
 TOC JOSE Working Group M. Jones

Internet-Draft Microsoft

Intended status: Standards Track J. Bradley

Expires: November 13, 2012 Ping Identity

 N. Sakimura

 NRI

 May 12, 2012

JSON Web Signature (JWS)
draft-ietf-jose-json-web-signature-02

Abstract

JSON Web Signature (JWS) is a means of representing content secured with digital signatures
or Message Authentication Codes (MACs) using JSON data structures. Cryptographic
algorithms and identifiers used with this specification are enumerated in the separate JSON
Web Algorithms (JWA) specification. Related encryption capabilities are described in the
separate JSON Web Encryption (JWE) specification.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in [RFC2119].

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note
that other groups may also distribute working documents as Internet-Drafts. The list of
current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated,
replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-
Drafts as reference material or to cite them other than as “work in progress.”

This Internet-Draft will expire on November 13, 2012.

Copyright Notice

Copyright (c) 2012 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted from this document
must include Simplified BSD License text as described in Section 4.e of the Trust Legal
Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction
2. Terminology
3. JSON Web Signature (JWS) Overview
 3.1. Example JWS

RFC 2119

 TOC

 TOC

4. JWS Header
 4.1. Reserved Header Parameter Names
 4.1.1. "alg" (Algorithm) Header Parameter
 4.1.2. "jku" (JWK Set URL) Header Parameter
 4.1.3. "jwk" (JSON Web Key) Header Parameter
 4.1.4. "x5u" (X.509 URL) Header Parameter
 4.1.5. "x5t" (X.509 Certificate Thumbprint) Header Parameter
 4.1.6. "x5c" (X.509 Certificate Chain) Header Parameter
 4.1.7. "kid" (Key ID) Header Parameter
 4.1.8. "typ" (Type) Header Parameter
 4.2. Public Header Parameter Names
 4.3. Private Header Parameter Names
5. Rules for Creating and Validating a JWS
6. Securing JWSs with Cryptographic Algorithms
7. IANA Considerations
 7.1. Registration of application/jws MIME Media Type
 7.2. Registration of "JWS" Type Value
8. Security Considerations
 8.1. Cryptographic Security Considerations
 8.2. JSON Security Considerations
 8.3. Unicode Comparison Security Considerations
9. Open Issues and Things To Be Done (TBD)
10. References
 10.1. Normative References
 10.2. Informative References
Appendix A. JWS Examples
 A.1. JWS using HMAC SHA-256
 A.1.1. Encoding
 A.1.2. Decoding
 A.1.3. Validating
 A.2. JWS using RSA SHA-256
 A.2.1. Encoding
 A.2.2. Decoding
 A.2.3. Validating
 A.3. JWS using ECDSA P-256 SHA-256
 A.3.1. Encoding
 A.3.2. Decoding
 A.3.3. Validating
 A.4. Example Plaintext JWS
Appendix B. Notes on implementing base64url encoding without padding
Appendix C. Acknowledgements
Appendix D. Document History
§ Authors' Addresses

1. Introduction

JSON Web Signature (JWS) is a compact format for representing content secured with digital
signatures or Message Authentication Codes (MACs) intended for space constrained
environments such as HTTP Authorization headers and URI query parameters. It represents
this content using JSON data structures. The JWS digital signature and MAC
mechanisms are independent of the type of content being secured, allowing arbitrary content
to be secured. Cryptographic algorithms and identifiers used with this specification are
enumerated in the separate JSON Web Algorithms (JWA) specification. Related
encryption capabilities are described in the separate JSON Web Encryption (JWE)
specification.

2. Terminology

JSON Web Signature (JWS)
A data structure cryptographically securing a JWS Header and a JWS Payload with a
JWS Signature value.

[RFC4627]

[JWA]
[JWE]

 TOC

 TOC

JWS Header
A string representing a JSON object that describes the digital signature or MAC
operation applied to create the JWS Signature value.

JWS Payload
The bytes to be secured - a.k.a., the message. The payload can contain an
arbitrary sequence of bytes.

JWS Signature
A byte array containing the cryptographic material that secures the contents of
the JWS Header and the JWS Payload.

