0 [sesetsn]
I Y/
L [rebuay20.200

A SASL and GSS-API Mechanism for SAML
draft-ietf-kitten-sasl-sami-09.txt

Abstract

Security Assertion Markup Language (SAML) has found its usage on the Internet for Web
Single Sign-On. Simple Authentication and Security Layer (SASL) and the Generic Security
Service Application Program Interface (GSS-API) are application frameworks to generalize
authentication. This memo specifies a SASL mechanism and a GSS-API mechanism for SAML
2.0 that allows the integration of existing SAML Identity Providers with applications using
SASL and GSS-APL

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note
that other groups may also distribute working documents as Internet-Drafts. The list of
current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated,
replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-
Drafts as reference material or to cite them other than as “work in progress.”

This Internet-Draft will expire on August 23, 2012.

Copyright Notice

Copyright (c) 2012 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted from this document
must include Simplified BSD License text as described in Section 4.e of the Trust Legal
Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction
1.1. Terminology
1.2. Applicability
2. Authentication flow
3. SAML SASL Mechanism Specification
3.1. Initial Response
3.2. Authentication Request
3.3. Outcome and parameters
4. SAML GSS-API Mechanism Specification

4.1. GSS-API Principal Name Types for SAML
5. Examples
5.1. XMPP
5.2. IMAP
6. Security Considerations
6.1. Man in the middle and Tunneling Attacks
6.2. Binding SAML subject identifiers to Authorization Identities
6.3. User Privacy
6.4. Collusion between RPs
6.5. GSS-API specific security considerations

7. IANA Considerations

7.1. IANA mech-profile
7.2. 1ANA OID

8. References
8.1. Normative References

00

.2. Informative References
Appendix A. Acknowledgments

Appendix B. Changes
& Authors' Addresses

TOC
1. Introduction

Security Assertion Markup Language (SAML) 2.0 [OASIS.saml-core-2.0-0s] is a set of
specifications that provide various means for a user to be identified to a relying party (RP)
through the exchange of (typically signed) assertions issued by an identity provider (IdP). It
includes a number of protocols, protocol bindings [OASIS.saml-bindings-2.0-0s], and
interoperability profiles [OASIS.saml-profiles-2.0-0s] designed for different use cases.

Simple Authentication and Security Layer (SASL) [RFC4422] is a generalized
mechanism for identifying and authenticating a user and for optionally negotiating a security
layer for subsequent protocol interactions. SASL is used by application protocols like IMAP
[RFC3501], POP [RFC1939] and XMPP [RFC6120]. The effect is to make modular
authentication, so that newer authentication mechanisms can be added as needed. This
memo specifies just such a mechanism.

The Generic Security Service Application Program Interface (GSS-API) [RFC2743]
provides a framework for applications to support multiple authentication mechanisms
through a unified programming interface. This document defines a pure SASL mechanism for
SAML, but it conforms to the new bridge between SASL and the GSS-API called GS2
[RFC5801]. This means that this document defines both a SASL mechanism and a GSS-API
mechanism. The GSS-API interface is OPTIONAL for SASL implementers, and the GSS-API
considerations can be avoided in environments that use SASL directly without GSS-API.

As currently envisioned, this mechanism enables interworking between SASL and SAML in
order to assert the identity of the user and other attributes to relying parties. As such, while
servers (as relying parties) will advertise SASL mechanisms (including SAML), clients will
select the SAML SASL mechanism as their SASL mechanism of choice.

The SAML mechanism described in this memo aims to re-use the Web Browser SSO profile
defined in section 4.1 of the SAML profiles 2.0 specification
[OASIS.saml-profiles-2.0-0s] to the maximum extent and therefore does not establish a
separate authentication, integrity and confidentiality mechanism. The mechanism assumes a
security layer, such as Transport Layer Security (TLS [RFC5246]), will continue to be used.
This specification is appropriate for use when a browser instance is available. In the absence
of a browser instance, SAML profiles that don't require a browser such as the Enhanced Client
or Proxy profile (as defined in section 4.2 of the SAML profiles 2.0 specification
[OASIS.saml-profiles-2.0-0s] may be used, but that is outside the scope of this specification.

Figure 1 describes the interworking between SAML and SASL: this document requires
enhancements to the Relying Party (the SASL server) and to the Client, as the two SASL
communication end points, but no changes to the SAML Identity Provider are necessary. To
accomplish this goal some indirect messaging is tunneled within SASL, and some use of
external methods is made.

I
>| Relying |
/ | Party |
// | |
// Foem e +
SAML/ // A

HTTPS // S

/7 | S| |

/ S | Al |

// A Ml |

// S| L] |

// L | | |

2 I

</ +--|--+

ffoccoococcooo + Vv

| | REETE +
SAML	HTTPS	
Identity	<--------"------- >	Client
Provider		
ffoccoococcooo + rocooooooo= +

Figure 1: Interworking Architecture

. TOC
1.1. Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in RFC 2119 [RFC2119].
The reader is assumed to be familiar with the terms used in the SAML 2.0 specification
[OASIS.saml-core-2.0-0s].
TOC

1.2. Applicability

Because this mechanism transports information that should not be controlled by an attacker,
the SAML mechanism MUST only be used over channels protected by TLS, or over similar
integrity protected and authenticated channels. In addition, when TLS is used the client MUST
successfully validate the server certificate ([(RFC5280], [RFC6125])

Note: An Intranet does not constitute such an integrity protected and authenticated channel!

2. Authentication flow TOC

While SAML itself is merely a markup language, its common use case these days is with
HTTP [RFC2616] or HTTPS [RFC2818] and HTML [W3C.REC-htm|401-19991224]. What
follows is a typical flow:

1. The browser requests a resource of a Relying Party (RP) (via an HTTP request).

2. The Relying Party redirects the browser via an HTTP redirect (as described in
Section 10.3 of [RFC2616]) to the Identity Provider (IdP) or an IdP discovery
service. When it does so, it includes the following parameters: (1) an
authentication request that contains the name of resource being requested, (2)

3.

4.

5.

a browser cookie, and (3) a return URL as specified in Section 3.1 of the SAML
profiles 2.0 specification [OASIS.saml-profiles-2.0-0s].

The user authenticates to the IdP and perhaps authorizes the release of user
attributes to the Relying Party.

In its authentication response, the IdP redirects (via an HTTP redirect) the
browser back to the RP with an authentication assertion (stating that the IdP
vouches that the subject has successfully authenticated), optionally along with
some additional attributes.

The Relying Party now has sufficient identity information to approve access to the
resource or not, and acts accordingly. The authentication is concluded.

