Limited Additional Mechanisms for PKIX and SMIME R. Housley Internet-Draft Vigil Security Obsoletes: 5990 (if approved) S. Turner Intended status: Standards Track sn3rd Expires: 21 October 2023 19 April 2023 Use of the RSA-KEM Algorithm in the Cryptographic Message Syntax (CMS) draft-ietf-lamps-rfc5990bis-00 Abstract The RSA Key Encapsulation Mechanism (RSA-KEM) Algorithm is a one-pass (store-and-forward) cryptographic mechanism for an originator to securely send keying material to a recipient using the recipient's RSA public key. The RSA-KEM Algorithm is specified in Clause 11.5 of ISO/IEC: 18033-2:2006. This document specifies the conventions for using the RSA-KEM Algorithm with the Cryptographic Message Syntax (CMS) using KEMRecipientInfo as specified in draft-ietf-lamps-cms- kemri. About This Document This note is to be removed before publishing as an RFC. Status information for this document may be found at https://datatracker.ietf.org/doc/draft-ietf-lamps-rfc5990bis/. Discussion of this document takes place on the Limited Additional Mechanisms for PKIX and SMIME Working Group mailing list (mailto:spasm@ietf.org), which is archived at https://mailarchive.ietf.org/arch/browse/spasm/. Subscribe at https://www.ietf.org/mailman/listinfo/spasm/. Status of This Memo This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." Housley & Turner Expires 21 October 2023 [Page 1] Internet-Draft RSA-KEM with CMS KEMRecipientInfo April 2023 This Internet-Draft will expire on 21 October 2023. Copyright Notice Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/ license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License. Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1. Conventions and Definitions . . . . . . . . . . . . . . . 4 1.2. ASN.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3. Changes Since RFC 5990 . . . . . . . . . . . . . . . . . 4 2. Use of the RSA-KEM Algorithm in CMS . . . . . . . . . . . . . 5 2.1. Underlying Components . . . . . . . . . . . . . . . . . . 6 2.2. RecipientInfo Conventions . . . . . . . . . . . . . . . . 6 2.3. Certificate Conventions . . . . . . . . . . . . . . . . . 7 2.4. SMIMECapabilities Attribute Conventions . . . . . . . . . 8 3. Security Considerations . . . . . . . . . . . . . . . . . . . 9 4. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 10 5. References . . . . . . . . . . . . . . . . . . . . . . . . . 10 5.1. Normative References . . . . . . . . . . . . . . . . . . 10 5.2. Informative References . . . . . . . . . . . . . . . . . 12 Appendix A. RSA-KEM Algorithm . . . . . . . . . . . . . . . . . 13 A.1. Underlying Components . . . . . . . . . . . . . . . . . . 13 A.2. Originator's Operations . . . . . . . . . . . . . . . . . 14 A.3. Recipient's Operations . . . . . . . . . . . . . . . . . 15 Appendix B. ASN.1 Syntax . . . . . . . . . . . . . . . . . . . . 16 B.1. Underlying Components . . . . . . . . . . . . . . . . . . 16 B.2. ASN.1 Module . . . . . . . . . . . . . . . . . . . . . . 17 Appendix C. SMIMECapabilities Examples . . . . . . . . . . . . . 22 Appendix D. RSA-KEM CMS Enveloped-Data Example . . . . . . . . . 23 D.1. Originator Processing . . . . . . . . . . . . . . . . . . 24 D.2. ContentInfo and EnvelopedData . . . . . . . . . . . . . . 26 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . 30 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 31 Housley & Turner Expires 21 October 2023 [Page 2] Internet-Draft RSA-KEM with CMS KEMRecipientInfo April 2023 1. Introduction The RSA Key Encapsulation Mechanism (RSA-KEM) Algorithm is a one-pass (store-and-forward) cryptographic mechanism for an originator to securely send keying material to a recipient using the recipient's RSA public key. The RSA-KEM Algorithm is specified in Clause 11.5 of [ISO18033-2]. The RSA-KEM Algorithm takes a different approach than other RSA key transport mechanisms [RFC8017], with the goal of providing higher security assurance. The RSA-KEM Algorithm encrypts a random integer with the recipient's RSA public key, derives a key-encryption key from the random integer, and wraps a symmetric content-encryption key with the key-encryption key. In this way, the originator and the recipient end up with the same content-encryption key. Given a content-encryption key CEK, RSA-KEM can be summarized as: 1. Generate a random integer z between 0 and n-1. 2. Encrypt the integer z with the recipient's RSA public key: c = z^e mod n 3. Derive a key-encryption key KEK from the integer z: KEK = KDF(z) 4. Wrap the CEK with the KEK to obtain wrapped keying material WK: WK = WRAP(KEK, CEK) 5. The originator sends c and WK to the recipient. Housley & Turner Expires 21 October 2023 [Page 3] Internet-Draft RSA-KEM with CMS KEMRecipientInfo April 2023 This different approach provides higher security assurance for two reasons. First, the input to the underlying RSA operation is effectively a random integer between 0 and n-1, where n is the RSA modulus, so it does not have any structure that could be exploited by an adversary. Second, the input is independent of the keying material so the result of the RSA decryption operation is not directly available to an adversary. As a result, the RSA-KEM Algorithm enjoys a "tight" security proof in the random oracle model. (In other padding schemes, such as PKCS #1 v1.5 [RFC8017], the input has structure and/or depends on the keying material, and the provable security assurances are not as strong.) The approach is also architecturally convenient because the public-key operations are separate from the symmetric operations on the keying material. Another benefit is that the length of the keying material is bounded only by the symmetric key-wrapping algorithm, not the size of the RSA modulus. For completeness, a specification of the RSA-KEM Algorithm is given in Appendix A of this document; ASN.1 syntax is given in Appendix B. 1.1. Conventions and Definitions The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here. 1.2. ASN.1 CMS values are generated using ASN.1 [X.680], which uses the Basic Encoding Rules (BER) and the Distinguished Encoding Rules (DER) [X.690]. 