NETWORK WORKING GROUP S. Emery
Internet-Draft Oracle
Obsoletes: 4402 (if approved) N. Williams
Intended status: Standards Track Cryptonector
Expires: October 30, 2014 April 28, 2014

A Pseudo-Random Function (PRF) for the Kerberos V Generic Security Service Application Program Interface (GSS-API) Mechanism
draft-ietf-kitten-rfc4402bis-00

Abstract

This document defines the Pseudo-Random Function (PRF) for the Kerberos V mechanism for the Generic Security Service Application Program Interface (GSS-API), based on the PRF defined for the Kerberos V cryptographic framework, for keying application protocols given an established Kerberos V GSS-API security context.

This document obsoletes RFC 4402 and reclassifies that document as historic. RFC 4402 was underspecified, leading to interoperability problems.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on October 30, 2014.

Copyright Notice

Copyright (c) 2014 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.


Table of Contents

1. Introduction

This document specifies the Kerberos V GSS-API mechanism's [RFC4121] pseudo-random function corresponding to [RFC4401]. The function is a "PRF+" style construction. For more information see [RFC4401], [RFC2743], [RFC2744] and [RFC4121].

1.1. Kerberos V GSS Mechanism PRF

The GSS-API PRF [RFC4401] function for the Kerberos V mechanism [RFC1964] shall be the output of a PRF+ function based on the encryption type's PRF function keyed with the negotiated session key of the security context corresponding to the 'prf_key' input parameter of GSS_Pseudo_random().

This PRF+ MUST be keyed with the key indicated by the 'prf_key' input parameter as follows:

The PRF+ function is a simple counter-based extension of the Kerberos V pseudo-random function [RFC3961] for the encryption type of the security context's keys:

      PRF+(K, L, S) = truncate(L, T0 || T1 || .. || Tn)

      Tn = pseudo-random(K, n || S)
		

where '||' is the concatenation operator, 'n' is encoded as a network byte order 32-bit unsigned binary number, truncate(L, S) truncates the input octet string S to length L, and pseudo-random() is the Kerberos V pseudo-random function [RFC3961].

The counter 'n' MUST start at zero (0) and MUST be incremented by one for each corresponding Tn.

The maximum output size of the Kerberos V mechanism's GSS-API PRF then is, necessarily, 2^32 times the output size of the pseudo-random() function for the encryption type of the given key.

When the input size is longer than 2^14 octets as per [RFC4401] and exceeds an implementation's resources, then the mechanism MUST return GSS_S_FAILURE and GSS_KRB5_S_KG_INPUT_TOO_LONG as the minor status code.

This document obsoletes RFC 4402 and reclassifies that document as historic. RFC 4402 starts the PRF+ counter at 1, however a number implementations starts the counter at 0. As a result, the original specification would not be interoperable with existing implementations. The figure showing the PRF+ construction was also modified to show the Tn sequence starting at T0. These are the only two material changes since RFC 4402.

1.1.1. Conventions Used in This Document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

2. IANA Considerations

This document has no IANA considerations currently. If and when a relevant IANA registry of GSS-API symbols and constants is created, then the GSS_KRB5_S_KG_INPUT_TOO_LONG minor status code should be added to such a registry.

3. Security Considerations

Kerberos V encryption types' PRF functions use a key derived from contexts' session keys and should preserve the forward security properties of the mechanisms' key exchanges.

Legacy Kerberos V encryption types may be weak, particularly the single-DES encryption types.

See also [RFC4401] for generic security considerations of GSS_Pseudo_random().

See also [RFC3961] for generic security considerations of the Kerberos V cryptographic framework.

Use of Ticket session keys, rather than sub-session keys, when initiators and acceptors fail to assert sub-session keys, is dangerous as ticket reuse can lead to key reuse; therefore, initiators should assert sub-session keys always, and acceptors should assert sub-session keys at least when initiators fail to do so.

The computational cost of computing this PRF+ may vary depending on the Kerberos V encryption types being used, but generally the computation of this PRF+ gets more expensive as the input and output octet string lengths grow (note that the use of a counter in the PRF+ construction allows for parallelization). This means that if an application can be tricked into providing very large input octet strings and requesting very long output octet strings, then that may constitute a denial of service attack on the application; therefore, applications SHOULD place appropriate limits on the size of any input octet strings received from their peers without integrity protection.

4. Acknowledgements

This document is an update to Nico Williams' RFC. Greg Hudson has provided the test vectors based on MIT's implementation.

5. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC2743] Linn, J., "Generic Security Service Application Program Interface Version 2, Update 1", RFC 2743, January 2000.
[RFC2744] Wray, J., "Generic Security Service API Version 2 : C-bindings", RFC 2744, January 2000.
[RFC3961] Raeburn, K., "Encryption and Checksum Specifications for Kerberos 5", RFC 3961, February 2005.
[RFC1964] Linn, J., "The Kerberos Version 5 GSS-API Mechanism", RFC 1964, June 1996.
[RFC4121] Zhu, L., Jaganathan, K. and S. Hartman, "The Kerberos Version 5 Generic Security Service Application Program Interface (GSS-API) Mechanism: Version 2", RFC 4121, July 2005.
[RFC4401] Williams, N., "A Pseudo-Random Function (PRF) API Extension for the Generic Security Service Application Program Interface (GSS-API)", RFC 4401, February 2006.

