interoperableLISP Working Group S. Barkai Internet-Draft B. Fernandez-Ruiz Intended status: Informational R. Tamir Expires: June 28,2023 Nexar Inc. A. Rodriguez-Natal F. Maino Cisco Systems A. Cabellos-Aparicio J. Paillisse Vilanova Technical University of Catalonia D. Farinacci lispers.net December 25, 2022 Network-Hexagons:Geolocation Mobility Edge Network Based On H3 and LISP draft-ietf-lisp-nexagon-43 Abstract This document describes an interoperable system that utilizes virtual layer 3 routing and geospatial addressing to form a Geolocation mobility-edge network. The network uses a hierarchical H3 grid to calculate the high-resolution tile positions of vehicles with vision AI cameras based on their GPS coordinates. When these vehicles detect elements of interest on the road, the system uses the tile ID of the detection as the basis for an IPv6 endpoint identifier (EID). These EIDs are the queue destination and channel source for network-addressable agents which consolidate detections from all vehicles in a given area. The mobility network is built using the Locator/ID Separation Protocol (LISP). Status of This Memo This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." This Internet-Draft will expire on February 28,2023. Barkai, et al. Expires June 28,2023 [Page 1] Internet-Draft LISP December 2022 Copyright Notice Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 2. Definition of Terms . . . . . . . . . . . . . . . . . . . . . 5 3. Deployment Assumptions . . . . . . . . . . . . . . . . . . . 7 4. Mobility Clients-Services Networking . . . . . . . . . . . . 8 5. Mobility Unicast and Multicast . . . . . . . . . . . . . . . 9 6. Security Considerations . . . . . . . . . . . . . . . . . . . 15 7. Privacy Considerations . . . . . . . . . . . . . . . . . . . 15 8. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 16 9. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 17 10. Normative References . . . . . . . . . . . . . . . . . . . . 29 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 30 1. Introduction This document describes an interoperable system that utilizes virtual layer 3 routing and geospatial addressing to form a Geolocation mobility-edge network. The network uses a hierarchical [H3] grid to calculate the high-resolution tile positions of vehicles with vision AI cameras based on their GPS coordinates. When these vehicles detect elements of interest on the road, the system uses the tile ID of the detection as the basis for an IPv6 endpoint identifier (EID). These EIDs are the queue destination and channel source for network-addressable agents which consolidate detections from all vehicles in a given area. The mobility network is built using the Locator/ID Separation Protocol (LISP). The system utilizes network addressable hexagonal grid agents, referred to as "nexagons," to dynamically delegate the computation of locations based on road activity, including vehicle uploads and client subscriptions. The dynamics of vehicles and clients can cause key issues, which are resolved by the use of LISP. Key issues include dynamic allocation and consequently coherency of Geolocation IPs cached by clients, context-switching of Geolocation IPs by vehicles while driving, prevention of geo-privacy violation and tracking of vehicles and clients interacting with Geolocation services, and the continuity and notification scale of Geolocation subscriptions. Barkai, et al. Expires June 28,2023 [Page 2] Internet-Draft LISP December 2022 The key issues related to the dynamics of vehicles and clients are resolved using LISP EID-based addressing. This addressing virtualizes the communication between clients and services, utilizes algorithmic Geolocation service addressing based on geospatial grid identifiers and ephemeral client addressing based on an authorization procedure. Geolocation virtual addressing for queues and channels helps to solve the portability of service agents, therefore enables dynamic resource allocation and context-switching. Client EIDs enables subscription continuity, notification scaling, and geo-privacy. ___ / \ Addressable >> States >> Addressable Upload Queues \ ___ / Channels /\ Functions() \/ Figure 1: Geolocation Agents (nexagons) Off-Peak Nexagon Allocation Agents packed on less compute _ _ _ _ / \/ \ / \/ \ ---- \_/\_/ \_/\_/ ---- Peak Nexagon Allocation / \/ \ / \/ \ ---- Agents spread on more compute \_/\_/ \_/\_/ ---- _ _ _ _ _ _ _ _ / \/ \ / \/ \ ---- / \/ \ / \/ \ / \/ \ / \/ \ ---- \_/\_/ \_/\_/ ---- \_/\_/ \_/\_/ \_/\_/ \_/\_/ ---- / \/ \ / \/ \ ---- / \/ \ / \/ \ / \/ \ / \/ \ ---- \_/\_/ \_/\_/ ---- \_/\_/ \_/\_/ \_/\_/ \_/\_/ ---- ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ Site Site Standby Site Site Site Site Standby Figure 2: Geolocation dynamic allocation per geospatial activity Barkai, et al. Expires June 28,2023 [Page 3] Internet-Draft LISP December 2022 Note 1: The breakdown of Geolocation Services into agents (nexagons) is based on geospatial grid lines known to both mobility clients and Geolocation Services. The system utilizes [H3] hierarchical hexagonal grid due to its clear tile adjacency properties, with each grid tile in each resolution having a unique 64-bit identifier (HID). These HIDs are mapped to EIDs algorithmically. In addition to agents, the H3 grid at a higher resolution (smaller tiles) is used to localize detections. We refer to h3.rB as the lower resolution nexagon big tile and h3.rS as the detection location, higher resolution small tile. The mappings from GPS to h3.rS to h3.rB to EID are algorithmic. The number of messages needed to convey nexagon state snapshot based on the small tiles in h3.rB can be approximately calculated as the size of h3.rB divided by the size of h3.rS, multiplied by mobility density, and divided by the maximum transmission unit (MTU). Note 2: LISP EIDs form an application network that requires a formal provisioning step for for both clients and services. For clients, this step involves an authentication, authorization, and accounting (AAA) procedure by which clients request and renew EIDs and tunnel-routers to be used to interact with services. This process may be implemented using various vendor-specific methods or a multivendor AAA service. The AAA procedure is described later in a life-cycle example. Note 3: In order to provide a concrete understanding of geospatial detection and dynamic road discovery, 64 bits of information about "what" the detection is are used with the 64-bit HID of "where" the detection is. These 64 bits are detailed in a bit-mask based on a taxonomy defined by Berkeley Deep Drive [BDD] and serve as a baseline that can be extended or overridden as needed. Barkai, et al. Expires June 28,2023 [Page 4] Internet-Draft LISP December 2022 2. Definition of Terms Based on [RFC9300][RFC9301] H3ServiceEID: Is an EID addressable Geolocation Service agent. It is a designated destination for geospatial detections, and an (S,G) source of multicast of themed detection channels. It has a light-weight LISP protocol stack to tunnel packets via ServerXTR. The EID is IPv6 and contains HID in the lower bits. ServerXTR: Is a data-plane only LISP protocol stack implementation, it is co-located with H3ServiceEID process. ServerXTR encapsulates and decapsulates packets to and from EdgeRTRs. MobilityClient: Is an application that may be a part of a vehicle system, part of a navigation application, gov-muni application etc. It has light-weight LISP data-plane stack to packets via ClientXTR. MobilityClientEID: Is the IPv6 EID used by the Mobility Clients. The destination of such packets are H3ServiceEIDs. The EID format is assigned as part of the MobilityClient mobility-network AAA. ClientXTR: Is a data-plane only LISP protocol stack implementation co-located with the Mobility Client application. It encapsulates and decapsulates packets to and from EdgeRTRs. EdgeRTR: The EdgeRTR network connects Mobility Clients to H3 Service EIDs and manages Mobility Client multicast registrations [RFC8378]. EdgeRTRs aggregate Mobility Clients and H3 Services using encapsulation to facilitate accessing the mobility network from hosting providers and mobile providers. RTRs re-encapsulate packets from ClientXTRs and ServerXTRs, and remote RTRs. EdgeRTRs glean H3 Service EIDs and Mobility Client EIDs when they decapsulate packets, and store H3 Service EIDs and route locations (RLOCs) using map-caches. These mappings are registered to the LISP mapping system [RFC9301] and may be provisioned when H3 Services are assigned EdgeRTRs. EdgeRTRs do not register MobilityClientEIDs. Enterprises may provide their own EdgeRTRs to protect geo-privacy. Barkai, et al. Expires June 28,2023 [Page 5] Internet-Draft LISP December 2022 h3.rB nexagons ___ ___ H3ServiceEIDs ___ / \ H3ServiceEIDs ___ / \ ___ / | h3.rB | ___ / | h3.rB | / | h3.rB \ ___ / / | h3.rB \ ___ / | h3.rB \ ___ / sXTR | h3.rB \ ___ / sXTR \ ___ / sXTR || \ ___ / sXTR || sXTR || || sXTR || || || || || || || || || || || || || || = = = = = = EdgeRTR EdgeRTR = = = = = || (( () )) || ( Geolocation LISP ) ( Mobility Network ) ( || (( ( ) () || ) || || = = = = = = = = = = = = = = || || EdgeRTR EdgeRTR .. .. .. .. .. .. .. .. ((((|)))) ((((|)))) ((((|)))) ((((|)))) /|\ RAN /|\ /|\ RAN /|\ || || Uploads Upstream || Channels Downstream || || ___ ___ ___ || || << << << << / \/ \/ \<> \ ___ /\ ___ / >> >> >> >> >> >> Figure 3: Geolocation clients and services communication Figure 3 above describes: - MobilityClientA detections used by MobilityClientB, and vice versa - Clients: share information only via Geolocation Services - ClientXTR (cXTR):encapsulates packets over access network to EdgeRTR - ServerXTR (sXTR):encapsulates packets over edge network to EdgeRTR - Uploads: routed to appropriate Geolocation Service by EdgeRTRs - Channels: originate from Geolocation Services replicated by EdgeRTRs Barkai, et al. Expires June 28,2023 [Page 6] Internet-Draft LISP December 2022 3. Deployment Assumptions I. We assume enumerated detections can be localized to h3.rS tiles 0 1 2 3 4 5 6 7 +-------+-------+-------+-------+-------+-------+-------+-------+ |-0-|-1-|-2-|-3-|-4-|-5-|-6-|-7-|-8-|-9-|-A-|-B-|-C-|-D-|-E-|-F-| |012301230123012301230123 Index 01230123012301230123012301230123 +---------------------------------------------------------------+ Figure 4: Nibble based detection enumeration Detections are enumerated in 16 fields x 16 enumerations. Nibbles are named using hexadecimal index according to the position where the most significant nibble has index 0. Enumeration based on [BDD] are defined in section 8. The authorization of Mobility Clients to the mobility network is renewed while driving. The DNS/AAA procedure described below can be used as an example for obtaining EIDs and EdgeRTRs, and for enabling the use of the network. Diameter [RFC6733] based AAA can be used to accommodate a wide range of Mobility Clients, including vehicles, driving and navigation applications, and smart city applications. An example procedure for clients XTRs to use the mobility network: 1) obtain the address of the mobility-network AAA using DNS 2) obtain MobilityClientEIDs and EdgeRTRs from AAA procedure 3) renewed periodically from AAA while using the network MobilityClient DomainNameServer AAA Server MobilityEdgeRTR | | | | | lookup AAA Server | | | |------------------->| | | |<-------------------| | | | AAA Server IP | | | | | | | | Client identifier and credentials | | |--------------------------------------->| | | | |Provision Client EID| | | |------------------->| | | |<-------------------| | | | Ack Provisioed EID | | Send ClientEID,EdgeRTR RLOC | | |<---------------------------------------| | . . . Use The H3-LISP Geolocation Mobility Network . . . |<----------------------------------------------------------->| . . . Renew AAA ClientEID and EdgeRTR provisioning . Figure 5: Example AAA procedure for mobility clients Barkai, et al. Expires June 28,2023 [Page 7] Internet-Draft LISP December 2022 4. Mobility Clients-Services Networking The mobility network functions as a standard LISP overlay delivering unicast and multicast packets across data plane XTRs, which are used in the stack of each mobility client and server. ClientXTRs and ServerXTRs are associated with EdgeRTRs, which allows MobilityClients to "show up" at any location within the mobility network, regardless of the network provider or network address translation domain. This structure also enables any H3 Service EID to be instantiated, delegated, or failed over to any compute location. In this specification, we assume a semi-random association between ClientXTRs and EdgeRTRs assigned by the AAA procedure, with a pool of EdgeRTRs, which can be dynamicaly allocated, distributing the load of MobilityClients within a given metro area. We also assume EdgeRTRs are topologically equivalent and use LISP to encapsulate traffic to and from other EdgeRTRs. It is possible for there to be more than one ClientEID in the same process using the same ClientXTR. The implementation of such vendor-specific multiplexing is unspecified. MobilityClient == ClientXTR ClientXTR == MobilityClient (Encryption and Decryption) || || (Encryption and Decryption) || || EdgeRTR X EdgeRTR || || (Encryption and Decryption) || || (Encryption and Decryption) H3ServiceEID == ServerXTR ServerXTR == H3ServiceEID Figure 6: LISP network connecting MobilityClients and H3ServiceEIDs The following Lisp Canonical Address Format (LCAF) [RFC8060] is used to encode H3-IDs into IPv6 address: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | AFI = 16387 | Rsvd1 | Flags | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Type = 17 HID | Rsvd2 | Length = 8 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | HID (high-order) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | HID (low-order) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 7: LCAF for encoding HIDs in H3ServiceEIDs Barkai, et al. Expires June 28,2023 [Page 8] Internet-Draft LISP December 2022 5. Mobility Unicast and Multicast The day in a life of unicast detection upload: 1. A client detects condition of interest using AI camera 2. The client uses its GPS to establish its h3.rS location 3. It then estimates the h3.rS location of the detection 4. Detection h3.rS center is used to calculate h3.rB => H3ServerEID 5. Client sends (encrypted) location-detection via its ClientXTR Outer Header src/dest: ClientXTR RLOC, EdgeRTR RLOC Inner Header src/dest: ClientEID, H3ServiceEID 6. EdgeRTR gleans and caches ClientEID and ClientXTR RLOC 7. EdgeRTR resolves RLOC of remote EdgeRTR, and re-encapsulates: Outer Header src/dest: EdgeRTR RLOC, remote EdgeRTR RLOC Inner Header src/dest: ClientEID, H3ServiceEID 8. Remote EdgeRTR lookups H3ServerEID ServerXTR RLOC, re-encapsulates: Outer Header src/dest: EdgeRTR RLOC, ServerXTR RLOC Inner Header src/dest: ClientEID, H3ServiceEID 9. ServerXTR delivers ClientEID message to H3ServiceEID The detection message headers consist of the following fields: - Outer headers size = 40 (IPv6) + 8 (UDP) + 8 (LISP) = 56 - Inner headers size = 40 (IPv6) + 8 (UDP) + 4 (Nexagon Header) = 52 - 1500 (MTU) - 56 - 52 = 1392 bytes of effective payload size Nexagon Header allows for key-value (kv) tuples or value-key,key ..