1.3. Changes Since RFC 5990 RFC 5990 [RFC5990] specified the conventions for using the RSA-KEM Algorithm in CMS as a key transport algorithm. That is, it used KeyTransRecipientInfo [RFC5652] for each recipient. This approach resulted in a very complex parameter definition with the id-rsa-kem algorithm identifier. Implementation experience with many different algorithms has shown that complex parameter structures cause interoperability issues. Since the publication of RFC 5990, a new KEMRecipientInfo structure [I-D.ietf-lamps-cms-kemri] has been defined to support KEM algorithms, and this new structure avoids the complex parameters structure that was used in RFC 5990. Likewise, when the id-rsa-kem algorithm identifier appears in the SubjectPublicKeyInfo field of a certificate, this document encourages Housley & Turner Expires 21 October 2023 [Page 4] Internet-Draft RSA-KEM with CMS KEMRecipientInfo April 2023 the omission of any parameters. RFC 5990 uses EK and the EncryptedKey, which the concatenation of C and WK (C || WK). The use of EK is necessary to align with the KeyTransRecipientInfo structure. In this document, C and WK are sent in separate fields of new KEMRecipientInfo structure. In particular, C is carried in the kemct field, and WK is carried in the encryptedKey field. RFC 5990 supports the future definition of additional KEM algorithms that use RSA; this document supports only one, and it is identified by the id-kem-rsa object identifier. RFC 5990 includes support for Camellia and Triple-DES block ciphers; discussion of these block ciphers is removed from this document, but the algorithm identifiers remain in the ASN.1 Module Appendix B.2. RFC 5990 includes support for SHA-1 hash function; discussion of this hash function is removed from this document, but the algorithm identifier remains in the ASN.1 module Appendix B.2. RFC 5990 required support for the KDF3 [ANS-X9.44] key-derivation function; this document continues to require support for the KDF3 key-derivation function, but it requires support for SHA-256 [SHS] as the hash function. RFC 5990 recommends support for alternatives to KDF3 and AES-Wrap- 128; this document simply states that other key-derivation functions and key-encryption algorithms MAY be supported. RFC 5990 includes an ASN.1 module; this document provides an alternative ASN.1 module that follows the conventions established in [RFC5911], [RFC5912], and [RFC6268]. The new ASN.1 module Appendix B.2 produces the same bits-on-the-wire as the one in RFC 5990. 2. Use of the RSA-KEM Algorithm in CMS The RSA-KEM Algorithm MAY be employed for one or more recipients in the CMS enveloped-data content type [RFC5652], the CMS authenticated- data content type [RFC5652], or the CMS authenticated-enveloped-data content type [RFC5083]. In each case, the KEMRecipientInfo [I-D.ietf-lamps-cms-kemri] is used with with the RSA-KEM Algorithm to securely transfer the content-encryption key from the originator to the recipient. Housley & Turner Expires 21 October 2023 [Page 5] Internet-Draft RSA-KEM with CMS KEMRecipientInfo April 2023 2.1. Underlying Components A CMS implementation that supports the RSA-KEM Algorithm MUST support at least the following underlying components: * For the key-derivation function, an implementation MUST support KDF3 [ANS-X9.44] with SHA-256 [SHS]. * For key-wrapping, an implementation MUST support the AES-Wrap-128 [RFC3394] key-encryption algorithm. An implementation MAY also support other key-derivation functions and key-encryption algorithms as well. 2.2. RecipientInfo Conventions When the RSA-KEM Algorithm is employed for a recipient, the RecipientInfo alternative for that recipient MUST be OtherRecipientInfo using the KEMRecipientInfo structure [I-D.ietf-lamps-cms-kemri]. The fields of the KEMRecipientInfo MUST have the following values: version is the syntax version number; it MUST be 0. rid identifies the recipient's certificate or public key. kem identifies the KEM algorithm; it MUST contain id-kem-rsa. kemct is the ciphertext produced for this recipient; it contains C from steps 1 and 2 of Originator's Operations in Appendix A. kdf identifies the key-derivation algorithm. kekLength is the size of the key-encryption key in octets. ukm is an optional random input to the key-derivation function. wrap identifies a key-encryption algorithm used to encrypt the content-encryption key. encryptedKey is the result of encrypting the keying material with the key-encryption key. When used with the CMS enveloped-data content type [RFC5652], the keying material is a content- encryption key. When used with the CMS authenticated-data content type [RFC5652], the keying material is a message-authentication key. When used with the CMS authenticated-enveloped-data content type [RFC5083], the keying material is a content-authenticated- encryption key. Housley & Turner Expires 21 October 2023 [Page 6] Internet-Draft RSA-KEM with CMS KEMRecipientInfo April 2023 NOTE: For backward compatibility, implementations MAY also support RSA-KEM Key Transport Algorithm, which uses KeyTransRecipientInfo as specified in [RFC5990]. 2.3. Certificate Conventions The conventions specified in this section augment RFC 5280 [RFC5280]. A recipient who employs the RSA-KEM Algorithm MAY identify the public key in a certificate by the same AlgorithmIdentifier as for the PKCS #1 v1.5 algorithm, that is, using the rsaEncryption object identifier [RFC8017]. The fact that the recipient will accept RSA-KEM with this public key is not indicated by the use of this object identifier. The willingness to accept the RSA-KEM Algorithm MAY be signaled by the use of the appropriate SMIME Capabilities either in a message or in the certificate. If the recipient wishes only to employ the RSA-KEM Algorithm with a given public key, the recipient MUST identify the public key in the certificate using the id-rsa-kem object identifier; see Appendix B. When the id-rsa-kem object identifier appears in the SubjectPublicKeyInfo algorithm field of the certificate, the parameters field from AlgorithmIdentifier SHOULD be absent. That is, the AlgorithmIdentifier SHOULD be a SEQUENCE of one component, the id-rsa-kem object identifier. When the AlgorithmIdentifier parameters are present, the GenericHybridParameters MUST be used. As described in the next section, the GenericHybridParameters constrain the values that can be used with the RSA public key for the kdf, kekLength, and wrap fields of the KEMRecipientInfo structure. Regardless of the AlgorithmIdentifier used, the RSA public key MUST be carried in the subjectPublicKey BIT STRING within the SubjectPublicKeyInfo filed of the certificate using the RSAPublicKey type defined in [RFC8017]. The intended application for the public key MAY be indicated in the key usage certificate extension as specified in Section 4.2.1.3 of [RFC5280]. If the keyUsage extension is present in a certificate that conveys an RSA public key with the id-rsa-kem object identifier as discussed above, then the key usage extension MUST contain the following value: keyEncipherment Housley & Turner Expires 21 October 2023 [Page 7] Internet-Draft RSA-KEM with CMS KEMRecipientInfo April 2023 The digitalSignatrure and dataEncipherment values SHOULD NOT be present. That is, a public key intended to be employed only with the RSA-KEM Algorithm SHOULD NOT also be employed for data encryption or for digital signatures. Good cryptographic practice employs a given RSA key pair in only one scheme. This practice avoids the risk that vulnerability in one scheme may compromise the security of the other, and may be essential to maintain provable security. 