Appendix A. Test Vectors

Here are some test vectors from the MIT implementation provided by Greg Hudson. Test cases used include input string lengths of 0 and 61 bytes, and an output length of 44 bytes. 61 bytes of input is just enough to produce a partial second MD5 or SHA1 hash block with the four-byte counter prefix. 44 bytes of output requires two full and one partial RFC 3961 PRF output for all existing enctypes. All keys were randomly generated.

Enctype: des-cbc-crc
Key: E607FE9DABB57AE0
Input: (empty string)
Output: 803C4121379FC4B87CE413B67707C4632EBED2C6D6B7
        2A55E878836E35E21600D915D590DED5B6D77BB30A1F

Enctype: des-cbc-crc
Key: 54758316B6257A75
Input: ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz123456789
Output: 279E4105F7ADC9BD6EF28ABE31D89B442FE0058388BA
        33264ACB5729562DC637950F6BD144B654BE7700B2D6

Enctype: des3-cbc-sha1
Key: 70378A19CD64134580C27C0115D6B34A1CF2FEECEF9886A2
Input: (empty string)
Output: 9F8D127C520BB826BFF3E0FE5EF352389C17E0C073D9
        AC4A333D644D21BA3EF24F4A886D143F85AC9F6377FB

Enctype: des3-cbc-sha1
Key: 3452A167DF1094BA1089E0A20E9E51ABEF1525922558B69E
Input: ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz123456789
Output: 6BF24FABC858F8DD9752E4FCD331BB831F238B5BE190
        4EEA42E38F7A60C588F075C5C96A67E7F8B7BD0AECF4

Enctype: rc4-hmac
Key: 3BB3AE288C12B3B9D06B208A4151B3B6
Input: (empty string)
Output: 9AEA11A3BCF3C53F1F91F5A0BA2132E2501ADF5F3C28
        3C8A983AB88757CE865A22132D6100EAD63E9E291AFA

Enctype: rc4-hmac
Key: 6DB7B33A01BD2B72F7655CB7B3D5FA0B
Input: ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz123456789
Output: CDA9A544869FC84873B692663A82AFDA101C8611498B
        A46138B01E927C9B95EEC953B562807434037837DDDF

Enctype: aes128-cts-hmac-sha1-96
Key: 6C742096EB896230312B73972FA28B5D
Input: (empty string)
Output: 94208D982FC1BB7778128BDD77904420B45C9DA699F3
        117BCE66E39602128EF0296611A6D191A5828530F20F

Enctype: aes128-cts-hmac-sha1-96
Key: FA61138C109D834A477D24C7311BE6DA
Input: ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz123456789
Output: 0FAEDF0F842CC834FEE750487E1B622739286B975FE5
        B7F45AB053143C75CA0DF5D3D4BBB80F6A616C7C9027

Enctype: aes256-cts-hmac-sha1-96
Key: 08FCDAFD5832611B73BA7B497FEBFF8C954B4B58031CAD9B977C3B8C25192FD6
Input: (empty string)
Output: E627EFC14EF5B6D629F830C7109DEA0D3D7D36E8CD57
        A1F301C5452494A1928F05AFFBEE3360232209D3BE0D

Enctype: aes256-cts-hmac-sha1-96
Key: F5B68B7823D8944F33F41541B4E4D38C9B2934F8D16334A796645B066152B4BE
Input: ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz123456789
Output: 112F2B2D878590653CCC7DE278E9F0AA46FA5A380B62
        59F774CB7C134FCD37F61A50FD0D9F89BF8FE1A6B593

Enctype: camellia128-cts-cmac
Key: 866E0466A178279A32AC0BDA92B72AEB
Input: (empty string)
Output: 97FBB354BF341C3A160DCC86A7A910FDA824601DF677
        68797BACEEBF5D250AE929DEC9760772084267F50A54

Enctype: camellia128-cts-cmac
Key: D4893FD37DA1A211E12DD1E03E0F03B7
Input: ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz123456789
Output: 1DEE2FF126CA563A2A2326B9DD3F0095013257414C83
        FAD4398901013D55F367C82681186B7B2FE62F746BA4

Enctype: camellia256-cts-cmac
Key: 203071B1AE77BD3D6FCE70174AF95C225B1CED46B35CF52B6479EFEB47E6B063
Input: (empty string)
Output: 9B30020634C10FDA28420CEE7B96B70A90A771CED43A
        D8346554163E5949CBAE2FB8EF36AFB6B32CE75116A0

Enctype: camellia256-cts-cmac
Key: A171AD582C1AFBBAD52ABD622EE6B6A14D19BF95C6914B2BA40FFD99A88EC660
Input: ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz123456789
Output: A47CBB6E104DCC77E4DB48A7A474B977F2FB6A7A1AB6
        52317D50508AE72B7BE2E4E4BA24164E029CBACF786B
	    

Authors' Addresses

Shawn Emery Oracle 500 Eldorado Blvd Bldg 1 Broomfield, CO 78727 US EMail: shawn.emery@oracle.com
Nicolas Williams Cryptonector, LLC EMail: nico@cryptonector.com