When considering this flow in the context of SASL, we note that while the Relying Party and
the client both must change their code to implement this SASL mechanism, the IdP can
remain untouched. The Relying Party already has some sort of session (probably a TCP
connection) established with the client. However, it may be necessary to redirect a SASL
client to another application or handler. The steps are as follows:

1.

2.

The SASL server (Relying Party) advertises support for the SASL SAML20
mechanism to the client

The client initiates a SASL authentication with SAML20 and sends a domain
name that allows the SASL server to determine the appropriate IdP

. The SASL server transmits an authentication request encoded using a Uniform

Resource Identifier (URI) as described in RFC 3986 [RFC3986] and an HTTP
redirect to the IdP corresponding to the domain

. The SASL client now sends an empty response, as authentication continues via

the normal SAML flow and the SASL server will receive the answer to the
challenge out-of-band from the SASL conversation.

. At this point the SASL client MUST construct a URL containing the content

received in the previous message from the SASL server. This URL is transmitted
to the IdP either by the SASL client application or an appropriate handler, such
as a browser.

Next the user authenticates to the IdP. The manner in which the end user is
authenticated to the IdP and any policies surrounding such authentication is out
of scope for SAML and hence for this draft. This step happens out of band from
SASL.

. The IdP will convey information about the success or failure of the authentication

back to the the SASL server (Relying Party) in the form of an Authentication
Statement or failure, using a indirect response via the client browser or the
handler (and with an external browser client control should be passed back to
the SASL client). This step happens out of band from SASL.

. The SASL Server sends an appropriate SASL response to the client, along with

an optional list of attributes

Please note: What is described here is the case in which the client has not previously
authenticated. It is possible that the client already holds a valid SAML authentication token
so that the user does not need to be involved in the process anymore, but that would still be
external to SASL. This is classic Web Single Sign-On, in which the Web Browser client presents
the authentication token (cookie) to the RP without renewed user authentication at the IdP.

With all of this in mind, the flow appears as follows in Figure 2:

Authentication

SASL Serv. Client IdpP
|>----- (1)----- > | | Advertisement
I I I
|<----- (2)----- <| | Initiation
I I I
|>----- (3)----- >| | Authentication Request
I I I
|<----- (4)----- <| | Empty Response
I I I
| |< - -(5,6) - ->| Client<>IDP
I I I
I I I

|<- - - - - - - - - - -(7)- - -| Authentication Statement
| I I

|>----- (8)----- > | | SASL completion with

| | | status

| I

----- = SASL
= HTTP or HTTPS (external to SASL)

Figure 2: Authentication flow

3. SAML SASL Mechanism Specification _—

This section specifies the details of the SAML SASL mechanism. See section 5 of [RFC4422]
for what is described here.

The name of this mechanism is "SAML20". The mechanism is capable of transferring an
authorization identity (via the "gs2-header"). The mechanism does not offer a security layer.

The mechanism is client-first. The first mechanism message from the client to the serveris
the "initial-response". As described in [RFC4422], if the application protocol does not
support sending a client-response together with the authentication request, the server will
send an empty server-challenge to let the client begin. The second mechanism message is
from the server to the client, containing the SAML "authentication-request". The third
mechanism message is from client to the server, and is the fixed message consisting of "="
(i.e., an empty response). The fourth mechanism message is from the server to the client,
indicating the SASL mechanism outcome.

TOC
3.1. Initial Response

A client initiates a "SAML20" authentication with SASL by sending the GS2 header followed by
the authentication identifier (message 2 in Figure 2) and is defined as follows:

initial-response = gs2-header Idp-Identifier
IdP-Identifier = domain ; domain name with corresponding IdP

The "gs2-header" is used as follows:
- The "gs2-nonstd-flag" MUST NOT be present.

- The "gs2-cb-flag" MUST be set to "n" because channel binding [RFC5056]
data cannot be integrity protected by the SAML negotiation. (Note: In theory
channel binding data could be inserted in the SAML flow by the client and verified
by the server, but that is currently not supported in SAML.)

- The "gs2-authzid" carries the optional authorization identity as specified in
[RFC5801] (not to be confused with the IdP-Identifier).

Domain name is specified in [RFC1035]. A domain name is either a "traditional domain
name" as described in [RFC1035] or an "internationalized domain name" as described in
[RFC5890]. Clients and servers MUST treat the IdP-ldentifier as a domain name slot
[RFC5890]. They also SHOULD support internationalized domain names (IDNs) in the Idp-
Identifier field; if they do so, all of the domain name's labels MUST be A-labels or NR-LDH
labels [RFC5890], if necessary internationalized labels MUST be converted from U-labels to

A-labels by using the Punycode encoding [RFC3492] for A-labels prior to sending them to
the SASL-server as described in the protocol specification for Internationalized Domain
Names in Applications [RFC5891].

TOC
3.2. Authentication Request

The SASL Server transmits to the SASL client a URI that redirects the SAML client to the IdP
(corresponding to the domain that the user provided), with a SAML authentication request as
one of the parameters (message 3 in Figure 2) in the following way:

authentication-request = URI

URI is specified in [RFC3986] and is encoded according to Section 3.4 (HTTP Redirect) of the
SAML bindings 2.0 specification [OASIS.saml-bindings-2.0-0s]. The SAML authentication
request is encoded according to Section 3.4 (Authentication Request) of the SAML core 2.0
specification [OASIS.saml-core-2.0-0s]. Should the client support Internationalized
Resource Identifiers (IRIs) [RFC3987] it MUST first convert the IRl to a URI before
transmitting it to the server [RFC5890].

Note: The SASL server may have a static mapping of domain to corresponding IdP or
alternatively a DNS-lookup mechanism could be envisioned, but that is out-of-scope for this
document.

Note: While the SASL client MAY sanity check the URI it received, ultimately it is the SAML IdP
that will be validated by the SAML client which is out-of-scope for this document.

The client then sends the authentication request via an HTTP GET (sent over a server-
authenticated TLS channel) to the IdP, as if redirected to do so from an HTTP server and in
accordance with the Web Browser SSO profile, as described in section 3.1 of SAML profiles
2.0 specification [OASIS.saml-profiles-2.0-0s] (message 5 and 6 in Figure 2).

The client handles both user authentication to the IdP and confirmation or rejection of the
authentiation of the RP (out-of-scope for this document).

After all authentication has been completed by the IdP, the IdP will send a redirect message
to the client in the form of a URI corresponding to the Relying Party as specified in the
authentication request ("AssertionConsumerServiceURL") and with the SAML response as
one of the parameters (message 7 in Figure 2).