2.4. SMIMECapabilities Attribute Conventions Section 2.5.2 of [RFC8551] defines the SMIMECapabilities signed attribute (defined as a SEQUENCE of SMIMECapability SEQUENCEs) to announce a partial list of algorithms that an S/MIME implementation can support. When constructing a CMS signed-data content type [RFC5652], a compliant implementation MAY include the SMIMECapabilities signed attribute announcing that it supports the RSA-KEM Algorithm. The SMIMECapability SEQUENCE representing the RSA-KEM Algorithm MUST include the id-rsa-kem object identifier in the capabilityID field; see Appendix B for the object identifier value, and see Appendix C for examples. When the id-rsa-kem object identifier appears in the capabilityID field and the parameters are present, then the parameters field MUST use the GenericHybridParameters type. GenericHybridParameters ::= SEQUENCE { kem KeyEncapsulationMechanism, dem DataEncapsulationMechanism } The fields of the GenericHybridParameters type have the following meanings: kem is an AlgorithmIdentifer; the algorithm field MUST be set to id-kem-rsa; the parameters field MUST be RsaKemParameters, which is a SEQUENCE of an AlgorithmIdentifier that identifies the supported key-derivation function and a positive INTEGER that identifies the length of the key-encryption key in octets. If the GenericHybridParameters are present, then the provided kem value MUST be used as the key-derivation function in the kdf field of KEMRecipientInfo, and the provided key length MUST be used in the kekLength of KEMRecipientInfo. dem is an AlgorithmIdentifier; the algorithm field MUST be present, and it identifies the key-encryption algorithm; parameters are optional. If the GenericHybridParameters are present, then the provided dem value MUST be used in the wrap field of KEMRecipientInfo. Housley & Turner Expires 21 October 2023 [Page 8] Internet-Draft RSA-KEM with CMS KEMRecipientInfo April 2023 3. Security Considerations The RSA-KEM Algorithm should be considered as a replacement for the widely implemented PKCS #1 v1.5 [RFC8017] for new applications that use CMS to avoid potential vulnerabilities to chosen-ciphertext attacks and gain a tighter security proof; however, the RSA-KEM Algorithm has the disadvantage of slightly longer encrypted keying material. The security of the RSA-KEM Algorithm can be shown to be tightly related to the difficulty of either solving the RSA problem or breaking the underlying symmetric key-encryption algorithm, if the underlying key-derivation function is modeled as a random oracle, and assuming that the symmetric key-encryption algorithm satisfies the properties of a data encapsulation mechanism [SHOUP]. While in practice a random-oracle result does not provide an actual security proof for any particular key-derivation function, the result does provide assurance that the general construction is reasonable; a key- derivation function would need to be particularly weak to lead to an attack that is not possible in the random-oracle model. The RSA key size and the underlying components need to be selected consistent with the desired security level. Several security levels have been identified in the NIST SP 800-57 Part 1 [NISTSP800-57pt1r5]. To achieve 128-bit security, the RSA key size SHOULD be at least 3072 bits, the key-derivation function SHOULD make use of SHA-256, and the symmetric key-encryption algorithm SHOULD be AES Key Wrap with a 128-bit key. Implementations MUST protect the RSA private key, the key-encryption key, the content-encryption key, the content-authenticated-encryption key. Compromise of the RSA private key could result in the disclosure of all messages protected with that key. Compromise of the key-encryption key, the content-encryption key, or content- authenticated-encryption key could result in disclosure of the associated encrypted content. Additional considerations related to key management may be found in [NISTSP800-57pt1r5]. The security of the RSA-KEM Algorithm also depends on the strength of the random number generator, which SHOULD have a comparable security level. For further discussion on random number generation, see [RFC4086]. Implementations SHOULD NOT reveal information about intermediate values or calculations, whether by timing or other "side channels", otherwise an opponent may be able to determine information about the Housley & Turner Expires 21 October 2023 [Page 9] Internet-Draft RSA-KEM with CMS KEMRecipientInfo April 2023 keying data and/or the recipient's private key. Although not all intermediate information may be useful to an opponent, it is preferable to conceal as much information as is practical, unless analysis specifically indicates that the information would not be useful to an opponent. Generally, good cryptographic practice employs a given RSA key pair in only one scheme. This practice avoids the risk that vulnerability in one scheme may compromise the security of the other, and may be essential to maintain provable security. While RSA public keys have often been employed for multiple purposes such as key transport and digital signature without any known bad interactions, for increased security assurance, such combined use of an RSA key pair is NOT RECOMMENDED in the future (unless the different schemes are specifically designed to be used together). Accordingly, an RSA key pair used for the RSA-KEM Algorithm SHOULD NOT also be used for digital signatures. Indeed, the Accredited Standards Committee X9 (ASC X9) requires such a separation between key pairs used for key establishment and key pairs used for digital signature [ANS-X9.44]. Continuing this principle of key separation, a key pair used for the RSA-KEM Algorithm SHOULD NOT be used with other key establishment schemes, or for data encryption, or with more than one set of underlying algorithm components. Parties MAY gain assurance that implementations are correct through formal implementation validation, such as the NIST Cryptographic Module Validation Program (CMVP) [CMVP]. 