
Kitten Working Group M. Short, Ed.
Internet-Draft S. Moore
Intended status: Standards Track P. Miller
Expires: November 24, 2016 Microsoft Corporation

May 23, 2016

Public Key Cryptography for Initial Authentication
in Kerberos (PKINIT) Freshness Extension

draft-ietf-kitten-pkinit-freshness-07

Abstract
This document describes how to further extend the Public Key Cryptography for Initial Authentication in
Kerberos (PKINIT) extension [RFC4556] to exchange an opaque data blob that a KDC can validate to ensure
that the client is currently in possession of the private key during a PKINIT AS exchange.

Status of This Memo
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups
may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at
http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or
obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or
to cite them other than as "work in progress."

This Internet-Draft will expire on November 24, 2016.

Copyright Notice
Copyright (c) 2016 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these
documents carefully, as they describe your rights and restrictions with respect to this document. Code
Components extracted from this document must include Simplified BSD License text as described in Section
4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD
License.

Table of Contents
1. Introduction

1.1. Kerberos message flow using KRB_AS_REQ without pre-authentication
1.2. Requirements Language

2. Message Exchanges
2.1. Generation of KRB_AS_REQ Message
2.2. Generation of KRB_ERROR Message
2.3. Generation of KRB_AS_REQ Message
2.4. Receipt of KRB_AS_REQ Message
2.5. Receipt of second KRB_ERROR Message

3. PreAuthentication Data Types
4. Extended PKAuthenticator
5. Acknowledgements
6. IANA Considerations
7. Security Considerations
8. Interoperability Considerations
9. Normative References
Authors' Addresses

1. Introduction
The Kerberos PKINIT extension [RFC4556] defines two schemes for using asymmetric cryptography in a
Kerberos preauthenticator. One uses Diffie-Hellman key exchange and the other depends on public key
encryption. The public key encryption scheme is less commonly used for two reasons:

Elliptic Curve Cryptography (ECC) Support for PKINIT [RFC5349] only specified Elliptic Curve Diffie-
Hellman (ECDH) key agreement, so it cannot be used for public key encryption.
Public key encryption requires certificates with an encryption key, that is not deployed on many
existing smart cards.

In the Diffie-Hellman exchange, the client uses its private key only to sign the AuthPack structure (specified
in Section 3.2.1 of [RFC4556]), that is performed before any traffic is sent to the KDC. Thus a client can
generate requests with future times in the PKAuthenticator, and then send those requests at those future
times. Unless the time is outside the validity period of the client's certificate, the KDC will validate the
PKAuthenticator and return a TGT the client can use without possessing the private key.

As a result, a client performing PKINIT with the Diffie-Hellman key exchange does not prove current
possession of the private key being used for authentication. It proves only prior use of that key. Ensuring
that the client has current possession of the private key requires that the signed PKAuthenticator data
include information that the client could not have predicted.

1.1. Kerberos message flow using KRB_AS_REQ without pre-
authentication

Today, password-based AS exchanges [RFC4120] often begin with the client sending a KRB_AS_REQ
without pre-authentication. When the principal requires pre-authentication, the KDC responds with a
KRB_ERROR containing information needed to complete an AS exchange, such as the supported encryption
types and salt values. This message flow is illustrated below:

KDC Client

 <---- AS-REQ without pre-authentication
KRB-ERROR ---->

 <---- AS-REQ
AS-REP ---->

 <---- TGS-REQ
TGS-REP ---->

Figure 1

We can use a similar message flow with PKINIT, allowing the KDC to provide a token for the client to include
in its KRB_AS_REQ to ensure that the PA_PK_AS_REQ [RFC4556] was not pregenerated.

1.2. Requirements Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in
RFC 2119 [RFC2119].

2. Message Exchanges
The following summarizes the message flow with extensions to [RFC4120] and [RFC4556] required to
support a KDC-provided freshness token during the initial request for a ticket:

1. The client generates a KRB_AS_REQ as specified in Section 2.9.3 of [RFC4120] that
contains no PA_PK_AS_REQ and includes a freshness token request.

