Terminology

The terminology for describing YANG data models is found in [RFC6020] and [RFC7950], including:

The following abbreviations are used in this document and the defined model:

BABEL: [RFC8966].

BGP: Border Gateway Protocol [RFC4271].

BIER: Bit Index Explicit Replication [RFC8279].

BIER-TE: Traffic Engineering for Bit Index Explicit Replication [RFC9262].

IS-IS: Intermediate System to Intermediate System Routeing Exchange Protocol [RFC1195].

MLD: Multicast Listener Discovery [I-D.ietf-bier-mld].

MLDP: Label Distribution Protocol Extensions for Point-to-Multipoint and Multipoint-to-Multipoint Label Switched Paths [RFC6388].

MVPN: Multicast in MPLS/BGP IP VPNs [RFC6513].

OSPF: Open Shortest Path First [RFC2328].

P2MP-TE: Point-to-Multipoint Traffic Engineering [RFC4875].

PIM: Protocol Independent Multicast [RFC7761].

SR-P2MP: Segment Routing Point-to-Multipoint [I-D.ietf-pim-sr-p2mp-policy].

1.2. Conventions Used in This Document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

1.3. Tree Diagrams

Tree diagrams used in this document follow the notation defined in [RFC8340].

1.4. Prefixes in Data Node Names

In this document, names of data nodes, actions, and other data model objects are often used without a prefix, as long as it is clear from the context in which YANG module each name is defined. Otherwise, names are prefixed using the standard prefix associated with the corresponding YANG module, as shown in Table 1.

Table 1
Prefix YANG module Reference
inet ietf-inet-types [RFC6991]
yang ietf-yang-types [RFC6991]
rt-types ietf-routing-types [RFC8294]
rt ietf-routing [RFC8349]
ospf ietf-ospf [RFC9129]
bier ietf-bier [I-D.ietf-bier-bier-yang]
sr-policy ietf-sr-policy [I-D.ietf-spring-sr-policy-yang]

1.5. Usage of Multicast Model

This multicast YANG data model is mainly used by the management tools run by the network operators, in order to manage, monitor and debug the network resources that are used to deliver multicast service. This model is used for gathering data from the network as well.


               +------------------------+
               |    Multicast Model     |
               +------------------------+
                 |        |          |
                 |        |          |
                 |  +---------+  +----------+
                 |  | EMS/NMS |  |Controller|
                 |  +---------+  +----------+
                 |        |          |
                 |        |          |
        +------------------------------------------------+
        |               Network Element1.....N           |
        +------------------------------------------------+

Figure 1: Usage of Multicast Model

Figure 1 illustrates example use cases for this multicast model. Network operators can use this model in a controller which is responsible to implement specific multicast flows with specific protocols and work with the corresponding protocols' model to configure the network elements through NETCONF/RESTCONF/CLI. Or network operators can use this model to the EMS (Element Management System)/ NMS (Network Management System) to manage or configure the network elements directly.

On the other hand, when the network elements detect failure or some other changes, the network devices can send the affected multicast flows and the associated overlay/ transport/ underlay information to the controller. Then the controller/ EMS/NMS can respond immediately due to the failure. Such as the changing of the failure overlay protocol to another one, as well as transport and underlay protocol. The controller can distribute new model for the flows to the network nodes. For example, a multicast flow is forwarded by BIER transport, but BIER may no longer be active, and the flow needs to be forwarded via PIM. The controller can send a model with the same multicast flow information and the associated transport protocol (set to PIM) to the ingress node.

Specifically, in section 2, it provides a human readability of the whole multicast network through diagram, which frames different multicast components and correlates them in a readable fashion. Then, based on this diagram, there is instantiated and detailed YANG model in Section 3.

The usage of this model is flexible. The multicast-keys indicate the flow characters. The flow can be L3 multicast flow, or L2 flow which is also called BUM (Broadcast, Unknown unicast, Multicast) flow in EVPN ([RFC7432]) deployment.

Among the multicast-keys, the source-address and group-address of L3 multicast flow are the most important keys. The other keys are optional, and need not be all set. For example, when the group-address is set, and the source-address is set to * or a specific value, this is (*,G) or (S,G) analogous. In addition to the source-address and group-address, when vpn-rd is also set, this is MVPN use case. If mac-address and vpn-rd are set, this is EVPN use case. In case vni-value is set with associated group-address, etc., this is NVO3 (Network Virtualization over Layer 3) multicast use case.

1.5.1. Example

                            +------------+
                            |            +---------------------------+
             +--------------+ Controller |                           |
             |              |            +-----------+               |
             |              +------------+           |               |
             |                                       |               |
             |     +-----------------------------+   |               |
             |     |                             |   |               |
             |     |                      +------+---+--+            |
             |     |                      |Egress router+--+ Receiver|
             |     |                      +------+------+            |
         +---+-----+----+                        |                   |
Source +-|Ingress router|     BIER domain        |                   |
         +---------+----+                        |                   |
                   |                      +------+------+            |
                   |                      |Egress router+--+ Receiver|
                   |                      +------+----+-+            |
                   |                             |    |              |
                   +-----------------------------+    +--------------+
Figure 2: Example

The network administrator can use the multicast model and associated models to deploy the multicast service. For example, suppose that the flow for a multicast service is 233.252.0.0/24, the flow should be forwarded by BIER [RFC8279] with MPLS encapsulation [RFC8296]. Corresponding IGP protocol which is used to build BIER transport layer is OSPF [RFC2328].

In this model, the corresponding group-address that is in multicast-keys is set to 233.252.0.0/24, the transport technology is set to BIER. The BIER underlay protocol is set to OSPF. The model is sent to every edge router from the controller. If the BIER transport layer which depends on OSPF has not been built in the network, the multicast YANG model may work with the BIER YANG model that is defined in [I-D.ietf-bier-bier-yang]. After the BIER transport layer is built, the ingress router encapsulates the multicast flow with BIER header and sends it into the network. Intermediate routers forward the flows to all the egress nodes by BIER forwarding.

Another example for this figure is, the controller can act as the BIER overlay only. The routers in the domain build BIER forwarding plane beforehand. The controller sends the multicast group-address and/or the source-address to the edge routers in BIER domain only, without transport and underlay set in the model. Then the ingres router can encapsulate the multicast flow with BIER encapsulation automatically.

2. Module Structure

2.1. Multicast YANG data Model design

The following is the design for Multicast YANG data Model.

               +-----------+
         +-----+Multi|keys |
         |     +-----------+
         |     |Group Addr |
         |     +-----------+
         |     |Source Addr|    +--------+-----------------+
         |     +-----------+    |        |                 |
         |     |VPN Info   |    |        |          +------+-------+
         |     +-----------+    |  +-----+------+   | Ing/Eg Nodes |
         |     |VNI Info   |    |  |Overlay Tech|   +--------------+
         |     +-----------+    |  +------------+   |Ingress Nodes |
         |                      |  |    EVPN    |   +--------------+
         |                      |  +------------+   |Egress Nodes  |
         |            Contain   |  |    MLD     |   +-------+------+
         |     +-----------+    |  +------------+           | relate
         |     | Multicast +----+  |MLD-Snooping|          \|/
         +-----+  Overlay  |       +------------+  +----------------+
         |     |           |       |    MVPN    |  | BIER Nodes Info|
         |     +-----------+       +------------+  +----------------+
         |                         |    PIM     |  |     BFR-ID     |
         |                         +------------+  +----------------+
         |
+--------+--+           +-----------------+----------+----------+
| Multicast |Contain    |                 |          |          |
|  Model    |           |              +--+---+  +---+----+  +--+---+
+--------+--+           |              | BIER |  |BIER-TE |  | MPLS |
         |    +---------+--+           +------+  +--------+  +------+
         |    | Multicast  |
         +----+ Transport  | associate  +-----+   +-------+
         |    |            |            | PIM |   |SR-P2MP|
         |    +---------+--+            +--+--+   +---+---+
         |              |                  |          |
         |              |                  |          |
         |              +------------------+----------+
         |
         |               +----------------+---------+---------+
         |               |                |         |         |
         |               |             +--+---+  +--+---+  +--+--+
         |    +----------+--           | BABEL|  | BGP  |  |IS-IS|
         |    | Multicast  |           +------+  +------+  +-----+
         +----+ Underlay   | associate
              |            |           +------+  +-----+
              +----------+--           | OSPF |  |RIFT |
                         |             +--+---+  +--+--+
                         |                |         |
                         +----------------+---------+
Figure 3: Multicast YANG data Model design