4. IANA Considerations For the ASN.1 Module in Appendix B.2, IANA is requested to assign an object identifier (OID) for the module identifier. The OID for the module should be allocated in the "SMI Security for S/MIME Module Identifier" registry (1.2.840.113549.1.9.16.0), and the Description for the new OID should be set to "id-mod-cms-rsa-kem-2023". 5. References 5.1. Normative References [I-D.ietf-lamps-cms-kemri] Housley, R., Gray, J., and T. Okubo, "Using Key Encapsulation Mechanism (KEM) Algorithms in the Cryptographic Message Syntax (CMS)", Work in Progress, Internet-Draft, draft-ietf-lamps-cms-kemri-00, 24 February 2023, . Housley & Turner Expires 21 October 2023 [Page 10] Internet-Draft RSA-KEM with CMS KEMRecipientInfo April 2023 [ISO18033-2] ISO/IEC JTC 1/SC 27, "Information technology -- Security techniques -- Encryption algorithms -- Part 2: Asymmetric ciphers", ISO/IEC 18033-2:2006, 2006, . [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, . [RFC5083] Housley, R., "Cryptographic Message Syntax (CMS) Authenticated-Enveloped-Data Content Type", RFC 5083, DOI 10.17487/RFC5083, November 2007, . [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, "Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008, . [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70, RFC 5652, DOI 10.17487/RFC5652, September 2009, . [RFC5911] Hoffman, P. and J. Schaad, "New ASN.1 Modules for Cryptographic Message Syntax (CMS) and S/MIME", RFC 5911, DOI 10.17487/RFC5911, June 2010, . [RFC5912] Hoffman, P. and J. Schaad, "New ASN.1 Modules for the Public Key Infrastructure Using X.509 (PKIX)", RFC 5912, DOI 10.17487/RFC5912, June 2010, . [RFC6268] Schaad, J. and S. Turner, "Additional New ASN.1 Modules for the Cryptographic Message Syntax (CMS) and the Public Key Infrastructure Using X.509 (PKIX)", RFC 6268, DOI 10.17487/RFC6268, July 2011, . [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, . Housley & Turner Expires 21 October 2023 [Page 11] Internet-Draft RSA-KEM with CMS KEMRecipientInfo April 2023 [RFC8551] Schaad, J., Ramsdell, B., and S. Turner, "Secure/ Multipurpose Internet Mail Extensions (S/MIME) Version 4.0 Message Specification", RFC 8551, DOI 10.17487/RFC8551, April 2019, . [SHS] National Institute of Standards and Technology, "Secure Hash Standard", DOI 10.6028/nist.fips.180-4, July 2015, . [X.680] ITU-T, "Information technology -- Abstract Syntax Notation One (ASN.1): Specification of basic notation", ITU-T Recommendation X.680, ISO/IEC 8824-1:2021, February 2021, . [X.690] ITU-T, "Information technology -- ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER)", ITU-T Recommendation X.690, ISO/IEC 8825-1:2021, February 2021, . 5.2. Informative References [ANS-X9.44] American National Standards Institute, "Public Key Cryptography for the Financial Services Industry -- Key Establishment Using Integer Factorization Cryptography", American National Standard X9.44, 2007. [CMVP] National Institute of Standards and Technology, "Cryptographic Module Validation Program", 2016, . [NISTSP800-57pt1r5] Barker, E. and National Institute of Standards and Technology, "Recommendation for key management:", DOI 10.6028/nist.sp.800-57pt1r5, May 2020, . [RFC3394] Schaad, J. and R. Housley, "Advanced Encryption Standard (AES) Key Wrap Algorithm", RFC 3394, DOI 10.17487/RFC3394, September 2002, . [RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker, "Randomness Requirements for Security", BCP 106, RFC 4086, DOI 10.17487/RFC4086, June 2005, . Housley & Turner Expires 21 October 2023 [Page 12] Internet-Draft RSA-KEM with CMS KEMRecipientInfo April 2023 [RFC5990] Randall, J., Kaliski, B., Brainard, J., and S. Turner, "Use of the RSA-KEM Key Transport Algorithm in the Cryptographic Message Syntax (CMS)", RFC 5990, DOI 10.17487/RFC5990, September 2010, . [RFC6194] Polk, T., Chen, L., Turner, S., and P. Hoffman, "Security Considerations for the SHA-0 and SHA-1 Message-Digest Algorithms", RFC 6194, DOI 10.17487/RFC6194, March 2011, . [RFC8017] Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch, "PKCS #1: RSA Cryptography Specifications Version 2.2", RFC 8017, DOI 10.17487/RFC8017, November 2016, . [SHOUP] Shoup, V., "A Proposal for an ISO Standard for Public Key Encryption", Cryptology ePrint Archive Paper 2001/112, 2001, . Appendix A. RSA-KEM Algorithm The RSA-KEM Algorithm is a one-pass (store-and-forward) cryptographic mechanism for an originator to securely send keying material to a recipient using the recipient's RSA public key. With this type of algorithm, an originator encrypts the keying material using the recipient's public key, and then sends the resulting encrypted keying material to the recipient. The recipient decrypts the encrypted keying material using the recipient's private key to recover the keying material. A.1. Underlying Components The RSA-KEM Algorithm has the following underlying components: * KDF, a key-derivation function, which derives key-encryption key of a specified length from a shared secret value; * Wrap, a symmetric key-encryption algorithm, which encrypts keying material using key-encryption key that was produced by the KDF. The kekLen value denotes the length in bytes of the key-encryption key for the underlying symmetric key-encryption algorithm. Housley & Turner Expires 21 October 2023 [Page 13] Internet-Draft RSA-KEM with CMS KEMRecipientInfo April 2023 The length of the keying material MUST be among the lengths supported by the underlying symmetric key-encryption algorithm. For example, the AES-Wrap key-encryption algorithm requires the kekLen to be 16, 24, or 32 octets. Usage and formatting of the keying material is outside the scope of the RSA-KEM Algorithm. Many key-derivation functions support the inclusion of other information in addition to the shared secret value in the input to the function. Also, with some symmetric key-encryption algorithms, it is possible to associate a label with the keying material. Such uses are outside the scope of this document, as they are not directly supported by CMS. A.2. Originator's Operations Let (n,e) be the recipient's RSA public key; see [RFC8017] for details. Let K be the keying material to be securely transferred from the originator to the recipient. Let nLen denote the length in bytes of the modulus n, i.e., the least integer such that 2^(8*nLen) > n. The originator performs the following operations: 1. Generate a random integer z between 0 and n-1 (see note), and convert z to a byte string Z of length nLen, most significant byte first: z = RandomInteger (0, n-1) Z = IntegerToString (z, nLen) 2. Encrypt the random integer z using the recipient's RSA public key (n,e), and