Please note: this means that the SASL server needs to implement a SAML Relying Party.
Also, the SASL server needs to correlate the session it has with the SASL client with the
appropriate SAML authentication result. It can do so by comparing the ID of the SAML
authentication request it has issued with the one it receives in the SAML authentication
statement.

TOC
3.3. Outcome and parameters

The SASL server (in its capacity as a SAML Relying Party) now validates the SAML
authentication response it received from the SAML client via HTTP or HTTPS.

The outcome of that validation by the SASL server constitutes a SASL mechanism outcome,
and therefore (as stated in [RFC4422]) SHALL be used to set state in the server
accordingly, and it SHALL be used by the server to report that state to the SASL client as
described in [RFC4422] Section 3.6 (message 8 in Figure 2).

4. SAML GSS-API Mechanism Specification _—

4.1.

This section and its sub-sections are not required for SASL implementors, but this section
MUST be observed to implement the GSS- APl mechanism discussed below.

This section specify a GSS-API mechanism that when used via the GS2 bridge to SASL
behaves like the SASL mechanism defined in this document. Thus, it can loosely be said that
the SAML SASL mechanism is also a GSS-API mechanism. The SAML user takes the role of
the GSS-API Initiator and the SAML Relying Party takes the role of the GSS-API Acceptor. The
SAML Identity Provider does not have a role in GSS-API, and is considered an internal matter
for the SAML mechanism. The messages are the same, but

a) the GS2 header on the client's first message and channel binding data is excluded when
SAML is used as a GSS-API mechanism, and

b) the RFC2743 section 3.1 initial context token header is prefixed to the client's first
authentication message (context token).

The GSS-API mechanism OID for SAML is OID-TBD (IANA to assign: see IANA considerations).

SAML20 security contexts MUST have the mutual_state flag (GSS_C_MUTUAL FLAG) set to
TRUE. SAML does not support credential delegation, therefore SAML security contexts MUST
have the deleg_state flag (GSS_C_DELEG_FLAG) set to FALSE.

The mutual authentication property of this mechanism relies on successfully comparing the
TLS server identity with the negotiated target name. Since the TLS channel is managed by
the application outside of the GSS-API mechanism, the mechanism itself is unable to confirm
the name while the application is able to perform this comparison for the mechanism. For
this reason, applications MUST match the TLS server identity with the target name, as
discussed in [RFC6125]. More precisely, to pass identity validation the client uses the
securely negotiated targ_name as the reference identifier and match it to the DNS-ID of the
server certificate, and MUST reject the connection if there is a mismatch. For compatibility
with deployed certificate hierarchies, the client MAY also perform a comparison with the CN-
ID when there is no DNS-ID present. Wildcard matching is permitted. The targ_name
reference identifier is a "traditional domain names" thus the comparison is made using case-
insensitive ASCIl comparison.

The SAML mechanism does not support per-message tokens or GSS_Pseudo_random.

GSS-API Principal Name Types for SAML

SAML supports standard generic name syntaxes for acceptors such as

GSS_C NT HOSTBASED_ SERVICE (see [RFC2743], Section 4.1). SAML supports only a
single name type for initiators: GSS_C_NT_USER_NAME. GSS_C_NT_USER_NAME is the
default name type for SAML. The query, display, and exported hame syntaxes for SAML
principal names are all the same. There are no SAML-specific name syntaxes -- applications
should use generic GSS-API name types such as GSS_C_NT_USER_NAME and

GSS_C NT HOSTBASED_SERVICE (see [RFC2743], Section 4). The exported name token
does, of course, conforms to [RFC2743], Section 3.2.

5. Examples

5.1.

XMPP

Suppose the user has an identity at the SAML IdP saml.example.org and a Jabber Identifier
(JID) "somenode@example.com", and wishes to authenticate his XMPP connection to
xmpp.example.com. The authentication on the wire would then look something like the
following:

Step 1: Client initiates stream to server:

TOC

TOC

TOC

<stream:stream xmlns='jabber:client'
xmlns:stream="http://etherx. jabber.org/streams'
to="example.com' version='1.0'>

Step 2: Server responds with a stream tag sent to client:

<stream:stream
xmlns="'jabber:client' xmlns:stream='http://etherx.jabber.org/streams'
id='some_id' from='example.com' version='1.0'>

Step 3: Server informs client of available authentication mechanisms:

<stream:features>

<mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
<mechanism>DIGEST-MD5</mechanism>
<mechanism>PLAIN</mechanism>
<mechanism>SAML20</mechanism>

</mechanisms>

</stream:features>

Step 4: Client selects an authentication mechanism and provides the initial client response
containing the according to the definition in Section 4 ofBASE64 [RFC4648] encoded gs2-
header and domain:

<auth xmlns='urn:ietf:params:xml:ns:xmpp-sasl' mechanism="'SAML20"'>
biwsZXhhbXBsZS5vcmc</auth>

The decoded string is: n,,example.org

Step 5: Server sends a BASE64 encoded challenge to client in the form of an HTTP Redirect
to the SAML IdP corresponding to example.org (https://saml.example.org) with the SAML
Authentication Request as specified in the redirection url:

aHROCHM6LY9ZYW1sLmV4YW1wbGUub3JInLINBTUWVQnJIvd3NLcjOTQUIMUMVX
dwVzdD1QSE50Y1d4d09rRjFKR2h1VWIWeGRXVNpkQOIOY1d4dWNECHPZVZFzZ
YOQwWaWRYSNVPbT1oYzJsek9tNWhiViZ6T25Sak9sTkIUVXc2TWkOdO9uQn1i
M1J2WTI5cOLNMEtJQOFNSUVSRVBTSMZZbVZqTKRIMFptRTFNVEF6TKRINEOU
QTVZVE13Wm1ZeFpUTXhNVFKOTXpJIM1pqYZzVORGMWT1RNME1pQldawEp6YVC5
dVBTSX1MakFpRFFvZO1DQWATWE56ZFdWSmJuTjBZVZUWUFNJeU1EQTNMVEV5
TFRFd1ZERXhPak01T2pNMFdpSWASbT15WTIWQMRYUM9iajBpwWmiGc2MyVWLE
UWINSUNBZANYT1FZWE56YVhabFBTSm1ZV3h6WINITKkNpQWdJIQOJIRY205MGIy
TnZiRUpwYm1ScGJtYz1JIb1lZ5Ympwd11YTnBjenB1WVcxbGN6cDBZenBUUVUX
TU9GSXVNRHBpYVc1a2FXNW5jenBJIVkZSUUXWQ1BVMVFpRFFVZO1DQWARWES6
W1hKMGFXOXVRMj11YzNWdFpYS1RaWEOyYVdObFZWSk1QUTBLSUNBZO1DQWdJ
QOFpPYUhSMGNITTZMeTkOY1hCdOXtVjRZVZF3YkdVdVkyOXRMMUSCVEV3d1FY
TnpaWEowYVc5dVEYOXViM1ZOWLhKVFpYSjIhVe5sSWoOTKNpQThjMkZOYKRw
SmMzTjFaWELnZUcxc2JuTTZjMkZOYkQwaWRYSnVPbT1loYzJsek9tNWhiv1izé
T255ak9sTkJIUVXc2TWkOdO9tRNpjM1Z5ZEdsdmIpSStEUWINSUNBZO1HaDBK
SEJ6T2k4dmVHMXdjQzVsZUdGAGNHeGXMbU52Y1EWSO1EA3ZjMkZOYKRWSMMZ
TjFaWEKrRFFvVZ1BITmhiV3h3T2s1aGIXVkpSRkJI2YkdsamVTQjRiV3h1Y3pw
e11XMXNjRDBpZFhKdU9tOWhjMmx6T201aGIXVnpPblJqT2x0Q1RVdzZNaTR3