2.2. Model Structure

module: ietf-multicast
  +--rw multicast-service
     +--rw multicast-keys* [source-address group-address]
        +--rw source-address         ip-multicast-source-address
        +--rw group-address
        |       rt-types:ip-multicast-group-address
        +--rw vpn-rd?                rt-types:route-distinguisher
        +--rw mac-address?           yang:mac-address
        +--rw vni-value?             uint32
        +--rw multicast-overlay
        |  +--rw vni-type?          identityref
        |  +--rw ingress-egress
        |  |  +--rw ingress-nodes*   inet:ip-address
        |  |  +--rw egress-nodes*    inet:ip-address
        |  +--rw bier-ids {bier}?
        |  |  +--rw sub-domain?      uint16
        |  |  +--rw ingress-nodes*   uint16
        |  |  +--rw egress-nodes*    uint16
        |  +--rw dynamic-overlay
        |     +--rw type?                       identityref
        |     +--rw (overlay-tech-type)?
        |        +--:(evpn)
        |        +--:(mld)
        |        |  +--rw mld-instance-group?
        |        |          rt-types:ip-multicast-group-address
        |        +--:(mld-snooping)
        |        |  +--rw mld-snooping-group?
        |        |          rt-types:ip-multicast-group-address
        |        +--:(mvpn)
        |        +--:(pim)
        +--rw multicast-transport
        |  +--rw type?                    identityref
        |  +--rw (transport-tech-type)?
        |     +--:(bier) {bier}?
        |     |  +--rw sub-domain?        uint16
        |     |  +--rw bitstringlength?   uint16
        |     |  +--rw set-identifier?    uint16
        |     |  +--rw bier-encap-type?   identityref
        |     +--:(bier-te) {bier}?
        |     |  +--rw bitstring* [name]
        |     |     +--rw name           string
        |     |     +--rw bier-te-adj* [adj-id]
        |     |        +--rw adj-id    uint16
        |     +--:(mldp) {mldp}?
        |     +--:(rsvp-te-p2mp) {p2mp-te}?
        |     |  +--rw template-name?     te-types:te-template-name
        |     +--:(pim) {pim}?
        |     |  +--rw source-address?    ip-multicast-source-address
        |     |  +--rw group-address
        |     |          rt-types:ip-multicast-group-address
        |     +--:(sr-p2mp) {sr}?
        |        +--rw ir-sr-policies*    leafref
        +--rw multicast-underlay
           +--rw type?                   identityref
           +--rw (underlay-tech-type)?
              +--:(ospf)
              |  +--rw topology-id?      uint8
              +--:(isis)
              +--:(pim)
                 +--rw source-address?   ip-multicast-source-address
                 +--rw group-address
                         rt-types:ip-multicast-group-address

  notifications:
    +---n ingress-egress-event
       +--ro event-type?        identityref
       +--ro multicast-key
       |  +--ro source-address?   ip-multicast-source-address
       |  +--ro group-address     rt-types:ip-multicast-group-address
       |  +--ro vpn-rd?           rt-types:route-distinguisher
       |  +--ro mac-address?      yang:mac-address
       |  +--ro vni-value?        uint32
       +--ro dynamic-overlay
       |  +--ro type?                       identityref
       |  +--ro (overlay-tech-type)?
       |     +--:(evpn)
       |     +--:(mld)
       |     |  +--ro mld-instance-group?
       |     |          rt-types:ip-multicast-group-address
       |     +--:(mld-snooping)
       |     |  +--ro mld-snooping-group?
       |     |          rt-types:ip-multicast-group-address
       |     +--:(mvpn)
       |     +--:(pim)
       +--ro transport-tech
       |  +--ro type?                    identityref
       |  +--ro (transport-tech-type)?
       |     +--:(bier) {bier}?
       |     |  +--ro sub-domain?        uint16
       |     |  +--ro bitstringlength?   uint16
       |     |  +--ro set-identifier?    uint16
       |     |  +--ro bier-encap-type?   identityref
       |     +--:(bier-te) {bier}?
       |     |  +--ro bitstring* [name]
       |     |     +--ro name           string
       |     |     +--ro bier-te-adj* [adj-id]
       |     |        +--ro adj-id    uint16
       |     +--:(mldp) {mldp}?
       |     +--:(rsvp-te-p2mp) {p2mp-te}?
       |     |  +--ro template-name?     te-types:te-template-name
       |     +--:(pim) {pim}?
       |     |  +--ro source-address?    ip-multicast-source-address
       |     |  +--ro group-address
       |     |          rt-types:ip-multicast-group-address
       |     +--:(sr-p2mp) {sr}?
       |        +--ro ir-sr-policies*    leafref
       +--ro underlay-tech
          +--ro type?                   identityref
          +--ro (underlay-tech-type)?
             +--:(ospf)
             |  +--ro topology-id?      uint8
             +--:(isis)
             +--:(pim)
                +--ro source-address?   ip-multicast-source-address
                +--ro group-address
                        rt-types:ip-multicast-group-address

2.3. Multicast YANG data model Configuration

This model can work with other protocol data models to provide multicast service.

This model includes multicast service keys and three layers: the multicast overlay, the transport layer and the multicast underlay information. Multicast keys include the features of multicast flow, such as (multicast source and multicast group) information. In data center network, for fine-grained to gather the nodes belonging to the same virtual network, there may need VNI-related information to assist.

Multicast overlay defines the multicast flows information, and the nodes (ingress and/or egress) information. If the transport layer is BIER, there may define BIER information including (Subdomain, ingress-node BFR-id, egress-nodes BFR-id). When the nodes (ingress and/or egress) information are not defined, there may need overlay multicast signaling technology, such as MLD or MVPN, to collect these nodes information. The model can be sent to the ingress nodes only. For example, regardless of the dynamic overlay protocol used, the ingress node advertises the multicast flow information to all neighbors in the BIER domain. When the ingress node receives the signaling from some egress nodes, the ingress node sends the flow to the signaling egress nodes.

Multicast transport layer defines the type of transport technologies that can be used to forward multicast flow, including BIER forwarding type, MPLS forwarding type, or PIM forwarding type and so on. The multicast YANG data model can be used with the corresponding protocol model to indicate the transport technology used for the multicast flow.

Multicast underlay defines the type of underlay technologies, such as OSPF, IS-IS, BGP, PIM or BABEL and so on. Normally, the underlying protocols operate independently. In some cases, this multicast YANG data model can work with the corresponding protocol models.

The configuration modeling branch is composed of the keys, overlay layer, transport layer and underlay layer.

2.4. Multicast YANG data model State

Multicast model states are the same with the configuration. The main parts are the key and overlay layer, usually the transport layer and underlay layer work independently. In most cases, network administrators can use this model to obtain multicast flows and related protocol information such as transport layer, underlay layer, and overlay layer.

The YANG data model defined in this document conforms to the Network Management Datastore Architecture (NMDA) [RFC8342]. The operational state data is combined with the associated configuration data in the same hierarchy [RFC8407].

2.5. Multicast YANG data model Notification

The defined Notifications include the events of ingress or egress nodes. Like ingress node failure, overlay/ transport/ underlay module loading/ unloading. And the potential failure about some multicast flows and associated overlay/ transport/ underlay technologies.