convert the resulting integer c to a ciphertext C, a byte string of length nLen: c = z^e mod n C = IntegerToString (c, nLen) 3. Derive a symmetric key-encryption key KEK of length kekLen bytes from the byte string Z using the underlying key-derivation function: KEK = KDF (Z, kekLen) Housley & Turner Expires 21 October 2023 [Page 14] Internet-Draft RSA-KEM with CMS KEMRecipientInfo April 2023 4. Wrap the keying material K with the symmetric key-encryption key KEK using the key-encryption algorithm to obtain wrapped keying material WK: WK = Wrap (KEK, K) 5. Send the ciphertext C and the wrapped keying material WK to the recipient. NOTE: The random integer z MUST be generated independently at random for different encryption operations, whether for the same or different recipients. A.3. Recipient's Operations Let (n,d) be the recipient's RSA private key; see [RFC8017] for details, but other private key formats are allowed. Let WK be the encrypted keying material. Let C be the ciphertext. Let nLen denote the length in bytes of the modulus n. The recipient performs the following operations: 1. If the length of the encrypted keying material is less than nLen bytes, output "decryption error", and stop. 2. Convert the ciphertext C to an integer c, most significant byte first. Decrypt the integer c using the recipient's private key (n,d) to recover an integer z (see NOTE below): c = StringToInteger (C) z = c^d mod n If the integer c is not between 0 and n-1, output "decryption error", and stop. 3. Convert the integer z to a byte string Z of length nLen, most significant byte first (see NOTE below): Z = IntegerToString (z, nLen) 4. Derive a symmetric key-encryption key KEK of length kekLen bytes from the byte string Z using the key-derivation function (see NOTE below): Housley & Turner Expires 21 October 2023 [Page 15] Internet-Draft RSA-KEM with CMS KEMRecipientInfo April 2023 KEK = KDF (Z, kekLen) 5. Unwrap the wrapped keying material WK with the symmetric key- encryption key KEK using the underlying key-encryption algorithm to recover the keying material K: K = Unwrap (KEK, WK) If the unwrapping operation outputs an error, output "decryption error", and stop. 6. Output the keying material K. NOTE: Implementations SHOULD NOT reveal information about the integer z, the string Z, or about the calculation of the exponentiation in Step 2, the conversion in Step 3, or the key derivation in Step 4, whether by timing or other "side channels". The observable behavior of the implementation SHOULD be the same at these steps for all ciphertexts C that are in range. For example, IntegerToString conversion should take the same amount of time regardless of the actual value of the integer z. The integer z, the string Z, and other intermediate results MUST be securely deleted when they are no longer needed. Appendix B. ASN.1 Syntax The ASN.1 syntax for identifying the RSA-KEM Algorithm is an extension of the syntax for the "generic hybrid cipher" in ANS X9.44 [ANS-X9.44]. The ASN.1 Module is unchanged from RFC 5990. The id-rsa-kem object identifier is used in a backward compatible manner in certificates [RFC5280] and SMIMECapabilities [RFC8551]. Of course, the use of the id-kem-rsa object identifier in the new KEMRecipientInfo structure [I-D.ietf-lamps-cms-kemri] was not yet defined at the time that RFC 5990 was written. B.1. Underlying Components Implementations that conform to this specification MUST support the KDF3 [ANS-X9.44] key-derivation function using SHA-256 [SHS]. The object identifier for KDF3 is: id-kdf-kdf3 OBJECT IDENTIFIER ::= { x9-44-components kdf3(2) } Housley & Turner Expires 21 October 2023 [Page 16] Internet-Draft RSA-KEM with CMS KEMRecipientInfo April 2023 The KDF3 parameters identify the underlying hash function. For alignment with the ANS X9.44, the hash function MUST be an ASC X9-approved hash function. While the SHA-1 hash algorithm is included in the ASN.1 definitions, SHA-1 MUST NOT be used. SHA-1 is considered to be obsolete; see [RFC6194]. SHA-1 remains in the ASN.1 module for compatibility with RFC 5990. In addition, other hash functions MAY be used with CMS. kda-kdf3 KEY-DERIVATION ::= { IDENTIFIER id-kdf-kdf3 PARAMS TYPE KDF3-HashFunction ARE required -- No S/MIME caps defined -- } KDF3-HashFunction ::= AlgorithmIdentifier { DIGEST-ALGORITHM, {KDF3-HashFunctions} } KDF3-HashFunctions DIGEST-ALGORITHM ::= { X9-HashFunctions, ... } X9-HashFunctions DIGEST-ALGORITHM ::= { mda-sha1 | mda-sha224 | mda-sha256 | mda-sha384 | mda-sha512, ... } Implementations that conform to this specification MUST support the AES Key Wrap [RFC3394] key-encryption algorithm with a 128-bit key. There are three object identifiers for the AES Key Wrap, one for each permitted size of the key-encryption key. There are three object identifiers imported from [RFC5912], and none of these algorithm identifiers have associated parameters: kwa-aes128-wrap KEY-WRAP ::= { IDENTIFIER id-aes128-wrap PARAMS ARE absent SMIME-CAPS { IDENTIFIED BY id-aes128-wrap } } kwa-aes192-wrap KEY-WRAP ::= { IDENTIFIER id-aes192-wrap PARAMS ARE absent SMIME-CAPS { IDENTIFIED BY id-aes192-wrap } } kwa-aes256-wrap KEY-WRAP ::= { IDENTIFIER id-aes256-wrap PARAMS ARE absent SMIME-CAPS { IDENTIFIED BY id-aes256-wrap } } B.2. ASN.1 Module RFC EDITOR: Please replace TBD2 with the value assigned by IANA during the publication of [I-D.ietf-lamps-cms-kemri]. Housley & Turner Expires 21 October 2023 [Page 17] Internet-Draft RSA-KEM with CMS KEMRecipientInfo April 2023 CMS-RSA-KEM-2023 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) modules(0) id-mod-cms-rsa-kem-2023(TBD1) } DEFINITIONS ::= BEGIN -- EXPORTS ALL IMPORTS KEM-ALGORITHM FROM KEMAlgorithmInformation-2023 -- [I-D.ietf-lamps-cms-kemri] { iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) id-mod(0) id-mod-kemAlgorithmInformation-2023(TBD3) } AlgorithmIdentifier{}, PUBLIC-KEY, DIGEST-ALGORITHM, KEY-DERIVATION, KEY-WRAP FROM AlgorithmInformation-2009 -- [RFC5912] { iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) id-mod(0) id-mod-algorithmInformation-02(58) } kwa-aes128-wrap, kwa-aes192-wrap, kwa-aes256-wrap FROM CMSAesRsaesOaep-2009 -- [RFC5911] { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) modules(0) id-mod-cms-aes-02(38) } kwa-3DESWrap FROM CryptographicMessageSyntaxAlgorithms-2009 -- [RFC5911] { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) modules(0) id-mod-cmsalg-2001-02(37) } id-camellia128-wrap, id-camellia192-wrap, id-camellia256-wrap FROM CamelliaEncryptionAlgorithmInCMS -- [RFC3657] { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9) smime(16) modules(0) id-mod-cms-camellia(23) } mda-sha1, pk-rsa, RSAPublicKey