T25CeWIzUnZZMj1zSWcwSO1DQWdJIQOJIHYjNKAF1YUT1Ib1lZ5Ympwdl1lYTnB]j
enB1WVcxbGN6cDBZenBUUVUXTU9qSXVNRHBIWVCcXbGFXUXRabT15Y1dGMEQu
Qmxjbk5wYzNSbGIJUuUW1IEUWINSUNBZO1GT1FUbUZOW1ZGMV1XeHBabWxsY2ow
aWVHMXdjQzVsZUdGdGNHeGxMbU52YINJZ1FXeHNiM2REY21WaGRHVT1Jb1J5
ZFdVaUlDOCtEUW9NUEhOaGJXeHdPbEpsY1hWbGMzUmxaRUYxZEdodVEYyOXVk
R1YOZEEwSO1DQWdJQOIQY1d4dWN6CHpZVZzFzYOQwaWRYSnVPbTloYzJsek9t
NWhiV1Z6T25Sak9sTkJIUVXc2TWkOdO9uQnl1liM1J2WTI5cO01lpQU5DaUFNSUNB
Z01DQWARMj10YOdGeWFYTnZiajBpWlhoaFkzUW1QZzBLSUNBOGMYRNRiRHBC
ZFhSb2JrTnZiblJsZUhSRGJIJHRnpjMUpsWmcwSO1DQWdJIQOFNZUcxXc2JuTTZ]
MkZOYkQwawWRYSnVPbT1loYzJsek9tNWhiV1Z6T25Sak9sTkJUVXc2TWkOdO9t
RnpjM1Z5ZEdsdmJIpSStEUWINbONBZO1DQjFjbTQ2YjIGemFYTTZibUZOWLhN
NmMRHTTZVMEZOVERvVeUxqQTZZVOO2WT J4aGMzTmxjenBRWVhOemQy0X1laRkJ5
YjNSbFkzUmxaR1J5WVc1emNHOX1kQTBLSUNBOEwWzTmhiV3c2UVhWMGFHNUR1
MjUwWlhoMFEyeGhjMO5TW1dZKORRb2dQQz16WVcxc2NECFNaWEYXW1hOMFpX
UKJKWFJIvYmtOodmJuUmx1SFEr SUEwWS1BDOXpZVzFzYORwWQMRYUM9ibEpsY1hw
bGMzUSs=

The decoded challenge is:

https://saml.example.org/SAML/Browser?SAMLRequest=PHNhbWxwOk
F1dGhuUmVxdwVzdCB4bWxuczpzYW1scDOidXJuOm9hc21z0Om5hbwVzOnRj01l
NBTUwW6Mi4wOnByb3RVY29sSIgOKICAGIEIEPSITYmMVjNDIOZME1MTAZNDI40T
AS5YTMwWZMYXZTMXMTY4MzI3Zjc5NDcOOTgOIiBWZXJzaW9uPSIyLjAiDQogIC
AgSXNzdWVJIbnNOYW50PSIYMDA3LTEYLTEWVDEXOjM50jMOWiIgRmOyY2VBdX
Robj0iZmFsc2UiDQogICAgSXNQYXNzaXZ1PSJImYWxzZSINCiAgICBQcm90h2
NVbEJpbmRpbmc9InVybjpvYXNpczpuYWllczpOYzpTQUIMOjIuMDpiawWskaw
5nczpIVFRQLVBPU1QiDQogICAgQXNzZXJ0awWouQ29uc3VtZXJITZXJ2aWN1lVvV
JMPQOKICAQICAQICAiaHROCHM6LY94bXBwLmV4YWiwbGUuUY29tLI1NBTUWVQX
NzZXJ0aw9uQ29uc3VtZXJITZXJ2aWN1Ij4NCiA8c2FtbDpJc3N1ZXIgeGlsbn
M6c2FtbDOidXJuOm9hc21zOm5hbwWVzOnRjOINBTUWEMi4wOmFzc2VydGlvbi
I+DQogICAgIGhOdHBz0i8veGlwcC51eGFtcGx1LmNVbQOKIDwvCc2FtbDpJc3
N1ZXI+DQogPHNhbWxwOk5hbWVJIRFBVbG1jeSB4bWxuczpzYW1lscDOidXJuOm
9hc21z0m5hbWVzONRjO1INBTUW6Mi4wOnByb3RVY29sIgOKICAgICBGb3JtYX
Q9InVybjpvYXNpczpuYW1llczp@YzpTQUIMOjIuMDpuYW1lawQtZm9ybWFOON
BlcnNpc3R1bnQiDQogICAgIFNQTMFtZVF1YWxpZmllcjOieGlwcC51eGFtcG
X1LmNvbSIgQWxsb3dDcmVhdGU9INRydWUiIC8+DQogPHNhbWxw01J1lcXV1c3
R1ZEF1dGhuQ29udGV4dAGKICAgICB4bWxuczpzYW1lscDOidXJuOm9hc21z0m
5hbWVzONnRjO1INBTUW6EMi4wOnByb3RVY29sIiANCiAgICAgICAgQ29tcGFyaX
Nvbj0izXhhY3QiPgOKICA8c2FtbDpBdXRobkNvbnR1eHRDbGFzc1J1ZgOKIC
AgICAgeGlsbnM6c2FtbDOidXJuOm9hc21z0m5hbWVzONRjO1INBTUW6EMi4wOm
Fzc2VydGlvbiI+DQogICAgICAgICAgIHVYbjpvYXNpczpuYWllczpOYzpTQU
1MOjIuMDphYzpjbGFzc2Vz01Bhc3N3b3JkUHJIvAGVYjdGVkVHIhbnNwb3J0DQ
0gIDwvc2FtbDpBdXRobkNvbnR1eHRDbGFzc1J1Zj4NCiA8L3NhbWxw01lJ1lcX
V1c3R1ZEF1dGhuQ29udGV4dD4gDQo8L3NhbWxwOkF1dGhuUmVxdwVzdD4=