3. Multicast YANG data Model

This module references [RFC1195], [RFC2328], [RFC4271], [RFC4541], [RFC4875], [RFC5340], [RFC6388], [RFC6513], [RFC6991], [RFC7348], [RFC7432], [RFC7637], [RFC7716], [RFC7761], [RFC8279], [RFC8294], [RFC8296], [RFC8343], [RFC8344], [RFC8349], [RFC8556], [RFC8639], [RFC8641], [RFC8926], [RFC8966], [RFC9128], [RFC9129], [RFC9130], [RFC9262], [RFC9130], [RFC9524], [RFC9572], [RFC9624], [RFC9692], [I-D.ietf-bier-bier-yang], [I-D.ietf-bess-evpn-yang], [I-D.ietf-bess-mvpn-yang], [I-D.ietf-bier-mld], [I-D.ietf-bier-bierin6], [I-D.ietf-bier-pim-signaling], [I-D.ietf-spring-sr-policy-yang].

<CODE BEGINS> file "ietf-multicast@2025-05-06.yang"

module ietf-multicast {
  yang-version 1.1;
  namespace "urn:ietf:params:xml:ns:yang:ietf-multicast";
  prefix ietf-multicast;

  import ietf-yang-types {
    prefix yang;
    reference
      "RFC 6991: Common YANG Data Types";
  }
  import ietf-inet-types {
    prefix inet;
    reference
      "RFC 6991: Common YANG Data Types";
  }
  import ietf-routing-types {
    prefix rt-types;
    reference
      "RFC 8294: Common YANG Data Types for the Routing Area";
  }
  import ietf-routing {
    prefix rt;
    reference
      "RFC 8349: A YANG Data Model for Routing Management
                 (NMDA Version)";
  }
  import ietf-te-types {
    prefix te-types;
    reference
      "RFC 8776: Common YANG Data Types for Traffic Engineering";
  }
  import ietf-bier {
    prefix bier;
    reference
      "I-D.ietf-bier-bier-yang: YANG Data Model for BIER Protocol";
  }
  import ietf-sr-policy {
    prefix sr-policy;
    reference
      "I-D.ietf-spring-sr-policy-yang: YANG Data Model for Segment
       Routing Policy";
  }

  organization
    " IETF MBONED (MBONE Deployment) Working Group";
  contact
    "WG List:  <mailto:mboned@ietf.org>

     Editor:   Zheng Zhang
               <mailto:zhang.zheng@zte.com.cn>
     Editor:   Cui Wang
               <mailto:lindawangjoy@gmail.com>
     Editor:   Ying Cheng
               <mailto:chengying10@chinaunicom.cn>
     Editor:   Xufeng Liu
               <mailto:xufeng.liu.ietf@gmail.com>
     Editor:   Mahesh Sivakumar
               <mailto:sivakumar.mahesh@gmail.com>
    ";

  // RFC Ed.: replace XXXX with actual RFC number and remove
  // this note

  description
    "The module defines the YANG definitions for multicast service
     management. This model indicates the overlay, transport protocol
     used by a multicast flow. And the underlay protocol used for
     the transport layer building.

     Copyright (c) 2025 IETF Trust and the persons identified as
     authors of the code.  All rights reserved.

     Redistribution and use in source and binary forms, with or
     without modification, is permitted pursuant to, and subject
         to the license terms contained in, the Revised BSD License
     set forth in Section 4.c of the IETF Trust's Legal Provisions
     Relating to IETF Documents
     (https://trustee.ietf.org/license-info).

     This version of this YANG module is part of RFC XXXX; see the
     RFC itself for full legal notices.

     The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL
     NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',
     'MAY', and 'OPTIONAL' in this document are to be interpreted as
     described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
     they appear in all capitals, as shown here.";

  revision 2025-05-06 {
    description
      "Initial revision.";
    reference
      "RFC XXXX: A YANG Data Model for multicast service management
           YANG.";
  }

  /*
   *feature
   */

  feature bier {
    description
      "Cooperation with BIER technology.";
    reference
      "RFC 8279:
         Multicast Using Bit Index Explicit Replication (BIER)";
  }

  feature sr {
    description
      "Cooperation with Segment Routing technology.";
    reference
      "RFC 8402: Segment Routing Architecture";
  }

  feature mldp {
    description
      "Cooperation with MLDP technology.";
    reference
      "RFC 6388:
         Label Distribution Protocol Extensions
         for Point-to-Multipoint and Multipoint-to-Multipoint
         Label Switched Paths";
  }

  feature p2mp-te {
    description
      "Cooperation with RSVP TE P2MP technology.";
    reference
      "RFC 4875: Extensions to Resource Reservation Protocol -
        Traffic Engineering (RSVP-TE) for Point-to-Multipoint TE
        Label Switched Paths (LSPs)";
  }

  feature pim {
    description
      "Cooperation with PIM technology.";
    reference
      "RFC 7761: Protocol Independent Multicast - Sparse Mode
       (PIM-SM): Protocol Specification (Revised)";
  }

  /*
   *typedef
   */

  typedef ip-multicast-source-address {
    type union {
      type enumeration {
        enum * {
          description
            "Any source address.";
        }
      }
      type inet:ipv4-address;
      type inet:ipv6-address;
    }
    description
      "Multicast source IP address type.";
  }

  typedef tree-sid {
    type union {
      type rt-types:mpls-label;
      type inet:ip-prefix;
    }
    description
      "The type of the Segment Identifier of a Replication segment
       is a SR-MPLS label or a SRv6 SID.";
  }

  /*
   * Identities
   */

  identity multicast-service {
    base rt:control-plane-protocol;
    description
      "Identity for the multicast model.";
  }

  identity overlay-type {
    description
      "Base identity for the type of multicast overlay technology.";
  }

  identity transport-type {
    description
      "Identity for the multicast transport technology.";
  }

  identity underlay-type {
    description
      "Identity for the multicast underlay technology.";
  }

  identity tunnel-encap-type {
    description
      "Base identity for the type of multicast flow tunnel
       encapsulation.";
  }

  identity tunnel-encap-vxlan {
    base tunnel-encap-type;
    description
      "The VXLAN encapsulation is used for flow encapsulation.";
    reference
      "RFC 7348: Virtual eXtensible Local Area Network (VXLAN):
       A Framework for Overlaying Virtualized Layer 2 Networks
       over Layer 3 Networks";
  }

  identity tunnel-encap-nvgre {
    base tunnel-encap-type;
    description
      "The NVGRE encapsulation is used for flow encapsulation.";
    reference
      "RFC 7637: NVGRE: Network Virtualization Using Generic
       Routing Encapsulation";
  }

  identity tunnel-encap-geneve {
    base tunnel-encap-type;
    description
      "The GENEVE encapsulation is used for flow encapsulation.";
    reference
      "RFC 8926: Geneve: Generic Network Virtualization
       Encapsulation";
  }

  identity overlay-pim {
    base overlay-type;
    description
      "Using PIM as multicast overlay technology.";
    reference
      "I-D.ietf-bier-pim-signaling:
         PIM Signaling Through BIER Core";
  }

  identity mld {
    base overlay-type;
    description
      "Using MLD as multicast overlay technology.";
    reference
      "I-D.ietf-bier-mld:
         BIER Ingress Multicast Flow Overlay
         using Multicast Listener Discovery Protocols";
  }

  identity mld-snooping {
    base overlay-type;
    description
      "Using MLD-snooping as multicast overlay technology.";
    reference
      "RFC 4541:
         Considerations for Internet Group Management
         Protocol (IGMP) and Multicast Listener
         Discovery (MLD) Snooping Switches";
  }

  identity evpn {
    base overlay-type;
    description
      "Using EVPN as multicast overlay technology.";
    reference
      "RFC 7432: BGP MPLS-Based Ethernet VPN
       RFC 9572: Updates on EVPN BUM Procedures
       RFC 9624: EVPN Broadcast, Unknown Unicast, or Multicast
         (BUM) Using Bit Index Explicit Replication (BIER)";
  }