2. The KDC generates a KRB_ERROR as specified in Section 3.1.3 of [RFC4120] providing a
freshness token.

3. The client receives the error as specified in Section 3.1.4 of [RFC4120], extracts the
freshness token, and includes it as part of the KRB_AS_REQ as specified in [RFC4120] and
[RFC4556].

4. The KDC receives and validates the KRB_AS_REQ as specified in Section 3.2.2 of
[RFC4556], then additionally validates the freshness token.

5. The KDC and client continue as specified in [RFC4120] and [RFC4556].

2.1. Generation of KRB_AS_REQ Message
The client indicates support of freshness tokens by adding a padata element with padata-type
PA_AS_FRESHNESS and padata-value of an empty octet string.

2.2. Generation of KRB_ERROR Message
The KDC will respond with a KRB_ERROR [RFC4120] message with the error-code
KDC_ERR_PREAUTH_REQUIRED [RFC4120] adding a padata element with padata-type
PA_AS_FRESHNESS and padata-value of the freshness token to the METHOD-DATA object.

2.3. Generation of KRB_AS_REQ Message
After the client receives the KRB-ERROR message containing a freshness token, it extracts the
PA_AS_FRESHNESS padata-value field of the PA-DATA structure as an opaque data blob. The
PA_AS_FRESHNESS padata-value field of the PA-DATA structure SHALL then be added as an opaque blob
in the freshnessToken field when the client generates the PKAuthenticator specified in Section 4 for the
PA_PK_AS_REQ message. This ensures that the freshness token value will be included in the signed data
portion of the KRB_AS_REQ value.

2.4. Receipt of KRB_AS_REQ Message
If the realm requires freshness and the PA_PK_AS_REQ message does not contain the freshness token,
the KDC MUST return a KRB_ERROR [RFC4120] message with the error-code
KDC_ERR_PREAUTH_FAILED [RFC4120] with a padata element with padata-type PA_AS_FRESHNESS
and padata-value of the freshness token to the METHOD-DATA object.

When the PA_PK_AS_REQ message contains a freshness token, after validating the PA_PK_AS_REQ
message normally, the KDC will validate the freshnessToken value in the PKAuthenticator in an
implementation-specific way. If the freshness token is not valid, the KDC MUST return a KRB_ERROR
[RFC4120] message with the error-code KDC_ERR_PREAUTH_EXPIRED [RFC6113]. The e-data field of the
error contains a METHOD-DATA object [RFC4120] which specifies a valid PA_AS_FRESHNESS padata-
value. Since the freshness tokens are validated by KDCs in the same realm, standardizing the contents of
the freshness token is not a concern for interoperability.

2.5. Receipt of second KRB_ERROR Message
If a client receives a KDC_ERR_PREAUTH_EXPIRED KRB_ERROR message that includes a freshness
token, it SHOULD retry using the new freshness token.

3. PreAuthentication Data Types
The following are the new PreAuthentication data types:

Padata and Data Type Padata-type Value

PA_AS_FRESHNESS 150

4. Extended PKAuthenticator
The PKAuthenticator structure specified in Section 3.2.1 of [RFC4556] is extended to include a new
freshnessToken as follows:

PKAuthenticator ::= SEQUENCE {
 cusec [0] INTEGER (0..999999),
 ctime [1] KerberosTime,
 -- cusec and ctime are used as in [RFC4120], for
 -- replay prevention.
 nonce [2] INTEGER (0..4294967295),
 -- Chosen randomly; this nonce does not need to
 -- match with the nonce in the KDC-REQ-BODY.
 paChecksum [3] OCTET STRING OPTIONAL,
 -- MUST be present.
 -- Contains the SHA1 checksum, performed over
 -- KDC-REQ-BODY.
 ...,
 freshnessToken [4] OCTET STRING OPTIONAL,
 -- PA_AS_FRESHNESS padata value as recieved from the
 -- KDC. MUST be present if sent by KDC
 ...
}

5. Acknowledgements
Douglas E. Engert, Sam Hartman, Henry B. Hotz, Nikos Mavrogiannopoulos, Martin Rex, Nico Williams, and
Tom Yu were key contributors to the discovery of the freshness issue in PKINIT.