Where the decoded SAMLRequest looks like:

<samlp:AuthnRequest xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
ID="_bec424fa5103428909a30ff1e31168327f79474984" Version="2.0"
IssueInstant="2007-12-10T11:39:34Z" ForceAuthn="false"
IsPassive="false"
ProtocolBinding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"
AssertionConsumerServiceURL=
"https://xmpp.example.com/SAML/AssertionConsumerService">
<saml:Issuer xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">
https://xmpp.example.com
</saml:Issuer>
<samlp:NameIDPolicy xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
Format="urn:oasis:names:tc:SAML:2.0:nameid-format:persistent"
SPNameQualifier="xmpp.example.com" AllowCreate="true" />

<samlp:RequestedAuthnContext
xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
Comparison="exact">
<saml:AuthnContextClassRef
xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">
urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport
</saml:AuthnContextClassRef>
</samlp:RequestedAuthnContext>
</samlp:AuthnRequest>

Note: the server can use the request ID (_bec424fa5103428909a30ff1e31168327f79474984)
to correlate the SASL session with the SAML authentication.

Step 5 (alternative): Server returns error to client if no SAML Authentication Request can be
constructed:

<failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
<temporary-auth-failure/>

</failure>

</stream:stream>

Step 6: Client sends the empty response to the challenge encoded as a single =:

<response xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>

</response>

The following steps between brackets are out of scope for this document but included to
better illustrate the entire flow.

[The client now sends the URL to a browser instance for processing. The browser engages in
a normal SAML authentication flow (external to SASL), like redirection to the Identity Provider
(https://saml.example.org), the user logs into https://saml.example.org, and agrees to
authenticate to xmpp.example.com. A redirect is passed back to the client browser who
sends the AuthN response to the server, containing the subject-identifier as an attribute. If
the AuthN response doesn't contain the JID, the server maps the subject-identifier received
from the IdP to a JID]

Step 7: Server informs client of successful authentication:
<success xmlns='urn:ietf:params:xml:ns:xmpp-sasl'/>
Step 7 (alt): Server informs client of failed authentication:

<failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
<not-authorized/>

</failure>

</stream:stream>

Please note: line breaks were added to the base64 for clarity.

5.2. IMAP e

The following describes an IMAP exchange. Lines beginning with 'S:' indicate data sent by the
server, and lines starting with 'C:' indicate data sent by the client. Long lines are wrapped for
readability

S: * OK IMAP4revil

C: . CAPABILITY

S: * CAPABILITY IMAP4revl STARTTLS

S OK CAPABILITY Completed

C: . STARTTLS

S: . OK Begin TLS negotiation now

C: . CAPABILITY

S: * CAPABILITY IMAP4revl AUTH=SAML20

S: . OK CAPABILITY Completed

C: . AUTHENTICATE SAML20

S: +

C: biwszZXhhbXBszZS5vcmc

+ aHROCHM6LY9zYW1sLmV4YWiwbGUub3JInLINBTUwvQnJIvd3N1cj9TQULM
UmVxdwWVzdD1QSE50Y1d4d09rRgOKMWRHaHVVbVZ4ZFdWemRDQjRiV3h1Y3pwe
11XMXNJjRDBpZFhKdU9tOWhjMmx6T201aGIXVnpPblJqT2Xx0QgOKVFV3NKk1pNH
dPbkJ5YjNSd1kyOXNJZzBLSUNBZO1FbEVQUOpmWW1Wak5ESTBabUUXTVRBek5
ESTRPVEE1WQOKVE13Wm1ZeFpUTXhNVFkOTXpJIM1pqYzVORGMwWT1RNMElpQlda
WEp6YVc5dVBTSX1MakFpRFFvZO1DQWdTWAOKTNnpkV1ZKYmM50MF1XNTBQUOL5T
URBMOXURX1IMVEV3VKRFeE9qTTVPakoOwV213Z1Jt0X1ZM1ZCZFhSh2JgMAOKaV
ptRNNjM1VpRFFvZO1DQWATWESRWVhOemFYWmxQUOptwWVd4elpTSUS5DaUFNSUN
CUWNtOTBiMk52YkVKCAOKYM1ScGItYz1Ib1Z5YmpwdllYTnBjenB1WVcxbGN6
cDBZenBUUVUXTU9qSXVNRHBpYVc1a2FXNW5]jenBJVgOKR1IRTFZCUFUXUW1EU
WIONSUNBZ1FYTnpaWEowYVc5dVEYOXVjM1ZOW1hKVFpYSjJhVO5sV1ZKTVBRME
tJQWOKQWdJIQOFNSUNBaWFIUjBjSEO2THk5dF1XbHNMbVYOWVcxd2JHVXVZM] 1
OTDFOQ1RVA3ZRWE56W1hKMGFX0QOKdVEYOXVjM1ZOW1hKVFpYS]jJIhVO5sSWo0
TKkNpQThjMkZOYKRwSmMMzTjFaWE1nZUcxc2JuTTZjMkZOYkQwaQOKZFhKdU9tO0
WhjMmx6T201aGIXVnpPbl1JqT2x0Q1RVdzZNaTR3T21GemMyVn1kR2x2Ym1JKO
RRb2dJQOFNSQOKR2gwZEhCek9pOHZ1RzF3YOM1bGVHRNRjR3hsTG10dmJIRMEt
JRHA2YzJGAGJIECEpjMO4XxW1hJIKORRb2dQSAOKTMhiV3h3T2s1aGJIXVkpSRkJ2
YkdsamVTQjRiV3h1Y3pwellXMXNjRDBpZFhKdU9tOWhjMmx6T201aGIXVgOKe
k9uUmpPbE5SCVFV3NKk1pNHdPbkJ5YjNSd1kyOXNJZzBLSUNBZO1DQkdiMOpOWY
hROUluVnlianB2WVhOCAGKY3pwdV1XMWxjenAwWXpwVFFVMU1Pakl1TURwdV1
XMWXhV1FOWmO5eWIXRjBPbkJIsY250cGMzUmxib1FpRAOKUWIONSUNBZO1GT1FU
bUZOW1ZGMV1XeHBabWxsY2owaWVHMXd]jQzVsZUdGAGNHeGxMbU52Y1NJZ1FXe
HNiMwOKZERjbVZoZEdVOUluUnlkV1VpSUM4KORRb2dQSE50Y1d4d09sSmxjWF
ZsYzNSbFpFRjFkR2h1UTI5dWRHVgOKNGRBMEt JQOFNSUNCNGJIXeHVjenB6WVc
XC2NEMG1kWEp1T205aGMybHpPbTVoYldWek9uUmpPbE5CVFV3NgOKTWkOdO9uU
Qn1iM1J2WTI5c01pQU5DaUFNSUNBZO1DQWARM]j1l0YOdGeWFYTnZiajBpwWlhoa
FkzUW1QZzBLSQOKQOE4YzJGAGIECEJkWFJIvYmtOdmJuUmx1SFJEYkdGemMxSm
XaZzBLSUNBZO1DQWd1RzFzYm5NNmMMYyRNRiRAOKMG1KWEpP1T205aGMybHpPbTV
oY1ldwek9uUmpPbE5CVFV3Nk1pNHdPbUZ6YZzJIJWeWRHbHZiaUkrRFFvZ01DQQOK
Z01DQjFjbTQ2YjJGemFYTTZibUZOW1hNNMRHTTZVMEZOVERVeUXqQTZZVO02W
TJ4aGMzTmxjenBRWVhOegOKZDI5eVpGQnl1liM1JIsWTNSbFpGUNn1ZVzV6eYOc5eW
RBMEt JQOE4TDNOaGJIXdzZRWFYwWYUc1RGIYNTBaWGgwUQOKMnhoYzNOU1pXWSt
EUWONUEM5e11XMXNJjRHBTW1hGMVpYTjBaV1JCZFhSb2JrTnZiblJsZUhRKO1B
MEtQQwWOKOXpZVzFzYORwWQMRYUmM9ibEpsY1hwWbGMzUSs=