  identity mvpn {
    base overlay-type;
    description
      "Using MVPN as multicast overlay technology.";
    reference
      "RFC 6513: Multicast in MPLS/BGP IP VPNs
       RFC 7716:
         Global Table Multicast with BGP Multicast VPN
         (BGP-MVPN) Procedures
       RFC 8556: Multicast VPN Using Bit Index Explicit Replication
         (BIER)";
  }

  identity bier {
    base transport-type;
    description
      "Using BIER as multicast transport technology.";
    reference
      "RFC 8279:
         Multicast Using Bit Index Explicit Replication (BIER)";
  }

  identity bier-te {
    base transport-type;
    description
      "Using BIER-TE as multicast transport technology.";
    reference
      "RFC 9262:
         Traffic Engineering for Bit Index Explicit Replication
         (BIER-TE)";
  }

  identity mldp {
    base transport-type;
    description
      "Using mLDP as multicast transport technology.";
    reference
      "RFC 6388:
         Label Distribution Protocol Extensions
         for Point-to-Multipoint and Multipoint-to-Multipoint
         Label Switched Paths";
  }

  identity rsvp-te-p2mp {
    base transport-type;
    description
      "Using P2MP TE as multicast transport technology.";
    reference
      "RFC 4875:
         Extensions to Resource Reservation Protocol
         - Traffic Engineering (RSVP-TE) for Point-to-Multipoint
         TE Label Switched Paths (LSPs).";
  }

  identity sr-p2mp {
    base transport-type;
    description
      "Using Segment Routing  as multicast transport technology.";
    reference
      "I-D.ietf-pim-sr-p2mp-policy:
         Segment Routing Point-to-Multipoint Policy.";
  }

  identity pim {
    base transport-type;
    description
      "Using PIM as multicast transport technology.";
    reference
      "RFC 7761:
         Protocol Independent Multicast - Sparse Mode
         (PIM-SM): Protocol Specification (Revised).";
  }

  identity bgp {
    base underlay-type;
    description
      "Using BGP as underlay technology to build the multicast
       transport layer. For example, using BGP as BIER underlay.";
    reference
      "I-D.ietf-bier-idr-extensions: BGP Extensions for BIER.";
  }

  identity ospf {
    base underlay-type;
    description
      "Using OSPF as multicast underlay technology.
       For example, using OSPF as BIER underlay.";
    reference
      "RFC 8444:
         OSPFv2 Extensions for Bit Index Explicit Replication (BIER),
       I-D.ietf-bier-ospfv3-extensions:
         OSPFv3 Extensions for BIER.";
  }

  identity isis {
    base underlay-type;
    description
      "Using IS-IS as multicast underlay technology.
       For example, using IS-IS as BIER underlay.";
    reference
      "RFC 8401:
         Bit Index Explicit Replication (BIER) Support via IS-IS";
  }

  identity babel {
    base underlay-type;
    description
      "Using BABEL as multicast underlay technology.
       For example, using BABEL as BIER underlay.";
    reference
      "RFC 8966: The Babel Routing Protocol
       I-D.zhang-bier-babel-extensions: BIER in BABEL";
  }

  identity rift {
    base underlay-type;
    description
      "Using RIFT as multicast underlay technology.
       For example, using RIFT as BIER underlay.";
    reference
      "RFC 9692: RIFT: Routing in Fat Trees.
       I-D.zzhang-bier-rift: Supporting BIER with RIFT";
  }

  identity event-type {
    description
      "The events of the multicast service.";
  }

  identity event-up {
    base event-type;
    description
      "The multicast service works.";
  }

  identity event-down {
    base event-type;
    description
      "There is something wrong with ingress or egress node,
       and node can't work properlay.";
  }

  identity protocol-enabled {
    base event-type;
    description
      "The protocol that is used for multicast
       flows have been enabled.";
  }

  identity protocol-disabled {
    base event-type;
    description
      "The protocol that is used by multicast
       flows have been disabled.";
  }

  grouping general-multicast-key {
    description
      "The general multicast keys. They are used to differentiate
       multicast service.";
    leaf source-address {
      type ip-multicast-source-address;
      description
        "The IP source address of the multicast flow. The
         value set to * means that the receiver interests
         in all source that relevant to one given group.";
    }
    leaf group-address {
      type rt-types:ip-multicast-group-address;
      mandatory true;
      description
        "The IP group address of multicast flow. This
         type represents a version-neutral IP multicast group
         address. The format of the textual representation
         implies the IP version.";
      reference
        "RFC 8294: Common YANG Data Types for the Routing Area.";
    }
  }

  grouping optional-multicast-key {
    description
      "The optional multicast keys. They are used to differentiate
       multicast service.";
    leaf vpn-rd {
      type rt-types:route-distinguisher;
      description
        "A Route Distinguisher is used to differentiate
         routes from different MVPNs.";
      reference
        "RFC 8294: Common YANG Data Types for the Routing Area.
         RFC 6513: Multicast in MPLS/BGP IP VPNs.";
    }
    leaf mac-address {
      type yang:mac-address;
      description
        "The mac address of flow. In the EVPN situation, the L2
         flow that is called
         BUM (Broadcast, Unknown Unicast, Multicast)
         can be sent to the other PEs that
         are in a same broadcast domain.";
      reference
        "RFC 6991: Common YANG Data Types.
         RFC 7432: BGP MPLS-Based Ethernet VPN.";
    }
    leaf vni-value {
      type uint32;
      description
        "The value of VXLAN network identifier, virtual subnet ID
         or virtual net identifier. This value and vni-type is used
         to indicate a specific virtual multicast service.";
    }
  }

  // multicast-key

  grouping encap-type {
    description
      "The encapsulation type used for flow forwarding.
       This encapsulation acts as the inner encapsulation,
       as compare to the outer multicast-transport encapsulation.";
    choice encap-type {
      case mpls {
        description
          "The BIER forwarding depends on mpls.";
        reference
          "RFC 8296: Encapsulation for Bit Index Explicit
           Replication (BIER) in MPLS and Non-MPLS Networks.";
      }
      case eth {
        description
          "The BIER forwarding depends on ethernet.";
        reference
          "RFC 8296: Encapsulation for Bit Index Explicit
           Replication (BIER) in MPLS and Non-MPLS Networks.";
      }
      case ipv6 {
        description
          "The BIER forwarding depends on IPv6.";
        reference
          "I-D.ietf-bier-bierin6: BIER in IPv6 (BIERin6)";
      }
      description
        "The encapsulation type in BIER.";
    }
  }

  // encap-type
  grouping bier-key {
    description
      "The key parameters set for BIER/BIER TE forwarding.";
    reference
      "RFC 8279: Multicast Using Bit Index Explicit Replication
       (BIER).";
    leaf sub-domain {
      type uint16;
      description
        "The subdomain ID that the multicast flow belongs to.";
    }
    leaf bitstringlength {
      type uint16;
      description
        "The bitstringlength used by BIER forwarding.";
    }
    leaf set-identifier {
      type uint16;
      description
        "The set identifier used by the multicast flow.";
    }
    leaf bier-encap-type {
      type identityref {
        base bier:bier-encapsulation;
      }
      description
        "The BIER encapsulation that can be used in either MPLS
         networks or non-MPLS networks.";
    }
  }