(vkkk) using the same formats of key and value outlined bellow +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+\ | Type |gzip | Reserved | Pair Count = X|Nexagon +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+/ Figure 8: Nexagon header format Nexagon Header Type 0:reserved (*) Type 1:key-value, key-value.. 1392 / (8 + 8) = 87 pairs Type 2:value, key,key,key.. (1392 - 8) / 8 = 173 h3.rS IDs Type 3-255: unassigned Nexagon Header GZIP field: 0x000 no compression, or (**) GZIP version. Nexagon Header Reserved bits Nexagon Header key and value count (in any format kv or vkkk) (*) Reserved fields are specified as being set to 0 on transmission, ignored when received. (**) GZIP refers to entire kv or vkkk payload and major GZIP version, packets with unsupported GZIP version are dropped Barkai, et al. Expires June 28,2023 [Page 9] Internet-Draft LISP December 2022 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ \ |Version| Traffic Class | Flow Label | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | Payload Length | Next Header | Hop Limit | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | | | + + | | | | + Source MobilityClientEID + | | | IPv6 + + | | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | | | + + | | | | + Dest H3ServiceEID + | | | | + + | | | / +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Source Port = xxxx | Dest Port = xxxx | \ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ UDP | UDP Length | UDP Checksum | / +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ \ | Type |gzip | Reserved | Pair Count = X|Nexagon +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ / | | + 64bit h3.rS ID + | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | + 64bit State + | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | + 64bit h3.rS ID + | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | + 64bit State + | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 9: Uploaded detections packet format Barkai, et al. Expires June 28,2023 [Page 10] Internet-Draft LISP December 2022 Each H3Service is also an IP Multicast Source used to update subscribers on the state of the h3.rS tiles in the h3.rB area. We use [RFC8378] signal-free multicast to implement overlay channels. Mobility-networks have many channels with thousands subscribers each. MobilityClients driving through/subscribing to an h3.rB area issue group address report based on any mechanism supported by [RFC8378]. Example report formats are specified in [RFC4604]. It is advised that clients establish a ring of objects on their areas of interest. Report messages are encapsulated between ClientXTRs and EdgeRTRs. The day in a life of multicast update: 1. H3ServiceEID determines change or timing requiring an update 2. H3ServiceEID sends (S,G) update message via its ServerXTR Outer Header src/dest: ServerXTR RLOC, EdgeRTR RLOC Inner Header (S,G): H3ServerEID, EID chosen for theme 3. EdgeRTR resolves subscribed remote EdgeRTRs, replicates Outer Header src/dest: EdgeRTR RLOC, remote EdgeRTR RLOC Inner Header (S,G): H3ServerEID, EID chosen for theme 4. EdgeRTRs lookups subscribed ClientEIDs ClientXTRs RLOCs, replicates Outer Header src/dest: EdgeRTR RLOC, ClientXTR RLOC Inner Header (S,G): H3ServerEID, EID chosen for theme 5. ClientXTR delivers multicast channel update message to clientEID Barkai, et al. Expires June 28,2023 [Page 11] Internet-Draft LISP December 2022 Multicast update packets are of the following structure: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ \ |Version| Traffic Class | Flow Label | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | Payload Length | Next Header | Hop Limit | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | | | + + | | | | + Source H3ServiceEID + | | | IPv6 + + | | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | | | + + | | | | + Group Address + | | | | + + | | | / +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Source Port = xxxx | Dest Port = xxxx | \ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ UDP | UDP Length | UDP Checksum | / +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ \ | |Nexagon +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ / ~ Nexagons Payload ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 10: multicast update packet header Barkai, et al. Expires June 28,2023 [Page 12] Internet-Draft LISP December 2022 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ \ | Type = 1 |gzip | Reserved | Pair Count = X|Nexagon +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ / | | + 64bit h3.rS ID + | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | + 64bit State + | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | + 64bit h3.rS ID + | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | + 64bit State + | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 11: multicast update payload, key-value, key-value.. Barkai, et al. Expires June 28,2023 [Page 13] Internet-Draft LISP December 2022 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ \ | Type = 2 |gzip | Reserved |H3R15 Count = X|Nexagon +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ / | | + 64bit State + | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | + 64bit h3.rS ID + | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | + 64bit h3.rS ID + | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | + 64bit h3.rS ID + | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 12: multicast update payload, value, key, key.. for larger areas Barkai, et al. Expires June 28,2023 [Page 14] Internet-Draft LISP December 2022 6. Security Considerations The LISP mobility-network is inherently secure and private. All information is conveyed to clients using provisioned Geolocation Services. MobilityClients receive information only via geospatial channels originating at provisioned services, replicated by EdgeRTRs. All traffic is carried over encrypted tunnels. 7. Privacy Considerations MobilityClients have no indication as to the origin of the raw data. In order to be able to use the mobility-network for a given period, the mobility clients go through a DNS/AAA stage by which they obtain temporary clientEID and RLOCs of EdgeRTRs. This MobilityClient to EdgeRTR interface is the most sensitive from privacy perspective. The traffic on this interface is tunneled, its detection content may be encrypted between ClientXTR to EdgeRTR. Still, the EdgeRTR will know based on headers the client RLOC, and the h3.rB area a client engages with. Enterprises such as vehicle OEMs or carriers can "bring their own" EdgeRTRs (BYO_RTR). BYO_RTRs are pre-provisioned to be able to use the mapping system and are put on the approved list of the other EdgeRTRs. A carrier offering EdgeRTR services on multiaccess edge compute (MEC) is optimal for security and for traffic steering-replication. Beyond client to EdgeRTR hop, the mapping system does not hold MobilityClientEIDs info. Remote EdgeRTRs are only aware of clients temporary EIDs. When EdgeRTRs register in the mapping for channels, they do not register which clients use which EdgeRTR. The H3ServiceEIDs decrypt and parse actual h3.rS detections. They also consider MobilityClientEID credentials encoded in the client EID and assigned by AAA. This helps avoid poorly made or localized detections. Barkai, et al. Expires June 28,2023 [Page 15] Internet-Draft LISP December 2022 In summary the privacy risk mitigations are: (1) tapping: all communications are through tunnels therefore may be encrypted using IP-Sec or other supported point to point underlay standards. (2) spoofing: it is very hard to guess a MobilityClientEID valid for a short period of time. Clients and H3Services EIDs are provisioned in EdgeRTRs, Clients using the AAA procedure, H3Services via dev-ops. (3) credibility: the interface crowd-sources geo-state and does not assume to trust single detections. Credit history track MobilityClient EIDs as part of normal H3Services operation. The aggregate scores from all objects are delivered to AAA subsystem for updating credentials. (4) geo-privacy: Only EdgeRTRs are aware of both clients' RLOC and geo-location, only AAA is aware of client IDs credentials and credit but not geo-location. Ongoing client credit score adjustments span all H3Services administratively to AAA without specific geo-source. 7. Acknowledgments We would like to kindly thank Joel Halperin for helping structure the AAA section and Geo-Privacy provisions, Luigi Lannone for promoting such LISP Compute First Networking (CFN) use-cases, helping structure the IANA section, and shepherding this draft to completion. We would like to thank George Ericson from Dell, Lei Zhong from Toyota, Mikael Klein from Ericsson, Leifeng Ruan from Intel, Ririn Andarini from NTT, for helping with Geolocation and Dataflow Virtualization terminology and key-issues during joint work at the AECC. We would like to thank Professor Trevor Darrel and Professor Fisher Yu of BDD for reviewing IANA enumerations for detections-consolidations feasible by visionAI and Edge Computing. Finally we would like to thank Isaac Brodsky, Nick Rabinowitz, David Ellis, and AJ Friend of the H3 steering committee for reviewing the use of the H3 grid in the lisp-nexagon network. Barkai, et al. Expires June 28,2023 [Page 16] Internet-Draft LISP December 2022 8. IANA Considerations In accordance with BCP 26 [RFC8126].IANA is asked to create a registry named NEXAGON with the following sub registries. +-------+------------------------+-----------+ | Value | LISP LCAF Type Name | Reference | +-------+------------------------+-----------+ | 17 | H3 ID | Section 4 | +-------+------------------------+-----------+ Nexagon Header Bits +----------+------------------+----------+---------------------------+ | Spec | IANA Name | Bit | Description | | Name | | Position | | +----------+------------------+----------+---------------------------+ | Type | nexagon-type | 0-7 | Type of key-value encoding| | gzip | nexagon-gzip | 8-10 | gzip major version used | | PairCount| nexagon-paircount| 24-31 | key-value pair count | +----------+------------------+----------+---------------------------+ State Enumeration Field 0x0: Traffic Direction: +-------+--------------------+-----------------+ | Value | Description | Reference | +-------+--------------------+-----------------+ | 0x0 | Null | [This Document] | | | | | | 0x1 | Lane North | [This Document] | | | | | | 0x2 | Lane North + 30 | [This Document] | | | | | | 0x3 | Lane North + 60 | [This Document] | | | | | | 0x4 | Lane North + 90 | [This Document] | | | | | | 0x5 | Lane North + 120 | [This Document] | | | | | | 0x6 | Lane North + 150 | [This Document] | | | | | | 0x7 | Lane North + 180 | [This Document] | | | | | | 0x8 | Lane North + 210 | [This Document] | | | | | | 0x9 | Lane North + 240 | [This Document] | | | | | | 0xA | Lane North + 270 | [This Document] | | | | | | 0xB | Lane North + 300 | [This Document] | | | | | | 0xC | Lane North + 330 | [This Document] | | | | | | 0xD | Junction | [This Document] | | | | | | 0xE | Shoulder | [This Document] | | | | | | 0xF | Sidewalk | [This Document] | +-------+--------------------+-----------------+ Barkai, et al. Expires June 28,2023 [Page 17] Internet-Draft LISP December 2022 State Enumeration Field 0x1: Persistent Condition: +-------+--------------------+-----------------+ | Value | Description | Reference | +-------+--------------------+-----------------+ | 0x0 | Null | [This Document] | | | | | | 0x1 | Pothole Light | [This Document] | | | | | | 0x2 | Pothole Deep | [This Document] | | | | | | 0x3 | Speed-bump Low | [This Document] | | | | | | 0x4 | Speed-bump High | [This Document] | | | | | | 0x5 | Icy | [This Document] | | | | | | 0x6 | Flooded | [This Document] | | | | | | 0x7 | Snow-cover | [This Document] | | | | | | 0x8 | Deep Snow | [This Document] | | | | | | 0x9 | Cone | [This Document] | | | | | | 0xA | Gravel | [This Document] | | | | | | 0xB | Choppy | [This Document] | | | | | | 0xC | Blind-Curve | [This Document] | | | | | | 0xD | Steep | [This Document] | | | | | | 0xE | Low-bridge | [This Document] | | | | | | 0xF | Other | [This Document] | +-------+--------------------+-----------------+ Barkai, et al. Expires June 28,2023 [Page 18] Internet-Draft LISP December 2022 State Enumeration Field 0x2: Transient Condition: +-------+--------------------+-----------------+ | Value | Description | Reference | +-------+--------------------+-----------------+ | 0x0 | Null | [This Document] | | | | | | 0x1 | Jaywalker | [This Document] | | | | | | 0x2 | Bike or Scooter | [This Document] | | | | | | 0x3 | Stopped Vehicle | [This Document] | | | | | | 0x4 | Moving on Shoulder | [This Document] | | | | | | 0x5 | First Responder | [This Document] | | | | | | 0x6 | Sudden Slowdown | [This Document] | | | | | | 0x7 | Oversize Vehicle | [This Document] | | | | | | 0x8 | Light/Sign Breach | [This Document] | | | | | | 0x9 | Collision Light | [This Document] | | | | | | 0xA | Collision Severe | [This Document] | | | | | | 0xB | Collision Debris | [This Document] | | | | | | 0xC | Collision Course | [This Document] | | | | | | 0xD | Vehicle Hard Brake | [This Document] | | | | | | 0xE | Vehicle Sharp Turn | [This Document] | | | | | | 0xF | Freed-up Parking | [This Document] | +-------+--------------------+-----------------+ Barkai, et al. Expires June 28,2023 [Page 19] Internet-Draft LISP December 2022 State Enumeration Field 0x3: Traffic-light Counter: +-------+--------------------+-----------------+ | Value | Description | Reference | +-------+--------------------+-----------------+ | 0x0 | Null | [This Document] | | | | | | 0x1 | 1 Second to Green | [This Document] | | | | | | 0x2 | 2 Second to Green | [This Document] | | | | | | 0x3 | 3 Second to Green | [This Document] | | | | | | 0x4 | 4 Second to Green | [This Document] | | | | | | 0x5 | 5 Second to Green | [This Document] | | | | | | 0x6 | 6 Second to Green | [This Document] | | | | | | 0x7 | 7 Second to Green | [This Document] | | | | | | 0x8 | 8 Second to Green | [This Document] | | | | | | 0x9 | 9 Second to Green | [This Document] | | | | | | 0xA | 10 Second to Green | [This Document] | | | | | | 0xB | 20 Second to Green | [This Document] | | | | | | 0xC | 30 Second to Green | [This Document] | | | | | | 0xD | 60 Second to Green | [This Document] | | | | | | 0xE | Green Now | [This Document] | | | | | | 0xF | Red Now | [This Document] | +-------+--------------------+-----------------+ Barkai, et al. Expires June 28,2023 [Page 20] Internet-Draft LISP December 2022 State Enumeration Field 0x4: Impacted Tile: +-------+--------------------+-----------------+ | Value | Description | Reference | +-------+--------------------+-----------------+ | 0x0 | Null | [This Document] | | | | | | 0x1 | Epicenter | [This Document] | | | | | | 0x2 | 2 Tiles Away | [This Document] | | | | | | 0x3 | 3 Tiles Away | [This Document] | | | | | | 0x4 | 4 Tiles Away | [This Document] | | | | | | 0x5 | 5 Tiles Away | [This Document] | | | | | | 0x6 | 6 Tiles Away | [This Document] | | | | | | 0x7 | 7 Tiles Away | [This Document] | | | | | | 0x8 | 8 Tiles Away | [This Document] | | | | | | 0x9 | 9 Tiles Away | [This Document] | | | | | | 