C:

S: . OK Success (tls protection)

(0]

The decoded challenge is:

https://saml.example.org/SAML/Browser?SAMLRequest=PHNhbWxwOkF
1dGhuUmVxdwVzdCB4bWxuczpzYWlscDO@idXJuOm9hc21z0Om5hbwWVzOnRjO1NB
TUw6Mi4wOnByb3RvY29sIgOKICAgIEIEPSIfYmMVjNDIOZmMEIMTAZNDI40TASY
TMWZmYXZTMXMTY4MzI3Zjc5NDcOOTgOIiBWZXJzaW9uPSIyL jAiDQogICAgSX

NzdWVJIbnNOYW50PSIYMDA3LTEYLTEWVDEXOjM50jMOWiIgRmOyY2VBdXRobj0O
1ZmFsc2UiDQogICAgSXNQYXNzaXZ1PSJImYWxzZSINCiAgICBQcm90b2NVbEJIp
bmRpbmc9InVybjpvYXNpczpuYW1llczp@YzpTQU1IMOjIuMDpiaWs5kawsnczpIV
FRQLVBPU1QiDQogICAgQXNzZXJ0aw9uQ29uc3VtZXJITZXJ2aWN1VVIMPQOKIC
AgICAgICAiaHROCHM6LYOtYW1sSLmVA4YWiwbGUUY29tLINBTUwWVQXNZzZXJ0aw9
uQ29uc3VtZXJTZXJ2aWN1Ij4NCiA8c2FtbDpJc3N1ZXIgeGlsbnM6c2FtbDO1
dXJuOm9hc21z0Om5hbwWVzOnRjO1INBTUW6Mi4wOmFzc2VydGlvbiI+DQogICAQI
GhOdHBz0i8veGlwcC51eGFtcGx1LmNVbQOKIDwvCc2FtbDpJc3N1ZXI+DQogPH
NhbwWxwOk5hbWVJIRFBVbG1jeSB4bWxuczpzYW1lscDOidXJuOm9hc21z0Om5hbwV
ZONRjO1INBTUW6Mi4wOnByb3RvY29sIgOKICAgICBGh3JtYXQ9InVybjpVvYXNp
czpuYW1llczp@YzpTQUIMO]jIuMDpuYW1llawQtZm9ybWFOOnBlcnNpc3R1bnQiD
QogICAgIFNQTMFtZVF1YWxpZmllcjOieGlwcC51eGFtcGXx1LmNvbSIgQWxsbh3
dDcmVhdGU9INRydWUiIC8+DQogPHNhbWxw01J1cXV1c3R1ZEF1dGhuQ29udGV
4dAOKICAgICB4bWxuczpzYWlscDOidXJuOm9hc21z0Om5hbwWVzOnRjO1NBTUwW6E
Mi4wOnByb3RvY29sIiANCiAgICAgICAQgQ29tcGFyaXNvbj0izXhhY3QiPgOKI
CA8c2FtbDpBdXRobkNvbnR1eHRDbGFzc1J1ZgOKICAgICAgeGlsbnM6c2FtbD
0idXJuOm9hc21z0m5hbWVzOnRjOINBTUWEMi4wOmFzc2VydGlvbiI+DQogICA
gICB1cm46b2FzaXM6bmFtZXM6dGM6UOFNTDoYLjAGYWMEY2xhc3N1czpQYXNz
d29yZFByb3R1Y3R1ZFRYYW5zcGOydAOKICASL3NhbWw6QXVOaG5Db250ZXh0Q
2Xhc3NSZWY+DQogPC9zYW1scDpSZXF1ZXNOZWRBAXRobkNvbnR1eHQ+IAOKPC
9zYW1scDpBdXRob1lJ1cXV1c3Q+

Where the decoded SAMLRequest looks like:

<samlp:AuthnRequest xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
ID="_bec424fa5103428909a30ff1e31168327f79474984" Version="2.0"
IssueInstant="2007-12-10T11:39:34Z" ForceAuthn="false"
IsPassive="false"
ProtocolBinding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"
AssertionConsumerServiceURL=
"https://mail.example.com/SAML/AssertionConsumerService">
<saml:Issuer xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">
https://xmpp.example.com
</saml:Issuer>
<samlp:NameIDPolicy xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
Format="urn:oasis:names:tc:SAML:2.0:nameid-format:persistent"
SPNameQualifier="xmpp.example.com" AllowCreate="true" />
<samlp:RequestedAuthnContext
xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
Comparison="exact">
<saml:AuthnContextClassRef
xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">
urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport
</saml:AuthnContextClassRef>
</samlp:RequestedAuthnContext>
</samlp:AuthnRequest>

. . . TOC
6. Security Considerations
This section addresses only security considerations associated with the use of SAML with
SASL applications. For considerations relating to SAML in general, the reader is referred to
the SAML specification and to other literature. Similarly, for general SASL Security
Considerations, the reader is referred to that specification.
TOC

6.1. Man in the middle and Tunneling Attacks

This mechanism is vulnerable to man-in-the-middle and tunneling attacks unless a client

always verifies the server identity before proceeding with authentication (see [RFC6125]).
Typically TLS is used to provide a secure channel with server authentication.