  grouping transport-tech {
    description
      "The transport technology selected for the multicast service.
       For one specific multicast flow.";
    leaf type {
      type identityref {
        base transport-type;
      }
      description
        "The type of transport technology";
    }
    choice transport-tech-type {
      description
        "The type of transport technology";
      case bier {
        if-feature "bier";
        description
          "Using BIER as the transport technology.
           The BIER technology is introduced in RFC8279.
           The parameters are consistent with the definition in
           BIER YANG data model.";
        reference
          "RFC 8296: Encapsulation for Bit Index Explicit
             Replication (BIER) in MPLS and Non-MPLS Networks
           I-D.ietf-bier-bier-yang:
             YANG Data Model for BIER Protocol.";
        uses bier-key;
      }
      case bier-te {
        if-feature "bier";
        description
          "Using BIER-TE as the transport technology.
           The BIER-TE technology is introduced in RFC9262.
           The parameters are consistent with the definition in
           BIER and BIER TE YANG data model.";
        reference
          "RFC 9262: Tree Engineering for Bit Index Explicit
             Replication (BIER-TE)
           I-D.ietf-bier-bier-yang: YANG Data Model for BIER Protocol
           I-D.ietf-bier-te-yang: A YANG data model for Traffic
             Engineering for Bit Index Explicit Replication
             (BIER-TE)";
        //uses bier-key;
        list bitstring {
          key "name";
          leaf name {
            type string;
            description
              "The name of the bitstring";
          }
          list bier-te-adj {
            key "adj-id";
            leaf adj-id {
              type uint16;
              description
                "The link adjacency ID used for BIER TE forwarding.";
            }
            description
              "The adjacencies ID used for BIER TE bitstring
               encapsulation.";
          }
          description
            "The bitstring name and detail used for BIER TE
             forwarding encapsulation. One or more bitstring can be
             used for backup path.";
        }
      }
      case mldp {
        if-feature "mldp";
        description
          "Using MLDP as the transport technology.";
        reference
          "RFC 6388:
             Label Distribution Protocol Extensions
             for Point-to-Multipoint and Multipoint-to-Multipoint
             Label Switched Paths";
      }
      case rsvp-te-p2mp {
        if-feature "p2mp-te";
        description
          "Using RSVP TE P2MP as the transport technology.";
        reference
          "RFC 4875: Extensions to Resource Reservation Protocol -
            Traffic Engineering (RSVP-TE) for Point-to-Multipoint TE
            Label Switched Paths (LSPs)
           RFC 8776: Common YANG Data Types for Traffic Engineering";
        leaf template-name {
          type te-types:te-template-name;
          description
            "A type for the name of a TE node template or TE link
             template.";
        }
      }
      case pim {
        if-feature "pim";
        description
          "Using PIM as the transport technology.";
        reference
          "RFC 7761: Protocol Independent Multicast - Sparse Mode
           (PIM-SM): Protocol Specification (Revised)";
        uses pim;
      }
      case sr-p2mp {
        if-feature "sr";
        description
          "Using SR P2MP as the transport technology.
           The ingress replication and the treesid
           function will not be used at the same time.";
        reference
          "RFC 8402: Segment Routing Architecture
           RFC 9524: Segment Routing Replication for Multipoint
             Service Delivery
           I-D.ietf-pim-sr-p2mp-policy: Segment Routing
             Point-to-Multipoint Policy
           I-D.ietf-spring-sr-policy-yang: YANG Data Model for
             Segment Routing Policy";
        leaf-list ir-sr-policies {
          type leafref {
            path "/rt:routing/"
               + "sr-policy:segment-routing/"
               + "sr-policy:traffic-engineering/"
               + "sr-policy:attributes/"
               + "sr-policy:segment-lists/"
               + "sr-policy:segment-list/"
               + "sr-policy:name";
          }
          description
            "The segment list used for ingress replication.";
        }
      }
      // sr-p2mp
    }
  }

  // underlay-tech

  grouping underlay-tech {
    description
      "The underlay technology selected for the transport layer.
       The underlay technology has no straight relationship with
       the multicast overlay, it is used for transport path
       building, for example BIER forwarding path building.";
    leaf type {
      type identityref {
        base underlay-type;
      }
      description
        "The type of underlay technology";
    }
    choice underlay-tech-type {
      description
        "The type of underlay technology";
      case ospf {
        description
          "Using OSPF as the underlay technology.
           If OSPF protocol supports multiple topology feature,
           the associated topology name may be assigned.
           In case the topology name is assigned, the specific
           OSPF topology is used for underly to building the
           transport layer.";
        reference
          "RFC 4915: Multi-Topology Routing
           RFC 9129: YANG Data Model for the OSPF Protocol";
        leaf topology-id {
          type uint8;
          description
            "The MT-ID for the topology enabled in OSPF protocol";
        }
      }
      case isis {
        description
          "Using IS-IS as the underlay technology.
           If IS-IS protocol supports multiple topology feature,
           the associated topology name may be assigned.
           In case the topology name is assigned, the specific
           IS-IS topology is used for underly to building the
           transport layer.";
        reference
          "RFC 5120: M-IS-IS: Multi Topology Routing in IS-IS
           RFC 9130: YANG Data Model for the IS-IS Protocol";
      }
      case pim {
        description
          "Using PIM as the underlay technology.";
        reference
          "RFC 7761: Protocol Independent Multicast - Sparse Mode
           (PIM-SM): Protocol Specification (Revised)";
        uses pim;
      }
    }
  }

  // underlay-tech

  /*overlay*/
  grouping overlay-tech {
    container dynamic-overlay {
      leaf type {
        type identityref {
          base overlay-type;
        }
        description
          "The type of overlay technology";
      }
      choice overlay-tech-type {
        description
          "The type of overlay technology";
        case evpn {
          description
            "EVPN technology is used for multicast overlay.";
          reference
            "RFC 7432: BGP MPLS-Based Ethernet VPN
             RFC 9624: EVPN Broadcast, Unknown Unicast, or
             Multicast (BUM) Using Bit Index Explicit Replication
             (BIER)";
        }
        case mld {
          description
            "MLD/IGMP can be used as multicast overlay
             when BIER is used as transport technology.";
          reference
            "I-D:ietf-bier-mld: BIER Ingress Multicast Flow Overlay
             using Multicast Listener Discovery Protocols";
          leaf mld-instance-group {
            type rt-types:ip-multicast-group-address;
            description
              "The multicast address used for multiple MLD instance
               support.";
          }
        }
        case mld-snooping {
          description
            "MLD/IGMP snooping can be used as multicast overlay
             when BIER is used as transport technology.";
          reference
            "RFC 9166:A YANG Data Model for Internet Group
             Management Protocol (IGMP) and Multicast Listener
                         Discovery (MLD) Snooping";
          leaf mld-snooping-group {
            type rt-types:ip-multicast-group-address;
            description
              "The multicast address used for MLD-snooping.";
          }
        }
        case mvpn {
          description
            "MVPN technology is used for multicast overlay.
             The global table multicast can also be achieved.";
          reference
            "RFC 6513: Multicast in MPLS/BGP IP VPNs
             RFC 7716: Global Table Multicast with BGP Multicast VPN
             (BGP-MVPN) Procedures
             RFC 8556: Multicast VPN Using Bit Index Explicit
             Replication (BIER)";
        }
        case pim {
          description
            "PIM can be used as multicast overlay
             when BIER is used as transport technology.";
          reference
            "RFC 7761: Protocol Independent Multicast - Sparse Mode
             (PIM-SM): Protocol Specification (Revised)
             I-D.ietf-bier-pim-signaling: PIM Signaling Through BIER
             Core";
        }
      }
      description
        "The dynamic overlay technologies and associated parameter
         that may be set.";
    }
    description
      "The overlay technology used for multicast service.";
  }