FROM PKIXAlgs-2009 -- [RFC5912] { iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) id-mod(0) id-mod-pkix1-algorithms2008-02(56) } Housley & Turner Expires 21 October 2023 [Page 18] Internet-Draft RSA-KEM with CMS KEMRecipientInfo April 2023 mda-sha224, mda-sha256, mda-sha384, mda-sha512 FROM PKIX1-PSS-OAEP-Algorithms-2009 -- [RFC5912] { iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) id-mod(0) id-mod-pkix1-rsa-pkalgs-02(54) } ; -- Useful types and definitions OID ::= OBJECT IDENTIFIER -- alias NullParms ::= NULL -- ISO/IEC 18033-2 arc is18033-2 OID ::= { iso(1) standard(0) is18033(18033) part2(2) } -- NIST algorithm arc nistAlgorithm OID ::= { joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101) csor(3) nistAlgorithm(4) } -- PKCS #1 arc pkcs-1 OID ::= { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) } -- X9.44 arc x9-44 OID ::= { iso(1) identified-organization(3) tc68(133) country(16) x9(840) x9Standards(9) x9-44(44) } x9-44-components OID ::= { x9-44 components(1) } -- RSA-KEM Algorithm id-rsa-kem OID ::= { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) alg(3) 14 } GenericHybridParameters ::= SEQUENCE { kem KeyEncapsulationMechanism, dem DataEncapsulationMechanism } KeyEncapsulationMechanism ::= AlgorithmIdentifier { KEM-ALGORITHM, {KEMAlgorithms} } KEMAlgorithms KEM-ALGORITHM ::= { kema-kem-rsa | kema-rsa-kem, ... } Housley & Turner Expires 21 October 2023 [Page 19] Internet-Draft RSA-KEM with CMS KEMRecipientInfo April 2023 kema-rsa-kem KEM-ALGORITHM ::= { IDENTIFIER id-rsa-kem PARAMS TYPE GenericHybridParameters ARE optional PUBLIC-KEYS { pk-rsa | pk-rsa-kem } UKM ARE optional SMIME-CAPS { TYPE GenericHybridParameters IDENTIFIED BY id-rsa-kem } } kema-kem-rsa KEM-ALGORITHM ::= { IDENTIFIER id-kem-rsa PARAMS TYPE RsaKemParameters ARE optional PUBLIC-KEYS { pk-rsa | pk-rsa-kem } UKM ARE optional SMIME-CAPS { TYPE GenericHybridParameters IDENTIFIED BY id-rsa-kem } } id-kem-rsa OID ::= { is18033-2 key-encapsulation-mechanism(2) rsa(4) } RsaKemParameters ::= SEQUENCE { keyDerivationFunction KeyDerivationFunction, keyLength KeyLength } pk-rsa-kem PUBLIC-KEY ::= { IDENTIFIER id-rsa-kem KEY RSAPublicKey PARAMS TYPE GenericHybridParameters ARE preferredAbsent -- Private key format is not specified here -- CERT-KEY-USAGE {keyEncipherment} } KeyDerivationFunction ::= AlgorithmIdentifier { KEY-DERIVATION, {KDFAlgorithms} } KDFAlgorithms KEY-DERIVATION ::= { kda-kdf2 | kda-kdf3, ... } KeyLength ::= INTEGER (1..MAX) DataEncapsulationMechanism ::= AlgorithmIdentifier { KEY-WRAP, {DEMAlgorithms} } DEMAlgorithms KEY-WRAP ::= { X9-SymmetricKeyWrappingSchemes | Camellia-KeyWrappingSchemes, ... } X9-SymmetricKeyWrappingSchemes KEY-WRAP ::= { kwa-aes128-wrap | kwa-aes192-wrap | kwa-aes256-wrap | kwa-3DESWrap, ... } Housley & Turner Expires 21 October 2023 [Page 20] Internet-Draft RSA-KEM with CMS KEMRecipientInfo April 2023 X9-SymmetricKeyWrappingScheme ::= AlgorithmIdentifier { KEY-WRAP, {X9-SymmetricKeyWrappingSchemes} } Camellia-KeyWrappingSchemes KEY-WRAP ::= { kwa-camellia128-wrap | kwa-camellia192-wrap | kwa-camellia256-wrap, ... } Camellia-KeyWrappingScheme ::= AlgorithmIdentifier { KEY-WRAP, {Camellia-KeyWrappingSchemes} } kwa-camellia128-wrap KEY-WRAP ::= { IDENTIFIER id-camellia128-wrap PARAMS ARE absent SMIME-CAPS { IDENTIFIED BY id-camellia128-wrap } } kwa-camellia192-wrap KEY-WRAP ::= { IDENTIFIER id-camellia192-wrap PARAMS ARE absent SMIME-CAPS { IDENTIFIED BY id-camellia192-wrap } } kwa-camellia256-wrap KEY-WRAP ::= { IDENTIFIER id-camellia256-wrap PARAMS ARE absent SMIME-CAPS { IDENTIFIED BY id-camellia256-wrap } } -- Key Derivation Functions id-kdf-kdf2 OID ::= { x9-44-components kdf2(1) } kda-kdf2 KEY-DERIVATION ::= { IDENTIFIER id-kdf-kdf2 PARAMS TYPE KDF2-HashFunction ARE required -- No S/MIME caps defined -- } KDF2-HashFunction ::= AlgorithmIdentifier { DIGEST-ALGORITHM, {KDF2-HashFunctions} } KDF2-HashFunctions DIGEST-ALGORITHM ::= { X9-HashFunctions, ... } id-kdf-kdf3 OID ::= { x9-44-components kdf3(2) } kda-kdf3 KEY-DERIVATION ::= { IDENTIFIER id-kdf-kdf3 PARAMS TYPE KDF3-HashFunction ARE required -- No S/MIME caps defined -- } KDF3-HashFunction ::= AlgorithmIdentifier { DIGEST-ALGORITHM, {KDF3-HashFunctions} } Housley & Turner Expires 21 October 2023 [Page 21] Internet-Draft RSA-KEM with CMS KEMRecipientInfo April 2023 KDF3-HashFunctions DIGEST-ALGORITHM ::= { X9-HashFunctions, ... } -- Hash Functions X9-HashFunctions DIGEST-ALGORITHM ::= { mda-sha1 | mda-sha224 | mda-sha256 | mda-sha384 | mda-sha512, ... } END Appendix C. SMIMECapabilities Examples To indicate support for the RSA-KEM algorithm coupled with the KDF3 key-derivation function with SHA-256 and the AES Key Wrap symmetric key-encryption algorithm 128-bit key-encryption key, the SMIMECapabilities will include the following entry: SEQUENCE { id-rsa-kem, -- RSA-KEM Algorithm SEQUENCE { -- GenericHybridParameters SEQUENCE { -- key encapsulation mechanism id-kem-rsa, -- RSA-KEM SEQUENCE { -- RsaKemParameters SEQUENCE { -- key derivation function id-kdf-kdf3, -- KDF3 SEQUENCE { -- KDF3-HashFunction id-sha256 -- SHA-256; no parameters (preferred) }, 16 -- KEK length in bytes }, SEQUENCE { -- data encapsulation mechanism id-aes128-Wrap -- AES-128 Wrap; no parameters } } } This SMIMECapability value has the following DER encoding (in hexadecimal): Housley & Turner Expires 21 October 2023 [Page 22] Internet-Draft RSA-KEM with CMS KEMRecipientInfo April 2023 30 47 06 0b 2a 86 48 86 f7 0d 01 09 10 03 0e -- id-rsa-kem 30 38 30 29 06 07 28 81 8c 71 02 02 04 -- id-kem-rsa 30 1e 30 19 06 0a 2b 81 05 10 86 48 09 2c 01 02 -- id-kdf-kdf3 30 0b 06 09 60 86 48 01 65 03 04 02 01 -- id-sha256 02 01 10 -- 16 bytes 30 0b 06 09 60 86 48 01 65 03 04 01 05 -- id-aes128-Wrap To indicate support for the RSA-KEM algorithm coupled with the KDF3 key-derivation function with SHA-384 and the AES Key Wrap symmetric key-encryption algorithm 192-bit key-encryption key, the SMIMECapabilities will include the following SMIMECapability value (in hexadecimal): 30 47 06 0b 2a 86 48 86 f7 0d 01 09 10 03 0e 30 38 30 29 06 07 28 81 8c 71 02 02 04 30 1e 30 19 06 0a 2b 81 05 10 86 48 09 2c 01 02 30 0b 06 09 60 86 48 01 65 03 04 02 02 02 01 18 30 0b 06 09 60 86 48 01 65 03 04 01 19 To indicate support for the RSA-KEM algorithm coupled with the KDF3 key-derivation function with SHA-512 and the AES Key Wrap symmetric key-encryption algorithm 256-bit key-encryption key, the SMIMECapabilities will include the following SMIMECapability value (in hexadecimal): 30 47 06 0b 2a 86 48 86 f7 0d 01 