0xA | 10 Tiles Away | [This Document] | | | | | | 0xB | 20 Tiles Away | [This Document] | | | | | | 0xC | 30 Tiles Away | [This Document] | | | | | | 0xD | 60 Tiles Away | [This Document] | | | | | | 0xE | <100 Tiles Away | [This Document] | | | | | | 0xF | <200 Tiles Away | [This Document] | +-------+--------------------+-----------------+ Barkai, et al. Expires June 28,2023 [Page 21] Internet-Draft LISP December 2022 State Enumeration Field 0x5: Expected Duration: +-------+--------------------+-----------------+ | Value | Description | Reference | +-------+--------------------+-----------------+ | 0x0 | Null | [This Document] | | | | | | 0x1 | Next 1 Second | [This Document] | | | | | | 0x2 | Next 5 Seconds | [This Document] | | | | | | 0x3 | Next 10 Seconds | [This Document] | | | | | | 0x4 | Next 20 Seconds | [This Document] | | | | | | 0x5 | Next 40 Seconds | [This Document] | | | | | | 0x6 | Next 60 Seconds | [This Document] | | | | | | 0x7 | Next 2 Minutes | [This Document] | | | | | | 0x8 | Next 3 Minutes | [This Document] | | | | | | 0x9 | Next 4 Minutes | [This Document] | | | | | | 0xA | Next 5 Minutes | [This Document] | | | | | | 0xB | Next 10 Minutes | [This Document] | | | | | | 0xC | Next 15 Minutes | [This Document] | | | | | | 0xD | Next 30 Minutes | [This Document] | | | | | | 0xE | Next 60 Minutes | [This Document] | | | | | | 0xF | Next 24 Hours | [This Document] | +-------+--------------------+-----------------+ Barkai, et al. Expires June 28,2023 [Page 22] Internet-Draft LISP December 2022 State Enumeration Field 0x6: Lane Right Sign: +-------+--------------------+-----------------+ | Value | Description | Reference | +-------+--------------------+-----------------+ | 0x0 | Null | [This Document] | | | | | | 0x1 | Yield | [This Document] | | | | | | 0x2 | Speed Limit | [This Document] | | | | | | 0x3 | Straight Only | [This Document] | | | | | | 0x4 | No Straight | [This Document] | | | | | | 0x5 | Right Only | [This Document] | | | | | | 0x6 | No Right | [This Document] | | | | | | 0x7 | Left Only | [This Document] | | | | | | 0x8 | No Left | [This Document] | | | | | | 0x9 | Right Straight | [This Document] | | | | | | 0xA | Left Straight | [This Document] | | | | | | 0xB | No U Turn | [This Document] | | | | | | 0xC | No Left or U | [This Document] | | | | | | 0xD | Bike Lane | [This Document] | | | | | | 0xE | HOV Lane | [This Document] | | | | | | 0xF | Stop | [This Document] | +-------+--------------------+-----------------+ Barkai, et al. Expires June 28,2023 [Page 23] Internet-Draft LISP December 2022 State Enumeration Field 0x7: Movement Sign: +-------+--------------------+-----------------+ | Value | Description | Reference | +-------+--------------------+-----------------+ | 0x0 | Null | [This Document] | | | | | | 0x1 | Keep Right | [This Document] | | | | | | 0x2 | Keep Left | [This Document] | | | | | | 0x3 | Stay in Lane | [This Document] | | | | | | 0x4 | Do Not Enter | [This Document] | | | | | | 0x5 | No Trucks | [This Document] | | | | | | 0x6 | No Bikes | [This Document] | | | | | | 0x7 | No Peds | [This Document] | | | | | | 0x8 | One Way | [This Document] | | | | | | 0x9 | Parking | [This Document] | | | | | | 0xA | No Parking | [This Document] | | | | | | 0xB | No Standing | [This Document] | | | | | | 0xC | No Passing | [This Document] | | | | | | 0xD | Loading Zone | [This Document] | | | | | | 0xE | Rail Crossing | [This Document] | | | | | | 0xF | School Zone | [This Document] | +-------+--------------------+-----------------+ Barkai, et al. Expires June 28,2023 [Page 24] Internet-Draft LISP December 2022 State Enumeration Field 0x8: Curves & Intersections: +-------+--------------------+-----------------+ | Value | Description | Reference | +-------+--------------------+-----------------+ | 0x0 | Null | [This Document] | | | | | | 0x1 | Turns Left | [This Document] | | | | | | 0x2 | Turns Right | [This Document] | | | | | | 0x3 | Curves Left | [This Document] | | | | | | 0x4 | Curves Right | [This Document] | | | | | | 0x5 | Reverses Left | [This Document] | | | | | | 0x6 | Reverses Right | [This Document] | | | | | | 0x7 | Winding Road | [This Document] | | | | | | 0x8 | Hair Pin | [This Document] | | | | | | 0x9 | Pretzel Turn | [This Document] | | | | | | 0xA | Cross Roads | [This Document] | | | | | | 0xB | Cross T | [This Document] | | | | | | 0xC | Cross Y | [This Document] | | | | | | 0xD | Circle | [This Document] | | | | | | 0xE | Lane Ends | [This Document] | | | | | | 0xF | Road Narrows | [This Document] | +-------+--------------------+-----------------+ Barkai, et al. Expires June 28,2023 [Page 25] Internet-Draft LISP December 2022 State Enumeration Field 0x9: Tile Traffic Speed: +-------+--------------------+-----------------+ | Value | Description | Reference | +-------+--------------------+-----------------+ | 0x0 | Null | [This Document] | | | | | | 0x1 | < 1 m/sec | [This Document] | | | | | | 0x2 | < 2 m/sec | [This Document] | | | | | | 0x3 | < 3 m/sec | [This Document] | | | | | | 0x4 | < 4 m/sec | [This Document] | | | | | | 