  // overlay-tech
  /*transport*/

  grouping pim {
    description
      "The required information of pim transportion.";
    leaf source-address {
      type ip-multicast-source-address;
      description
        "The IP source address of the multicast flow. The
         value set to * means that the receiver interests
         in all source that relevant to one given group.";
    }
    leaf group-address {
      type rt-types:ip-multicast-group-address;
      mandatory true;
      description
        "The IP group address of multicast flow. This
         type represents a version-neutral IP multicast group
         address. The format of the textual representation
         implies the IP version.";
    }
    reference
      "RFC 7761: Protocol Independent Multicast - Sparse Mode
                 (PIM-SM): Protocol Specification (Revised).";
  }

  container multicast-service {
    description
      "The model of multicast YANG data. Include keys, overlay,
       transport and underlay.";
    list multicast-keys {
      key "source-address group-address";
      uses general-multicast-key;
      uses optional-multicast-key;
      container multicast-overlay {
        description
          "The overlay information of multicast service.
           Overlay technology is used to exchange multicast
           flows information. Overlay technology may not be
           used in SDN controlled situation. Different overlay
           technologies can be chosen according to different
           deploy consideration.";
        leaf vni-type {
          type identityref {
            base tunnel-encap-type;
          }
          description
            "The encapsulated type for the multicast flow,
             it is used to carry the virtual network identifier
             for the multicast service.
             When this type is set, the associated vni-value
             MUST be set.";
        }
        container ingress-egress {
          description
            "The ingress and egress nodes address collection.
             The ingress node may use the egress nodes set
             directly to encapsulate the multicast flow by
             transport technology.";
          leaf-list ingress-nodes {
            type inet:ip-address;
            description
              "The ip address of ingress node for one or more
               multicast flow. Or the ingress node of MVPN,
               EVPN and BIER.
               In MVPN, this is the address of ingress
               PE; in BIER, this is the BFR-prefix of BFIR.
               Two or more ingress nodes may exist for the
               redundant ingress node protection.";
          }
          leaf-list egress-nodes {
            type inet:ip-address;
            description
              "The ip address of egress nodes for the multicast flow.
               Or the egress node of MVPN, EVPN and BIER.
               In MVPN, this is the address of egress PE;
               in BIER, this is the BFR-prefix of BFER.";
          }
        }
        container bier-ids {
          if-feature "bier";
          description
            "The BFR-ids of ingress and egress BIER nodes for
             one or more multicast flows. This overlay is used
             with BIER transport technology. The egress nodes
             set can be used to encapsulate the multicast flow
             directly in the ingress node.";
          reference
            "RFC 8279: Multicast Using Bit Index Explicit
             Replication (BIER)";
          leaf sub-domain {
            type uint16;
            description
              "The sub-domain that this multicast flow belongs to.";
          }
          leaf-list ingress-nodes {
            type uint16;
            description
              "The BFR-ID of the ingress node.";
          }
          leaf-list egress-nodes {
            type uint16;
            description
              "The BFR-ID of the egress node.";
          }
        }
        uses overlay-tech;
      }
      container multicast-transport {
        description
          "The transportion of multicast service. Transport
           protocol is responsible for delivering multicast
           flows from ingress nodes to egress nodes with or
           without specific encapsulation. Different transport
           technology can be chosen according to different
           deploy consideration. Once a transport technology
           is chosen, associated protocol should be triggered
           to run.";
        uses transport-tech;
      }
      container multicast-underlay {
        description
          "The underlay of multicast service. Underlay protocol
           is used to build transport layer. Underlay protocol
           need not be assigned in ordinary network since
           existed underlay protocol fits well, but it can be
           assigned in particular networks for better
           controll. Once an underlay technology is chosen,
           associated protocol should be triggered to run.";
        uses underlay-tech;
      }
      description
        "The model of multicast YANG data. Include keys,
         overlay, transport and underlay.";
    }
  }

  /*Notifications*/

  notification ingress-egress-event {
    leaf event-type {
      type identityref {
        base event-type;
      }
      description
        "The event type.";
    }
    container multicast-key {
      uses general-multicast-key;
      uses optional-multicast-key;
      description
        "The associated multicast keys that are influenced by
         ingress or egress node failure.";
    }
    uses overlay-tech;
    container transport-tech {
      description
        "The modules can be used to forward multicast flows.";
      uses transport-tech;
    }
    container underlay-tech {
      description
        "There is something wrong with the module which is
         used to build multicast transport layer.";
      uses underlay-tech;
    }
    description
      "Notification events for the ingress or egress nodes. Like
       node failure, overlay/ transport/ underlay module
       loading/ unloading. And the potential failure about some
       multicast flows and associated
       overlay/ transport/ underlay technologies.";
  }
}

<CODE ENDS>

4. Security Considerations

The "Multicast-service" YANG module defines a data model that is designed to be accessed via YANG-based management protocols, such as NETCONF [RFC6241] or RESTCONF [RFC8040]. These protocols have to use a secure transport layer (e.g., SSH [RFC6242], TLS [RFC8446], and QUIC [RFC9000]) and have to use mutual authentication.

The Network Configuration Access Control Model (NACM) [RFC8341] provides the means to restrict access for particular NETCONF or RESTCONF users to a preconfigured subset of all available NETCONF or RESTCONF protocol operations and content.

There are a number of data nodes defined in this YANG module that are writable/creatable/deletable (i.e., "config true", which is the default). All writable data nodes are likely to be reasonably sensitive or vulnerable in some network environments. Write operations (e.g., edit-config) and delete operations to these data nodes without proper protection or authentication can have a negative effect on network operations. The following subtrees and data nodes have particular sensitivities/vulnerabilities:

multicast-service

Some of the readable data nodes in this YANG module may be considered sensitive or vulnerable in some network environments. It is thus important to control read access (e.g., via get, get-config, or notification) to these data nodes. Specifically, the following subtrees and data nodes have particular sensitivities/ vulnerabilities:

multicast-service

This YANG module uses groupings from other YANG modules that define nodes that may be considered sensitive or vulnerable in network environments. Refer to the Security Considerations of respective for information as to which nodes may be considered sensitive or vulnerable in network environments.

The YANG module defines a set of identities, types, and groupings. These nodes are intended to be reused by other YANG modules. The module by itself does not expose any data nodes that are writable, data nodes that contain read-only state, or RPCs. As such, there are no additional security issues related to the YANG module that need to be considered.

Modules that use the groupings that are defined in this document should identify the corresponding security considerations. For example, reusing some of these groupings will expose privacy-related information (e.g., 'transport-type').

5. IANA Considerations

RFC Ed.: Please replace all occurrences of 'XXXX' with the actual RFC number (and remove this note).

IANA is requested to register the following URI in the "ns" subregistry within the "IETF XML Registry" [RFC3688]:

URI: urn:ietf:params:xml:ns:yang:ietf-multicast

Registrant Contact: The IESG

XML: N/A, the requested URI is an XML namespace.

IANA is requested to register the following YANG module in the "YANG Module Names" subregistry [RFC6020] within the "YANG Parameters" registry.

name: ietf-multicast

Maintained by IANA? N

namespace: urn:ietf:params:xml:ns:yang:ietf-multicast

prefix: ietf-multicast

reference: RFC XXXX

6. Acknowledgements

The authors would like to thank Stig Venaas, Jake Holland, Min Gu, Gyan Mishra for their valuable comments and suggestions.