09 10 03 0e 30 38 30 29 06 07 28 81 8c 71 02 02 04 30 1e 30 19 06 0a 2b 81 05 10 86 48 09 2c 01 02 30 0b 06 09 60 86 48 01 65 03 04 02 03 02 01 20 30 0b 06 09 60 86 48 01 65 03 04 01 2d Appendix D. RSA-KEM CMS Enveloped-Data Example This example shows the establishment of an AES-128 content-encryption key using: * RSA-KEM with a 3072-bit key; * key derivation using KDF2 with SHA-256; and * key wrap using AES-128-KEYWRAP. Housley & Turner Expires 21 October 2023 [Page 23] Internet-Draft RSA-KEM with CMS KEMRecipientInfo April 2023 In real-world use, the originator would encrypt the content- encryption key in a manner that would allow decryption with their own private key as well as the recipient's private key. This is omitted in an attempt to simplify the example. D.1. Originator Processing Alice obtains Bob's public key: -----BEGIN PUBLIC KEY----- MIIBojANBgkqhkiG9w0BAQEFAAOCAY8AMIIBigKCAYEA3ocW14cxncPJ47fnEjBZ AyfC2lqapL3ET4jvV6C7gGeVrRQxWPDwl+cFYBBR2ej3j3/0ecDmu+XuVi2+s5JH Keeza+itfuhsz3yifgeEpeK8T+SusHhn20/NBLhYKbh3kiAcCgQ56dpDrDvDcLqq vS3jg/VO+OPnZbofoHOOevt8Q/roahJe1PlIyQ4udWB8zZezJ4mLLfbOA9YVaYXx 2AHHZJevo3nmRnlgJXo6mE00E/6qkhjDHKSMdl2WG6mO9TCDZc9qY3cAJDU6Ir0v SH7qUl8/vN13y4UOFkn8hM4kmZ6bJqbZt5NbjHtY4uQ0VMW3RyESzhrO02mrp39a uLNnH3EXdXaV1tk75H3qC7zJaeGWMJyQfOE3YfEGRKn8fxubji716D8UecAxAzFy FL6m1JiOyV5acAiOpxN14qRYZdHnXOM9DqGIGpoeY1UuD4Mo05osOqOUpBJHA9fS whSZG7VNf+vgNWTLNYSYLI04KiMdulnvU6ds+QPz+KKtAgMBAAE= -----END PUBLIC KEY----- Bob's RSA public key has the following key identifier: 9eeb67c9b95a74d44d2f16396680e801b5cba49c Alice randomly generates integer z between 0 and n-1: 9c126102a5c1c0354672a3c2f19fc9ddea988f815e1da812c7bd4f8eb082bdd1 4f85a7f7c2f1af11d5333e0d6bcb375bf855f208da72ba27e6fb0655f2825aa6 2b93b1f9bbd3491fed58f0380fa0de36430e3a144d569600bd362609be5b9481 0875990b614e406fa6dff500043cbca95968faba61f795096a7fb3687a51078c 4ca2cb663366b0bea0cd9cccac72a25f3f4ed03deb68b4453bba44b943f4367b 67d6cd10c8ace53f545aac50968fc3c6ecc80f3224b64e37038504e2d2c0e2b2 9d45e46c62826d96331360e4c17ea3ef89a9efc5fac99eda830e81450b6534dc 0bdf042b8f3b706649c631fe51fc2445cc8d447203ec2f41f79cdfea16de1ce6 abdfdc1e2ef2e5d5d8a65e645f397240ef5a26f5e4ff715de782e30ecf477293 e89e13171405909a8e04dd31d21d0c57935fc1ceea8e1033e31e1bc8c56da0f3 d79510f3f380ff58e5a61d361f2f18e99fbae5663172e8cd1f21deaddc5bbbea 060d55f1842b93d1a9c888d0bf85d0af9947fe51acf940c7e7577eb79cabecb3 Alice encrypts integer z using the Bob's RSA public key, the result is called c: Housley & Turner Expires 21 October 2023 [Page 24] Internet-Draft RSA-KEM with CMS KEMRecipientInfo April 2023 c071fc273af8e7bdb152e06bf73310361074154a43abcf3c93c13499d2065344 3eed9ef5d3c0685e4aa76a6854815bb97691ff9f8dac15eea7d74f452bf350a6 46163d68288e978cbf7a73089ee52712f9a4f49e06ace7bbc85ab14d4e336c97 c5728a2654138c7b26e8835c6b0a9fbed26495c4eadf745a2933be283f6a88b1 6695fc06666873cfb6d36718ef3376cefc100c3941f3c494944078325807a559 186b95ccabf3714cfaf79f83bd30537fdd9aed5a4cdcbd8bd0486faed73e9d48 6b3087d6c806546b6e2671575c98461e441f65542bd95de26d0f53a64e7848d7 31d9608d053e8d345546602d86236ffe3704c98ad59144f3089e5e6d527b5497 ba103c79d62e80d0235410b06f71a7d9bd1c38000f910d6312ea2f20a3557535 ad01b3093fb5f7ee507080d0f77d48c9c3b3796f6b7dd3786085fb895123f04c a1f1c1be22c747a8dface32370fb0d570783e27dbb7e74fca94ee39676fde3d8 a9553d878224736e37e191dab953c7e228c07ad5ca3122421c14debd072a9ab6 Alice encodes the CMSORIforKEMOtherInfo structure with the algorithm identifier for AES-128-KEYWRAP and a key length of 16 octets. The DER encoding of CMSORIforKEMOtherInfo produces 18 octets: 3010300b0609608648016503040105020110 The CMSORIforKEMOtherInfo structure contains: 0 16: SEQUENCE { 2 11: SEQUENCE { 4 9: OBJECT IDENTIFIER aes128-wrap (2 16 840 1 101 3 4 1 5) : } 15 1: INTEGER 16 : } Alice derives the key-encryption key from integer z and the CMSORIforKEMOtherInfo structure with KDF2 and SHA-256, the KEK is: 4a95fe82f8d6ba56c83b4d51ef7dc06b Alice randomly generates a 128-bit content-encryption key: 77f2a84640304be7bd42670a84a1258b Alice uses AES-128-KEYWRAP to encrypt the 128-bit content-encryption key with the derived key-encryption key: 904dbeb0271fc02082fe6d358c03352ae4ae6b540b782423 Alice encrypts the padded content using AES-128-CBC with the content- encryption key. The 16-octet IV used is: 480ccafebabefacedbaddecaf8887781 The padded content plaintext is: Housley & Turner Expires 21 October 2023 [Page 25] Internet-Draft RSA-KEM with CMS KEMRecipientInfo April 2023 48656c6c6f2c20776f726c6421030303 The resulting ciphertext is: c6ca65db7bdd76b0f37e2fab6264b66d D.2. ContentInfo and EnvelopedData Alice encodes the EnvelopedData (using KEMRecipientInfo) and ContentInfo, and then sends the result to Bob. The Base64-encoded: result is: MIICXAYJKoZIhvcNAQcDoIICTTCCAkkCAQMxggIEpIICAAYLKoZIhvcNAQkQDQMwggH vAgEAgBSe62fJuVp01E0vFjlmgOgBtcuknDAJBgcogYxxAgIEBIIBgMBx/Cc6+Oe9sV Lga/czEDYQdBVKQ6vPPJPBNJnSBlNEPu2e9dPAaF5Kp2poVIFbuXaR/5+NrBXup9dPR SvzUKZGFj1oKI6XjL96cwie5ScS+aT0ngas57vIWrFNTjNsl8VyiiZUE4x7JuiDXGsK n77SZJXE6t90Wikzvig/aoixZpX8BmZoc8+202cY7zN2zvwQDDlB88SUlEB4MlgHpVk Ya5XMq/NxTPr3n4O9MFN/3ZrtWkzcvYvQSG+u1z6dSGswh9bIBlRrbiZxV1yYRh5EH2 VUK9ld4m0PU6ZOeEjXMdlgjQU+jTRVRmAthiNv/jcEyYrVkUTzCJ5ebVJ7VJe6EDx51 i6A0CNUELBvcafZvRw4AA+RDWMS6i8go1V1Na0Bswk/tffuUHCA0Pd9SMnDs3lva33T eGCF+4lRI/BMofHBviLHR6jfrOMjcPsNVweD4n27fnT8qU7jlnb949ipVT2HgiRzbjf hkdq5U8fiKMB61coxIkIcFN69ByqatjAbBgorgQUQhkgJLAEBMA0GCWCGSAFlAwQCAQ UAAgEQMAsGCWCGSAFlAwQBBQQYkE2+sCcfwCCC/m01jAM1KuSua1QLeCQjMDwGCSqGS Ib3DQEHATAdBglghkgBZQMEAQIEEEgMyv66vvrO263eyviId4GAEMbKZdt73Xaw834v q2Jktm0= This result decodes to: 0 604: SEQUENCE { 4 9: OBJECT IDENTIFIER envelopedData (1 2 840 113549 1 7 3) 15 589: [0] { 19 585: SEQUENCE { 23 1: INTEGER 3 26 516: SET { 30 512: [4] { 34 11: OBJECT IDENTIFIER : KEMRecipientInfo (1 2 840 113549 1 9 16 13 3) 47 495: SEQUENCE { 51 1: INTEGER 0 54 20: [0] : 9E EB 67 C9 B9 5A 74 D4 4D 2F 16 39 66 80 E8 01 : B5 CB A4 9C 76 9: SEQUENCE { 78 7: OBJECT IDENTIFIER kemRSA (1 0 18033 2 2 4) : } 87 384: OCTET STRING : C0 71 FC 27 3A F8 E7 BD B1 52 E0 6B F7 33 10 36 : 10 74 15 4A 43 AB CF 3C 93 C1 34 99 D2 06 53 44 Housley & Turner Expires 21 October 2023 [Page 26] Internet-Draft RSA-KEM with CMS KEMRecipientInfo April 2023 : 3E ED 9E F5 D3 C0 68 5E 4A A7 6A 68 54 81 5B B9 : 76 91 FF 9F 8D AC 15 EE A7 D7 4F 45 2B F3 50 A6 : 46 16 3D 68 28 8E 97 8C BF 7A 73 08 9E E5 27 12 : F9 A4 F4 9E 06 AC E7 BB C8 5A B1 4D 4E 33 6C 97 : C5 72 8A 26 54 13 8C 7B 26 E8 83 5C 6B 0A 9F BE : D2 64 95 C4 EA DF 74 5A 29 33 BE 28 3F 6A 88 B1 : 66 95 FC 06 66 68 73 CF B6 D3 67 18 EF 33 76 CE : FC 10 0C 39 41 F3 C4 94 94 40 78 32 58 07 A5 59 : 18 6B 95 CC AB F3 