- . . . o L. o TOC
6.2. Binding SAML subject identifiers to Authorization Identities
As specified in [RFC4422], the server is responsible for binding credentials to a specific
authorization identity. It is therefore necessary that only specific trusted IdPs be allowed. This
is typical part of SAML trust establishment between Relying Parties and IdP.
TOC

6.3. User Privacy

The IdP is aware of each Relying Party that a user logs into. There is nothing in the protocol to
hide this information from the IdP. It is not a requirement to track the visits, but there is
nothing that prohibits the collection of information. SASL server implementers should be
aware that SAML IdPs will be able to track - to some extent - user access to their services.

6.4. Collusion between RPs —

It is possible for Relying Parties to link data that they have collected on the users. By using
the same identifier to log into every Relying Party, collusion between Relying Parties is
possible. In SAML, targeted identity was introduced. Targeted identity allows the IdP to
transform the identifier the user typed in to a Relying Party specific opaque identifier. This
way the Relying Party would never see the actual user identifier, but a randomly generated
identifier.

6.5. GSS-API specific security considerations _—

Security issues inherent in GSS-API (RFC 2743) and GS2 (RFC 5801) apply to the SAML GSS-
APl mechanism defined in this document. Further, and as discussed in section 4, proper TLS
server identity verification is critical to the security of the mechanism.

7. IANA Considerations TOC

7.1. IANA mech-profile TOC

The IANA is requested to register the following SASL profile:
SASL mechanism profile: SAML20

Security Considerations: See this document

Published Specification: See this document

For further information: Contact the authors of this document.
Owner/Change controller: the IETF

Intended usage: COMMON

Note: None

7.2. IANA OID e

The IANA is further requested to assign a new entry for this GSS mechanism in the sub-
registry for SMI Security for Mechanism Codes, whose prefix is
iso.org.dod.internet.security.mechanisms (1.3.6.1.5.5) and to reference this specification in
the reqistry.

TOC
8. References

. TOC
8.1. Normative References

[OASIS.saml-
bindings-2.0-
os]
[OASIS.saml- Cantor, S., Kemp, |., Philpott, R., and E. Maler, “Assertions and Protocol for the OASIS Security
core-2.0-os] Assertion Markup Language (SAML) V2.0,” OASIS Standard saml-core-2.0-0s, March 2005.

[OASIS.saml- Hughes,]., Cantor, S., Hodges, J., Hirsch, F., Mishra, P., Philpott, R., and E. Maler, “Profiles for the
profiles-2.0- OASIS Security Assertion Markup Language (SAML) V2.0,” OASIS Standard OASIS.saml-profiles-2.0-0s,
os] March 2005.

[RFC1035] Mockapetris, P., “Domain names - implementation and specification,” STD 13, RFC 1035, November 1987
(TXT).

[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels,” BCP 14, RFC 2119,
March 1997 (TXT, HTML, XML).

[RFC2616] Fielding, R., Gettys, |., Moqul,]., Frystyk, H., Masinter, L., Leach, P., and T. Berners-Lee, “Hypertext

Cantor, S., Hirsch, F., Kemp,]., Philpott, R., and E. Maler, “Bindings for the OASIS Security Assertion
Markup Lanquage (SAML) V2.0,” OASIS Standard saml-bindings-2.0-os, March 2005.

[RFC2743] Linn, J., “Generic Security Service Application Program Interface Version 2, Update 1,” RFC 2743,
January 2000 (TXT).

[RFC2818] Rescorla, E., “HTTP Over TLS,” RFC 2818, May 2000 (TXT).

[RFC3492] Costello, A., “Punycode: A Bootstring encoding of Unicode for Internationalized Domain Names in
Applications (IDNA),” RFC 3492, March 2003 (TXT).

[RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, “Uniform Resource Identifier (URI): Generic Syntax,”
STD 66, RFC 3986, January 2005 (TXT, HTML, XML).

[RFC39871]1 Duerst, M. and M. Suignard, “Internationalized Resource Identifiers (IRIs),” RFC 3987, January 2005 (TXT).

[RFC4422] Melnikov, A. and K. Zeilenga, “Simple Authentication and Security Layer (SASL),” RFC 4422, June 2006
(IXT).

[RFC5056] Wiliams, N., “On the Use of Channel Bindings to Secure Channels,” RFC 5056, November 2007 (TXT).

[RFC5246] Dierks, T. and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2,” RFC 5246,
August 2008 (TXT).

[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, “Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List (CRL) Profile,” RFC 5280, May 2008 (TXT).

[RFC5801] Josefsson, S. and N. Willams, “Using Generic Security Service Application Program Interface (GSS-API)
Mechanisms in Simple Authentication and Security Layer (SASL): The GS2 Mechanism Family,”
RFC 5801, July 2010 (TXT).

[RFC5890] Klensin, J., “Internationalized Domain Names for A pplications (IDNA): Definitions and Document
Framework,” RFC 5890, August 2010 (TXT).

[RFC5891] Klensin, J., “Internationalized Domain Names in Applications (IDNA): Protocol,” RFC 5891, August 2010
(IXT).
[RFC6125] Saint-Andre, P. and J. Hodges, “Representation and V erification of Domain-Based A pplication Service

Identity within Internet Public Key Infrastructure Using X.509 (PKIX) Certificates in the Context of
Transport Layer Security (TLS),” RFC 6125, March 2011 (TXT).

L‘:vr:ﬁgf_c- Hors, A., Raggett, D., and I. Jacobs, “HTML 4.01 Specification,” World Wide Web Consortium
19991224] Recommendation REC-htmI401-19991224, December 1999 (HTML).

. TOC
8.2. Informative References

[RFC1939] Myers, J. and M. Rose, “Post Office Protocol - Version 3,” STD 53, RFC 1939, May 1996 (TXT).