7. References

7.1. Normative References

[RFC1195]
Callon, R., "Use of OSI IS-IS for routing in TCP/IP and dual environments", RFC 1195, DOI 10.17487/RFC1195, , <https://www.rfc-editor.org/info/rfc1195>.
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, , <https://www.rfc-editor.org/info/rfc2119>.
[RFC2328]
Moy, J., "OSPF Version 2", STD 54, RFC 2328, DOI 10.17487/RFC2328, , <https://www.rfc-editor.org/info/rfc2328>.
[RFC4271]
Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A Border Gateway Protocol 4 (BGP-4)", RFC 4271, DOI 10.17487/RFC4271, , <https://www.rfc-editor.org/info/rfc4271>.
[RFC4875]
Aggarwal, R., Ed., Papadimitriou, D., Ed., and S. Yasukawa, Ed., "Extensions to Resource Reservation Protocol - Traffic Engineering (RSVP-TE) for Point-to-Multipoint TE Label Switched Paths (LSPs)", RFC 4875, DOI 10.17487/RFC4875, , <https://www.rfc-editor.org/info/rfc4875>.
[RFC5340]
Coltun, R., Ferguson, D., Moy, J., and A. Lindem, "OSPF for IPv6", RFC 5340, DOI 10.17487/RFC5340, , <https://www.rfc-editor.org/info/rfc5340>.
[RFC6020]
Bjorklund, M., Ed., "YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)", RFC 6020, DOI 10.17487/RFC6020, , <https://www.rfc-editor.org/info/rfc6020>.
[RFC6241]
Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed., and A. Bierman, Ed., "Network Configuration Protocol (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, , <https://www.rfc-editor.org/info/rfc6241>.
[RFC6242]
Wasserman, M., "Using the NETCONF Protocol over Secure Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, , <https://www.rfc-editor.org/info/rfc6242>.
[RFC6388]
Wijnands, IJ., Ed., Minei, I., Ed., Kompella, K., and B. Thomas, "Label Distribution Protocol Extensions for Point-to-Multipoint and Multipoint-to-Multipoint Label Switched Paths", RFC 6388, DOI 10.17487/RFC6388, , <https://www.rfc-editor.org/info/rfc6388>.
[RFC6513]
Rosen, E., Ed. and R. Aggarwal, Ed., "Multicast in MPLS/BGP IP VPNs", RFC 6513, DOI 10.17487/RFC6513, , <https://www.rfc-editor.org/info/rfc6513>.
[RFC6991]
Schoenwaelder, J., Ed., "Common YANG Data Types", RFC 6991, DOI 10.17487/RFC6991, , <https://www.rfc-editor.org/info/rfc6991>.
[RFC7432]
Sajassi, A., Ed., Aggarwal, R., Bitar, N., Isaac, A., Uttaro, J., Drake, J., and W. Henderickx, "BGP MPLS-Based Ethernet VPN", RFC 7432, DOI 10.17487/RFC7432, , <https://www.rfc-editor.org/info/rfc7432>.
[RFC7716]
Zhang, J., Giuliano, L., Rosen, E., Ed., Subramanian, K., and D. Pacella, "Global Table Multicast with BGP Multicast VPN (BGP-MVPN) Procedures", RFC 7716, DOI 10.17487/RFC7716, , <https://www.rfc-editor.org/info/rfc7716>.
[RFC7761]
Fenner, B., Handley, M., Holbrook, H., Kouvelas, I., Parekh, R., Zhang, Z., and L. Zheng, "Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised)", STD 83, RFC 7761, DOI 10.17487/RFC7761, , <https://www.rfc-editor.org/info/rfc7761>.
[RFC7950]
Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language", RFC 7950, DOI 10.17487/RFC7950, , <https://www.rfc-editor.org/info/rfc7950>.
[RFC7951]
Lhotka, L., "JSON Encoding of Data Modeled with YANG", RFC 7951, DOI 10.17487/RFC7951, , <https://www.rfc-editor.org/info/rfc7951>.
[RFC8040]
Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF Protocol", RFC 8040, DOI 10.17487/RFC8040, , <https://www.rfc-editor.org/info/rfc8040>.
[RFC8174]
Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, , <https://www.rfc-editor.org/info/rfc8174>.
[RFC8279]
Wijnands, IJ., Ed., Rosen, E., Ed., Dolganow, A., Przygienda, T., and S. Aldrin, "Multicast Using Bit Index Explicit Replication (BIER)", RFC 8279, DOI 10.17487/RFC8279, , <https://www.rfc-editor.org/info/rfc8279>.
[RFC8294]
Liu, X., Qu, Y., Lindem, A., Hopps, C., and L. Berger, "Common YANG Data Types for the Routing Area", RFC 8294, DOI 10.17487/RFC8294, , <https://www.rfc-editor.org/info/rfc8294>.
[RFC8296]
Wijnands, IJ., Ed., Rosen, E., Ed., Dolganow, A., Tantsura, J., Aldrin, S., and I. Meilik, "Encapsulation for Bit Index Explicit Replication (BIER) in MPLS and Non-MPLS Networks", RFC 8296, DOI 10.17487/RFC8296, , <https://www.rfc-editor.org/info/rfc8296>.
[RFC8340]
Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams", BCP 215, RFC 8340, DOI 10.17487/RFC8340, , <https://www.rfc-editor.org/info/rfc8340>.
[RFC8341]
Bierman, A. and M. Bjorklund, "Network Configuration Access Control Model", STD 91, RFC 8341, DOI 10.17487/RFC8341, , <https://www.rfc-editor.org/info/rfc8341>.
[RFC8342]
Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K., and R. Wilton, "Network Management Datastore Architecture (NMDA)", RFC 8342, DOI 10.17487/RFC8342, , <https://www.rfc-editor.org/info/rfc8342>.
[RFC8343]
Bjorklund, M., "A YANG Data Model for Interface Management", RFC 8343, DOI 10.17487/RFC8343, , <https://www.rfc-editor.org/info/rfc8343>.
[RFC8344]
Bjorklund, M., "A YANG Data Model for IP Management", RFC 8344, DOI 10.17487/RFC8344, , <https://www.rfc-editor.org/info/rfc8344>.
[RFC8349]
Lhotka, L., Lindem, A., and Y. Qu, "A YANG Data Model for Routing Management (NMDA Version)", RFC 8349, DOI 10.17487/RFC8349, , <https://www.rfc-editor.org/info/rfc8349>.
[RFC8446]
Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446, , <https://www.rfc-editor.org/info/rfc8446>.
[RFC8556]
Rosen, E., Ed., Sivakumar, M., Przygienda, T., Aldrin, S., and A. Dolganow, "Multicast VPN Using Bit Index Explicit Replication (BIER)", RFC 8556, DOI 10.17487/RFC8556, , <https://www.rfc-editor.org/info/rfc8556>.
[RFC9000]
Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based Multiplexed and Secure Transport", RFC 9000, DOI 10.17487/RFC9000, , <https://www.rfc-editor.org/info/rfc9000>.