71 4C FA F7 9F 83 BD 30 53 7F : DD 9A ED 5A 4C DC BD 8B D0 48 6F AE D7 3E 9D 48 : 6B 30 87 D6 C8 06 54 6B 6E 26 71 57 5C 98 46 1E : 44 1F 65 54 2B D9 5D E2 6D 0F 53 A6 4E 78 48 D7 : 31 D9 60 8D 05 3E 8D 34 55 46 60 2D 86 23 6F FE : 37 04 C9 8A D5 91 44 F3 08 9E 5E 6D 52 7B 54 97 : BA 10 3C 79 D6 2E 80 D0 23 54 10 B0 6F 71 A7 D9 : BD 1C 38 00 0F 91 0D 63 12 EA 2F 20 A3 55 75 35 : AD 01 B3 09 3F B5 F7 EE 50 70 80 D0 F7 7D 48 C9 : C3 B3 79 6F 6B 7D D3 78 60 85 FB 89 51 23 F0 4C : A1 F1 C1 BE 22 C7 47 A8 DF AC E3 23 70 FB 0D 57 : 07 83 E2 7D BB 7E 74 FC A9 4E E3 96 76 FD E3 D8 : A9 55 3D 87 82 24 73 6E 37 E1 91 DA B9 53 C7 E2 : 28 C0 7A D5 CA 31 22 42 1C 14 DE BD 07 2A 9A B6 475 27: SEQUENCE { 477 10: OBJECT IDENTIFIER : kdf2 (1 3 133 16 840 9 44 1 1) 489 13: SEQUENCE { 491 9: OBJECT IDENTIFIER : sha-256 (2 16 840 1 101 3 4 2 1) 502 0: NULL : } : } 504 1: INTEGER 16 507 11: SEQUENCE { 509 9: OBJECT IDENTIFIER : aes128-wrap (2 16 840 1 101 3 4 1 5) : } 520 24: OCTET STRING : 90 4D BE B0 27 1F C0 20 82 FE 6D 35 8C 03 35 2A : E4 AE 6B 54 0B 78 24 23 : } : } : } 546 60: SEQUENCE { 548 9: OBJECT IDENTIFIER data (1 2 840 113549 1 7 1) 559 29: SEQUENCE { 561 9: OBJECT IDENTIFIER : aes128-CBC (2 16 840 1 101 3 4 1 2) 572 16: OCTET STRING Housley & Turner Expires 21 October 2023 [Page 27] Internet-Draft RSA-KEM with CMS KEMRecipientInfo April 2023 : 48 0C CA FE BA BE FA CE DB AD DE CA F8 88 77 81 : } 590 16: [0] C6 CA 65 DB 7B DD 76 B0 F3 7E 2F AB 62 64 B6 6D : } : } : } : } ß## Recipient Processing Bob's private key: Housley & Turner Expires 21 October 2023 [Page 28] Internet-Draft RSA-KEM with CMS KEMRecipientInfo April 2023 -----BEGIN PRIVATE KEY----- MIIG5AIBAAKCAYEA3ocW14cxncPJ47fnEjBZAyfC2lqapL3ET4jvV6C7gGeVrRQx WPDwl+cFYBBR2ej3j3/0ecDmu+XuVi2+s5JHKeeza+itfuhsz3yifgeEpeK8T+Su sHhn20/NBLhYKbh3kiAcCgQ56dpDrDvDcLqqvS3jg/VO+OPnZbofoHOOevt8Q/ro ahJe1PlIyQ4udWB8zZezJ4mLLfbOA9YVaYXx2AHHZJevo3nmRnlgJXo6mE00E/6q khjDHKSMdl2WG6mO9TCDZc9qY3cAJDU6Ir0vSH7qUl8/vN13y4UOFkn8hM4kmZ6b JqbZt5NbjHtY4uQ0VMW3RyESzhrO02mrp39auLNnH3EXdXaV1tk75H3qC7zJaeGW MJyQfOE3YfEGRKn8fxubji716D8UecAxAzFyFL6m1JiOyV5acAiOpxN14qRYZdHn XOM9DqGIGpoeY1UuD4Mo05osOqOUpBJHA9fSwhSZG7VNf+vgNWTLNYSYLI04KiMd ulnvU6ds+QPz+KKtAgMBAAECggGATFfkSkUjjJCjLvDk4aScpSx6+Rakf2hrdS3x jwqhyUfAXgTTeUQQBs1HVtHCgxQd+qlXYn3/qu8TeZVwG4NPztyi/Z5yB1wOGJEV 3k8N/ytul6pJFFn6p48VM01bUdTrkMJbXERe6g/rr6dBQeeItCaOK7N5SIJH3Oqh 9xYuB5tH4rquCdYLmt17Tx8CaVqU9qPY3vOdQEOwIjjMV8uQUR8rHSO9KkSj8AGs Lq9kcuPpvgJc2oqMRcNePS2WVh8xPFktRLLRazgLP8STHAtjT6SlJ2UzkUqfDHGK q/BoXxBDu6L1VDwdnIS5HXtL54ElcXWsoOyKF8/ilmhRUIUWRZFmlS1ok8IC5IgX UdL9rJVZFTRLyAwmcCEvRM1asbBrhyEyshSOuN5nHJi2WVJ+wSHijeKl1qeLlpMk HrdIYBq4Nz7/zXmiQphpAy+yQeanhP8O4O6C8e7RwKdpxe44su4Z8fEgA5yQx0u7 8yR1EhGKydX5bhBLR5Cm1VM7rT2BAoHBAP/+e5gZLNf/ECtEBZjeiJ0VshszOoUq haUQPA+9Bx9pytsoKm5oQhB7QDaxAvrn8/FUW2aAkaXsaj9F+/q30AYSQtExai9J fdKKook3oimN8/yNRsKmhfjGOj8hd4+GjX0qoMSBCEVdT+bAjjry8wgQrqReuZnu oXU85dmb3jvv0uIczIKvTIeyjXE5afjQIJLmZFXsBm09BG87Ia5EFUKly96BOMJh /QWEzuYYXDqOFfzQtkAefXNFW21Kz4Hw2QKBwQDeiGh4lxCGTjECvG7fauMGlu+q DSdYyMHif6t6mx57eS16EjvOrlXKItYhIyzW8Kw0rf/CSB2j8ig1GkMLTOgrGIJ1 0322o50FOr5oOmZPueeR4pOyAP0fgQ8DD1L3JBpY68/8MhYbsizVrR+Ar4jM0f96 W2bF5Xj3h+fQTDMkx6VrCCQ6miRmBUzH+ZPs5n/lYOzAYrqiKOanaiHy4mjRvlsy mjZ6z5CG8sISqcLQ/k3Qli5pOY/v0rdBjgwAW/UCgcEAqGVYGjKdXCzuDvf9EpV4 mpTWB6yIV2ckaPOn/tZi5BgsmEPwvZYZt0vMbu28Px7sSpkqUuBKbzJ4pcy8uC3I SuYiTAhMiHS4rxIBX3BYXSuDD2RD4vG1+XM0h6jVRHXHh0nOXdVfgnmigPGz3jVJ B8oph/jD8O2YCk4YCTDOXPEi8Rjusxzro+whvRR+kG0gsGGcKSVNCPj1fNISEte4 gJId7O1mUAAzeDjn/VaS/PXQovEMolssPPKn9NocbKbpAoHBAJnFHJunl22W/lrr ppmPnIzjI30YVcYOA5vlqLKyGaAsnfYqP1WUNgfVhq2jRsrHx9cnHQI9Hu442PvI x+c5H30YFJ4ipE3eRRRmAUi4ghY5WgD+1hw8fqyUW7E7l5LbSbGEUVXtrkU5G64T UR91LEyMF8OPATdiV/KD4PWYkgaqRm3tVEuCVACDTQkqNsOOi3YPQcm270w6gxfQ SOEy/kdhCFexJFA8uZvmh6Cp2crczxyBilR/yCxqKOONqlFdOQKBwFbJk5eHPjJz AYueKMQESPGYCrwIqxgZGCxaqeVArHvKsEDx5whI6JWoFYVkFA8F0MyhukoEb/2x 2qB5T88Dg3EbqjTiLg3qxrWJ2OxtUo8pBP2I2wbl2NOwzcbrlYhzEZ8bJyxZu5i1 sYILC8PJ4Qzw6jS4Qpm4y1WHz8e/ElW6VyfmljZYA7f9WMntdfeQVqCVzNTvKn6f hg6GSpJTzp4LV3ougi9nQuWXZF2wInsXkLYpsiMbL6Fz34RwohJtYA== -----END PRIVATE KEY----- Bob decrypts the integer z with his RSA private key: Housley & Turner Expires 21 October 2023 [Page 29] Internet-Draft RSA-KEM with CMS KEMRecipientInfo April 2023 9c126102a5c1c0354672a3c2f19fc9ddea988f815e1da812c7bd4f8eb082bdd1 4f85a7f7c2f1af11d5333e0d6bcb375bf855f208da72ba27e6fb0655f2825aa6 2b93b1f9bbd3491fed58f0380fa0de36430e3a144d569600bd362609be5b9481 0875990b614e406fa6dff500043cbca95968faba61f795096a7fb3687a51078c 4ca2cb663366b0bea0cd9cccac72a25f3f4ed03deb68b4453bba44b943f4367b 67d6cd10c8ace53f545aac50968fc3c6ecc80f3224b64e37038504e2d2c0e2b2 9d45e46c62826d96331360e4c17ea3ef89a9efc5fac99eda830e81450b6534dc 0bdf042b8f3b706649c631fe51fc2445cc8d447203ec2f41f79cdfea16de1ce6 abdfdc1e2ef2e5d5d8a65e645f397240ef5a26f5e4ff715de782e30ecf477293 e89e13171405909a8e04dd31d21d0c57935fc1ceea8e1033e31e1bc8c56da0f3 d79510f3f380ff58e5a61d361f2f18e99fbae5663172e8cd1f21deaddc5bbbea 060d55f1842b93d1a9c888d0bf85d0af9947fe51acf940c7e7577eb79cabecb3 Bob encodes the CMSORIforKEMOtherInfo structure with the algorithm identifier for AES-128-KEYWRAP and a key length of 16 octets. The DER encoding of CMSORIforKEMOtherInfo is not repeated here. Bob derives the key-encryption key from integer z and the CMSORIforKEMOtherInfo structure with KDF2 and SHA-256, the KEK is: 4a95fe82f8d6ba56c83b4d51ef7dc06b Bob uses AES-KEY-WRAP to decrypt the content-encryption key with the key-encryption key; the content-encryption key is: 77f2a84640304be7bd42670a84a1258b Bob decrypts the content using AES-128-CBC with the content- encryption key. The 16-octet IV used is: 480ccafebabefacedbaddecaf8887781 The received ciphertext content is: c6ca65db7bdd76b0f37e2fab6264b66d The resulting padded plaintext content is: 48656c6c6f2c20776f726c6421030303 After stripping the padding, the plaintext content is: Hello, world! Acknowledgements We thank James Randall, Burt Kaliski, and John Brainard as the original authors of [RFC5990]; this document is based on their work. Housley & Turner Expires 21 October 2023 [Page 30] Internet-Draft RSA-KEM with CMS KEMRecipientInfo April 2023 We thank the members of the ASC X9F1 working group for their contributions to drafts of ANS X9.44, which led to [RFC5990]. We thank Blake Ramsdell, Jim Schaad, Magnus Nystrom, Bob Griffin, and John Linn for helping bring [RFC5990] to fruition. Authors' Addresses Russ Housley Vigil Security, LLC 516 Dranesville Road Herndon, VA, 20170 United States of America Email: housley@vigilsec.com Sean Turner sn3rd Email: sean@sn3rd.com Housley & Turner Expires 21 October 2023 [Page 31]