[RFC3501] Crispin, M., “INTERNET MESSA GE A CCESS PROTOCOL - VERSION 4rev1,” RFC 3501, March 2003 (TXT).
[RFC4648] Josefsson, S., “The Basel6, Base32, and Base64 Data Encodings,” RFC 4648, October 2006 (TXT).
[RFC6120] Saint-Andre, P., “Extensible Messaging and Presence Protocol (XMPP): Core,” RFC 6120, March 2011 (TXT).

mailto:cantor.2@osu.edu
mailto:Frederick.Hirsch@nokia.com
mailto:John.Kemp@nokia.com
mailto:rphilpott@rsasecurity.com
mailto:eve.maler@sun.com
http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf
mailto:cantor.2@osu.edu
mailto:John.Kemp@nokia.com
mailto:rphilpott@rsasecurity.com
mailto:eve.maler@sun.com
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
mailto:
mailto:cantor.2@osu.edu
mailto:Jeff.Hodges@neustar.biz
mailto:Frederick.Hirsch@nokia.com
mailto:pmishra@principalidentity.com
mailto:rphilpott@rsasecurity.com
mailto:eve.maler@sun.com
http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf
http://tools.ietf.org/html/rfc1035
http://www.rfc-editor.org/rfc/rfc1035.txt
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
mailto:fielding@ics.uci.edu
mailto:jg@w3.org
mailto:mogul@wrl.dec.com
mailto:frystyk@w3.org
mailto:masinter@parc.xerox.com
mailto:paulle@microsoft.com
mailto:timbl@w3.org
http://tools.ietf.org/html/rfc2616
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2616.ps
http://www.rfc-editor.org/rfc/rfc2616.pdf
http://xml.resource.org/public/rfc/html/rfc2616.html
http://xml.resource.org/public/rfc/xml/rfc2616.xml
mailto:jlinn@rsasecurity.com
http://tools.ietf.org/html/rfc2743
http://www.rfc-editor.org/rfc/rfc2743.txt
http://tools.ietf.org/html/rfc2818
http://www.rfc-editor.org/rfc/rfc2818.txt
http://tools.ietf.org/html/rfc3492
http://www.rfc-editor.org/rfc/rfc3492.txt
mailto:timbl@w3.org
mailto:fielding@gbiv.com
mailto:LMM@acm.org
http://tools.ietf.org/html/rfc3986
http://www.rfc-editor.org/rfc/rfc3986.txt
http://xml.resource.org/public/rfc/html/rfc3986.html
http://xml.resource.org/public/rfc/xml/rfc3986.xml
http://tools.ietf.org/html/rfc3987
http://www.rfc-editor.org/rfc/rfc3987.txt
http://tools.ietf.org/html/rfc4422
http://www.rfc-editor.org/rfc/rfc4422.txt
http://tools.ietf.org/html/rfc5056
http://www.rfc-editor.org/rfc/rfc5056.txt
http://tools.ietf.org/html/rfc5246
http://www.rfc-editor.org/rfc/rfc5246.txt
http://tools.ietf.org/html/rfc5280
http://www.rfc-editor.org/rfc/rfc5280.txt
http://tools.ietf.org/html/rfc5801
http://www.rfc-editor.org/rfc/rfc5801.txt
http://tools.ietf.org/html/rfc5890
http://www.rfc-editor.org/rfc/rfc5890.txt
http://tools.ietf.org/html/rfc5891
http://www.rfc-editor.org/rfc/rfc5891.txt
http://tools.ietf.org/html/rfc6125
http://www.rfc-editor.org/rfc/rfc6125.txt
http://www.w3.org/TR/1999/REC-html401-19991224
http://www.w3.org/TR/1999/REC-html401-19991224
mailto:jgm+@cmu.edu
mailto:mrose@dbc.mtview.ca.us
http://tools.ietf.org/html/rfc1939
http://www.rfc-editor.org/rfc/rfc1939.txt
http://tools.ietf.org/html/rfc3501
http://www.rfc-editor.org/rfc/rfc3501.txt
http://tools.ietf.org/html/rfc4648
http://www.rfc-editor.org/rfc/rfc4648.txt
http://tools.ietf.org/html/rfc6120
http://www.rfc-editor.org/rfc/rfc6120.txt

Appendix A. Acknowledgments

The authors would like to thank Scott Cantor, Joe Hildebrand, Josh Howlett, Leif Johansson,
Thomas Lenggenhager, Diego Lopez, Hank Mauldin, RL 'Bob' Morgan, Stefan Plug and
Hannes Tschofenig for their review and contributions.

Appendix B. Changes

This section to be removed prior to publication.

09 Fixed text per IESG review

08 Fixed text per Gen-Art review

07 Fixed text per comments Alexey Melnikov

06 Fixed text per AD comments

05 Fixed references per ID-nits

04 Added request for IANA assignment, few text clarifications

03 Number of cosmetic changes, fixes per comments Alexey Melnikov

02 Changed IdP URI to domain per Joe Hildebrand, fixed some typos

00 WG -00 draft. Updates GSS-API section, some fixes per Scott Cantor

01 Added authorization identity, added GSS-API specifics, added client supplied

IdP
00 Initial Revision.

Authors' Addresses

Klaas Wierenga
Cisco Systems, Inc.
Haarlerbergweg 13-19

Amsterdam, Noord-Holland 1101 CH

Netherlands

Phone: +31 20 357 1752
Email: klaas@cisco.com

Eliot Lear

Cisco Systems GmbH
Richtistrasse 7
Wallisellen, ZH CH-8304
Switzerland

Phone: +41 44 878 9200
Email: lear@cisco.com

Simon Josefsson
SJD AB
Hagagatan 24
Stockholm 113 47
SE

Email: simon@josefsson.org

URI: http://josefsson.org/

TOC

TOC

TOC

mailto:klaas@cisco.com
mailto:lear@cisco.com
mailto:simon@josefsson.org
http://josefsson.org/

	A SASL and GSS-API Mechanism for SAML draft-ietf-kitten-sasl-saml-09.txt
	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology
	1.2. Applicability
	2. Authentication flow
	3. SAML SASL Mechanism Specification
	3.1. Initial Response
	3.2. Authentication Request
	3.3. Outcome and parameters
	4. SAML GSS-API Mechanism Specification
	4.1. GSS-API Principal Name Types for SAML
	5. Examples
	5.1. XMPP
	5.2. IMAP
	6. Security Considerations
	6.1. Man in the middle and Tunneling Attacks
	6.2. Binding SAML subject identifiers to Authorization Identities
	6.3. User Privacy
	6.4. Collusion between RPs
	6.5. GSS-API specific security considerations
	7. IANA Considerations
	7.1. IANA mech-profile
	7.2. IANA OID
	8. References
	8.1. Normative References
	8.2. Informative References
	Appendix A. Acknowledgments
	Appendix B. Changes
	Authors' Addresses