7.2. Informative References

[I-D.ietf-bess-evpn-yang]
Brissette, P., Shah, H. C., Hussain, I., Tiruveedhula, K., and J. Rabadan, "Yang Data Model for EVPN", Work in Progress, Internet-Draft, draft-ietf-bess-evpn-yang-07, , <https://datatracker.ietf.org/doc/html/draft-ietf-bess-evpn-yang-07>.
[I-D.ietf-bess-mvpn-yang]
Liu, Y., Guo, F., Litkowski, S., Liu, X., Kebler, R., and M. Sivakumar, "Yang Data Model for Multicast in MPLS/BGP IP VPNs", Work in Progress, Internet-Draft, draft-ietf-bess-mvpn-yang-05, , <https://datatracker.ietf.org/doc/html/draft-ietf-bess-mvpn-yang-05>.
[I-D.ietf-bier-bier-yang]
Chen, R., hu, F., Zhang, Z., dai.xianxian@zte.com.cn, and M. Sivakumar, "YANG Data Model for BIER Protocol", Work in Progress, Internet-Draft, draft-ietf-bier-bier-yang-10, , <https://datatracker.ietf.org/doc/html/draft-ietf-bier-bier-yang-10>.
[I-D.ietf-bier-bierin6]
Zhang, Z., Zhang, Z. J., Wijnands, I., Mishra, M. P., Bidgoli, H., and G. S. Mishra, "Supporting BIER in IPv6 Networks (BIERin6)", Work in Progress, Internet-Draft, draft-ietf-bier-bierin6-11, , <https://datatracker.ietf.org/doc/html/draft-ietf-bier-bierin6-11>.
[I-D.ietf-bier-mld]
Pfister, P., Wijnands, I., Venaas, S., Wang, C., Zhang, Z., and M. Stenberg, "BIER Ingress Multicast Flow Overlay using Multicast Listener Discovery Protocols", Work in Progress, Internet-Draft, draft-ietf-bier-mld-08, , <https://datatracker.ietf.org/doc/html/draft-ietf-bier-mld-08>.
[I-D.ietf-bier-pim-signaling]
Bidgoli, H., Xu, F., Kotalwar, J., Wijnands, I., Mishra, M. P., and Z. J. Zhang, "PIM Signaling Through BIER Core", Work in Progress, Internet-Draft, draft-ietf-bier-pim-signaling-13, , <https://datatracker.ietf.org/doc/html/draft-ietf-bier-pim-signaling-13>.
[I-D.ietf-mboned-redundant-ingress-failover]
Shepherd, G., Zhang, Z., Liu, Y., Cheng, Y., and G. S. Mishra, "Multicast Redundant Ingress Router Failover", Work in Progress, Internet-Draft, draft-ietf-mboned-redundant-ingress-failover-06, , <https://datatracker.ietf.org/doc/html/draft-ietf-mboned-redundant-ingress-failover-06>.
[I-D.ietf-pim-sr-p2mp-policy]
Voyer, D., Filsfils, C., Parekh, R., Bidgoli, H., Zhang, Z. J., and M. P. Mishra, "Segment Routing Point-to-Multipoint Policy", Work in Progress, Internet-Draft, draft-ietf-pim-sr-p2mp-policy-11, , <https://datatracker.ietf.org/doc/html/draft-ietf-pim-sr-p2mp-policy-11>.
[I-D.ietf-spring-sr-policy-yang]
Raza, S. K., Saleh, T., Shunwan, Z., Voyer, D., Durrani, M., Matsushima, S., and V. P. Beeram, "YANG Data Model for Segment Routing Policy", Work in Progress, Internet-Draft, draft-ietf-spring-sr-policy-yang-04, , <https://datatracker.ietf.org/doc/html/draft-ietf-spring-sr-policy-yang-04>.
[RFC3688]
Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688, DOI 10.17487/RFC3688, , <https://www.rfc-editor.org/info/rfc3688>.
[RFC4541]
Christensen, M., Kimball, K., and F. Solensky, "Considerations for Internet Group Management Protocol (IGMP) and Multicast Listener Discovery (MLD) Snooping Switches", RFC 4541, DOI 10.17487/RFC4541, , <https://www.rfc-editor.org/info/rfc4541>.
[RFC7348]
Mahalingam, M., Dutt, D., Duda, K., Agarwal, P., Kreeger, L., Sridhar, T., Bursell, M., and C. Wright, "Virtual eXtensible Local Area Network (VXLAN): A Framework for Overlaying Virtualized Layer 2 Networks over Layer 3 Networks", RFC 7348, DOI 10.17487/RFC7348, , <https://www.rfc-editor.org/info/rfc7348>.
[RFC7637]
Garg, P., Ed. and Y. Wang, Ed., "NVGRE: Network Virtualization Using Generic Routing Encapsulation", RFC 7637, DOI 10.17487/RFC7637, , <https://www.rfc-editor.org/info/rfc7637>.
[RFC8407]
Bierman, A., "Guidelines for Authors and Reviewers of Documents Containing YANG Data Models", BCP 216, RFC 8407, DOI 10.17487/RFC8407, , <https://www.rfc-editor.org/info/rfc8407>.
[RFC8639]
Voit, E., Clemm, A., Gonzalez Prieto, A., Nilsen-Nygaard, E., and A. Tripathy, "Subscription to YANG Notifications", RFC 8639, DOI 10.17487/RFC8639, , <https://www.rfc-editor.org/info/rfc8639>.
[RFC8641]
Clemm, A. and E. Voit, "Subscription to YANG Notifications for Datastore Updates", RFC 8641, DOI 10.17487/RFC8641, , <https://www.rfc-editor.org/info/rfc8641>.
[RFC8776]
Saad, T., Gandhi, R., Liu, X., Beeram, V., and I. Bryskin, "Common YANG Data Types for Traffic Engineering", RFC 8776, DOI 10.17487/RFC8776, , <https://www.rfc-editor.org/info/rfc8776>.
[RFC8926]
Gross, J., Ed., Ganga, I., Ed., and T. Sridhar, Ed., "Geneve: Generic Network Virtualization Encapsulation", RFC 8926, DOI 10.17487/RFC8926, , <https://www.rfc-editor.org/info/rfc8926>.
[RFC8966]
Chroboczek, J. and D. Schinazi, "The Babel Routing Protocol", RFC 8966, DOI 10.17487/RFC8966, , <https://www.rfc-editor.org/info/rfc8966>.
[RFC9128]
Liu, X., McAllister, P., Peter, A., Sivakumar, M., Liu, Y., and F. Hu, "YANG Data Model for Protocol Independent Multicast (PIM)", RFC 9128, DOI 10.17487/RFC9128, , <https://www.rfc-editor.org/info/rfc9128>.
[RFC9129]
Yeung, D., Qu, Y., Zhang, Z., Chen, I., and A. Lindem, "YANG Data Model for the OSPF Protocol", RFC 9129, DOI 10.17487/RFC9129, , <https://www.rfc-editor.org/info/rfc9129>.
[RFC9130]
Litkowski, S., Ed., Yeung, D., Lindem, A., Zhang, J., and L. Lhotka, "YANG Data Model for the IS-IS Protocol", RFC 9130, DOI 10.17487/RFC9130, , <https://www.rfc-editor.org/info/rfc9130>.
[RFC9262]
Eckert, T., Ed., Menth, M., and G. Cauchie, "Tree Engineering for Bit Index Explicit Replication (BIER-TE)", RFC 9262, DOI 10.17487/RFC9262, , <https://www.rfc-editor.org/info/rfc9262>.
[RFC9524]
Voyer, D., Ed., Filsfils, C., Parekh, R., Bidgoli, H., and Z. Zhang, "Segment Routing Replication for Multipoint Service Delivery", RFC 9524, DOI 10.17487/RFC9524, , <https://www.rfc-editor.org/info/rfc9524>.
[RFC9572]
Zhang, Z., Lin, W., Rabadan, J., Patel, K., and A. Sajassi, "Updates to EVPN Broadcast, Unknown Unicast, or Multicast (BUM) Procedures", RFC 9572, DOI 10.17487/RFC9572, , <https://www.rfc-editor.org/info/rfc9572>.
[RFC9624]
Zhang, Z., Przygienda, T., Sajassi, A., and J. Rabadan, "EVPN Broadcast, Unknown Unicast, or Multicast (BUM) Using Bit Index Explicit Replication (BIER)", RFC 9624, DOI 10.17487/RFC9624, , <https://www.rfc-editor.org/info/rfc9624>.
[RFC9692]
Przygienda, T., Ed., Head, J., Ed., Sharma, A., Thubert, P., Rijsman, B., and D. Afanasiev, "RIFT: Routing in Fat Trees", RFC 9692, DOI 10.17487/RFC9692, , <https://www.rfc-editor.org/info/rfc9692>.

Appendix A. Data Tree Example

This section contains an example of an instance data tree in JSON encoding [RFC7951], containing configuration data.

The configuration example:

{
  "ietf-multicast:multicast-service":{
    "multicast-keys":[
      {
        "vpn-rd":"0:65532:4294967292",
        "source-address":"*",
        "group-address":"233.252.0.10",
        "mac-address": "00:00:5e:00:53:01",
        "vni-value":0,
        "multicast-overlay":{
          "vni-type":"nvgre",
          "ingress-egress":{
            "ingress-nodes":[
              {
                "ingress-node":"198.51.100.10"
              }
            ],
            "egress-nodes":[
              {
                "egress-node":"203.0.113.5"
              }
            ]
          }
        },
        "multicast-transport":{
          "type": "ietf-multicast:bier",
          "bier":{
            "sub-domain":0,
            "bitstringlength":256,
            "set-identifier":0
          }
        },
        "multicast-underlay":{
          "type": "ietf-multicast:ospf",
          "ospf":{
            "topology":"2"
          }
        }
      }
    ]
  }
}

Authors' Addresses

Zheng Zhang
ZTE Corporation
China
Cui(Linda) Wang
Individual
Australia
Ying Cheng
China Unicom
Beijing
China
Xufeng Liu
Alef Edge
Mahesh Sivakumar
Juniper networks
1133 Innovation Way
Sunnyvale, CALIFORNIA 94089,
United States of America