Sam Hartman, Greg Hudson, Jeffrey Hutzelman, Nathan Ide, Benjamin Kaduk, Bryce Nordgren, Magnus
Nystrom, Nico Williams and Tom Yu reviewed the document and provided suggestions for improvements.

6. IANA Considerations
IANA is requested to assign numbers for PA_AS_FRESHNESS listed in the Kerberos Parameters registry
Pre-authentication and Typed Data as follows:

Type Value Reference

150 PA_AS_FRESHNESS [This RFC]

7. Security Considerations
The freshness token SHOULD include signing, encrypting or sealing data from the KDC to determine
authenticity and prevent tampering.

Freshness tokens serve to guarantee that the client had the key when constructing the AS-REQ. They are
not required to be single use tokens or bound to specific AS exchanges. Part of the reason the token is
opaque is to allow KDC implementers the freedom to add additional functionality as long as the "freshness"
guarantee remains.

8. Interoperability Considerations
Since the client treats the KDC-provided data blob as opaque, changing the contents will not impact existing
clients. Thus extensions to the freshness token do not impact client interoperability.

Clients SHOULD NOT reuse freshness tokens across multiple exchanges. There is no guarantee that a KDC
will allow a once-valid token to be used again. Thus clients that do not retry with a new freshness token may
not be compatible with KDCs, depending on how they choose to implement freshness validation.

Since upgrading clients takes time, implementers may consider allowing both freshness-token based
exchanges and "legacy" exchanges without use of freshness tokens. However, until freshness tokens are
required by the realm, the existing risks of pre-generated PKAuthenticators will remain.

9. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI
10.17487/RFC2119, March 1997.

[RFC4120] Neuman, C., Yu, T., Hartman, S. and K. Raeburn, "The Kerberos Network Authentication Service
(V5)", RFC 4120, DOI 10.17487/RFC4120, July 2005.

[RFC4556] Zhu, L. and B. Tung, "Public Key Cryptography for Initial Authentication in Kerberos (PKINIT)",
RFC 4556, DOI 10.17487/RFC4556, June 2006.

[RFC5349] Zhu, L., Jaganathan, K. and K. Lauter, "Elliptic Curve Cryptography (ECC) Support for Public Key
Cryptography for Initial Authentication in Kerberos (PKINIT)", RFC 5349, DOI 10.17487/RFC5349,
September 2008.

[RFC6113] Hartman, S. and L. Zhu, "A Generalized Framework for Kerberos Pre-Authentication", RFC 6113,
DOI 10.17487/RFC6113, April 2011.

http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc4120
http://tools.ietf.org/html/rfc4556
http://tools.ietf.org/html/rfc5349
http://tools.ietf.org/html/rfc6113

Authors' Addresses
Michiko Short (editor)
Microsoft Corporation
USA
EMail: michikos@microsoft.com

Seth Moore
Microsoft Corporation
USA
EMail: sethmo@microsoft.com

Paul Miller
Microsoft Corporation
USA
EMail: paumil@microsoft.com

mailto:michikos@microsoft.com
mailto:sethmo@microsoft.com
mailto:paumil@microsoft.com

	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Kerberos message flow using KRB_AS_REQ without pre-authentication
	1.2. Requirements Language
	2. Message Exchanges
	2.1. Generation of KRB_AS_REQ Message
	2.2. Generation of KRB_ERROR Message
	2.3. Generation of KRB_AS_REQ Message
	2.4. Receipt of KRB_AS_REQ Message
	2.5. Receipt of second KRB_ERROR Message
	3. PreAuthentication Data Types
	4. Extended PKAuthenticator
	5. Acknowledgements
	6. IANA Considerations
	7. Security Considerations
	8. Interoperability Considerations
	9. Normative References
	Authors' Addresses