0x5 | < 5 m/sec | [This Document] | | | | | | 0x6 | < 6 m/sec | [This Document] | | | | | | 0x7 | < 7 m/sec | [This Document] | | | | | | 0x8 | < 8 m/sec | [This Document] | | | | | | 0x9 | < 9 m/sec | [This Document] | | | | | | 0xA | < 10 m/sec | [This Document] | | | | | | 0xB | < 20 m/sec | [This Document] | | | | | | 0xC | < 30 m/sec | [This Document] | | | | | | 0xD | < 40 m/sec | [This Document] | | | | | | 0xE | < 50 m/sec | [This Document] | | | | | | 0xF | > 50 m/sec | [This Document] | +-------+--------------------+-----------------+ Barkai, et al. Expires June 28,2023 [Page 26] Internet-Draft LISP December 2022 State Enumeration Field 0xA: Pedestrian Curb Density: +-------+--------------------+-----------------+ | Value | Description | Reference | +-------+--------------------+-----------------+ | 0x0 | Null | [This Document] | | | | | | 0x1 | 100% | [This Document] | | | | | | 0x2 | 95% | [This Document] | | | | | | 0x3 | 90% | [This Document] | | | | | | 0x4 | 85% | [This Document] | | | | | | 0x5 | 80% | [This Document] | | | | | | 0x6 | 70% | [This Document] | | | | | | 0x7 | 60% | [This Document] | | | | | | 0x8 | 50% | [This Document] | | | | | | 0x9 | 40% | [This Document] | | | | | | 0xA | 30% | [This Document] | | | | | | 0xB | 20% | [This Document] | | | | | | 0xC | 15% | [This Document] | | | | | | 0xD | 10% | [This Document] | | | | | | 0xE | 5% | [This Document] | | | | | | 0xF | No Peds | [This Document] | +-------+--------------------+-----------------+ Barkai, et al. Expires June 28,2023 [Page 27] Internet-Draft LISP December 2022 State Enumeration Field 0xB: Local Zone Speed Limit: +-------+--------------------+-----------------+ | Value | Description | Reference | +-------+--------------------+-----------------+ | 0x0 | Null | [This Document] | | | | | | 0x1 | 1 m/sec | [This Document] | | | | | | 0x2 | 2 m/sec | [This Document] | | | | | | 0x3 | 3 m/sec | [This Document] | | | | | | 0x4 | 4 m/sec | [This Document] | | | | | | 0x5 | 5 m/sec | [This Document] | | | | | | 0x6 | 6 m/sec | [This Document] | | | | | | 0x7 | 7 m/sec | [This Document] | | | | | | 0x8 | 8 m/sec | [This Document] | | | | | | 0x9 | 9 m/sec | [This Document] | | | | | | 0xA | 10 m/sec | [This Document] | | | | | | 0xB | 15 m/sec | [This Document] | | | | | | 0xC | 20 m/sec | [This Document] | | | | | | 0xD | 25 m/sec | [This Document] | | | | | | 0xE | 30 m/sec | [This Document] | | | | | | 0xF | 35 m/sec | [This Document] | +-------+--------------------+-----------------+ State enumeration fields 0xC, 0xD, 0xE, 0xF, are unassigned. IANA can assign them on a "First Come First Served" basis according to [RFC8126]. Barkai, et al. Expires June 28,2023 [Page 28] Internet-Draft LISP December 2022 9. Normative References [RFC9300] Farinacci, D., Fuller, V., Meyer, D., Lewis, D., and A. Cabellos, Ed., "The Locator/ID Separation Protocol (LISP)" , RFC 9300, DOI 10.17487/RFC9300, October 2022, . [RFC9301] Farinacci, D., Maino, F., Fuller, V., and A. Cabellos, Ed., "Locator/ID Separation Protocol (LISP) Control Plane", RFC 9301, DOI 10.17487/RFC9301, October 2022, . [RFC4604] Holbrook, H., Cain, B., and B. Haberman, "Using Internet Group Management Protocol Version 3 (IGMPv3) and Multicast Listener Discovery Protocol Version 2 (MLDv2) for Source- Specific Multicast", RFC 4604, DOI 10.17487/RFC4604, August 2006, . [RFC6733] Fajardo, V., Ed., Arkko, J., Loughney, J., and G. Zorn, Ed., "Diameter Base Protocol", RFC 6733, DOI 10.17487/RFC6733, October 2012, . [RFC8126] Cotton, M., Leiba, B., Narten, T., "Guidelines for Writing an IANA Considerations Section in RFCs", RFC8126, DOI 10.17487/RFC8126, June 2017, . [RFC8378] Farinacci, D., Moreno, V., "Signal-Free Locator/ID Separation Protocol (LISP) Multicast", RFC8378, DOI 10.17487/RFC8378, May 2018, . [RFC8060] Farinacci, D., Meyer, D., and J. Snijders, "LISP Canonical Address Format (LCAF)", RFC 8060, DOI 10.17487/RFC8060, February 2017, . [H3] Uber Technologies Inc. [n.d.]. H3: Ubers Hexagonal Hierarchical Spatial Index, May 2021, . [BDD] Fisher Yu, Wenqi Xian, Yingying Chen, Fangchen Liu, Mike Liao, Vashisht Madhavan, and Trevor Darrell. BDD100K: A diverse driving video database with scalable annotation tooling. arXiv:1805.04687, 2018. 2, 3 Barkai, et al. Expires June 28,2023 [Page 29] Internet-Draft LISP December 2022 Authors' Addresses Sharon Barkai Nexar CA USA Email: sbarkai@gmail.com Bruno Fernandez-Ruiz Nexar London UK Email: b@getnexar.com Rotem Tamir Nexar Israel rotemtamir@getnexar.com Alberto Rodriguez-Natal Cisco Systems 170 Tasman Drive San Jose, CA USA Email: natal@cisco.com Fabio Maino Cisco Systems 170 Tasman Drive San Jose, CA USA Email: fmaino@cisco.com Barkai, et al. Expires June 28,2023 [Page 30] Internet-Draft LISP December 2022 Albert Cabellos-Aparicio Technical University of Catalonia Barcelona Spain Email: acabello@ac.upc.edu Jordi Paillisse-Vilanova Technical University of Catalonia Barcelona Spain Email: jordip@ac.upc.edu Dino Farinacci lispers.net San Jose, CA USA Email: farinacci@gmail.com Barkai, et al. Expires June 28,2023 [Page 31]