Encoded JWS Header
Base64url encoding of the bytes of the UTF-8 [RFC3629]
representation of the JWS Header.

Encoded JWS Payload
Base64url encoding of the JWS Payload.

Encoded JWS Signature
Base64url encoding of the JWS Signature.

JWS Secured Input
The concatenation of the Encoded JWS Header, a period ('.') character, and the
Encoded JWS Payload.

Header Parameter Names
The names of the members within the JSON object represented in a JWS Header.

Header Parameter Values
The values of the members within the JSON object represented in a JWS Header.

JWS Compact Serialization
A representation of the JWS as the concatenation of the Encoded JWS Header, the
Encoded JWS Payload, and the Encoded JWS Signature in that order, with the three
strings being separated by period ('.') characters.

Base64url Encoding
For the purposes of this specification, this term always refers to the URL- and
filename-safe Base64 encoding described in [RFC4648], Section 5, with
the (non URL-safe) '=' padding characters omitted, as permitted by Section 3.2.
(See for notes on implementing base64url encoding without
padding.)

StringOrURI
A JSON string value, with the additional requirement that while arbitrary string
values MAY be used, any value containing a ":" character MUST be a URI as
defined in [RFC3986].

3. JSON Web Signature (JWS) Overview

JWS represents digitally signed or MACed content using JSON data structures and base64url
encoding. The representation consists of three parts: the JWS Header, the JWS Payload, and
the JWS Signature. In the Compact Serialization, the three parts are base64url-encoded for
transmission, and represented as the concatenation of the encoded strings in that order,
with the three strings being separated by period ('.') characters. (A JSON Serialization for this
information is defined in the separate JSON Web Signature JSON Serialization (JWS-JS)

 specification.)

The JWS Header describes the signature or MAC method and parameters employed. The JWS
Payload is the message content to be secured. The JWS Signature ensures the integrity of
both the JWS Header and the JWS Payload.

3.1. Example JWS

The following example JWS Header declares that the encoded object is a JSON Web Token
(JWT) and the JWS Header and the JWS Payload are secured using the HMAC SHA-256
algorithm:

{"typ":"JWT",
 "alg":"HS256"}

RFC 3629

RFC 4648

Appendix B

RFC 3986

[JWS‑JS]

[JWT]

 TOC

 TOC

Base64url encoding the bytes of the UTF-8 representation of the JWS Header yields this
Encoded JWS Header value:

eyJ0eXAiOiJKV1QiLA0KICJhbGciOiJIUzI1NiJ9

The following is an example of a JSON object that can be used as a JWS Payload. (Note that
the payload can be any content, and need not be a representation of a JSON object.)

{"iss":"joe",
 "exp":1300819380,
 "http://example.com/is_root":true}

Base64url encoding the bytes of the UTF-8 representation of the JSON object yields the
following Encoded JWS Payload (with line breaks for display purposes only):

eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt
cGxlLmNvbS9pc19yb290Ijp0cnVlfQ

Computing the HMAC of the bytes of the UTF-8 representation of the JWS Secured Input (the
concatenation of the Encoded JWS Header, a period ('.') character, and the Encoded JWS
Payload) (which is the same as the ASCII representation) with the HMAC SHA-256 algorithm
using the key specified in and base64url encoding the result yields this
Encoded JWS Signature value:

dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk

Concatenating these parts in the order Header.Payload.Signature with period characters
between the parts yields this complete JWS representation (with line breaks for display
purposes only):

eyJ0eXAiOiJKV1QiLA0KICJhbGciOiJIUzI1NiJ9
.
eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt
cGxlLmNvbS9pc19yb290Ijp0cnVlfQ
.
dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk

This computation is illustrated in more detail in .

4. JWS Header

The members of the JSON object represented by the JWS Header describe the digital
signature or MAC applied to the Encoded JWS Header and the Encoded JWS Payload and
optionally additional properties of the JWS. The Header Parameter Names within this object
MUST be unique; JWSs with duplicate Header Parameter Names MUST be rejected.
Implementations MUST understand the entire contents of the header; otherwise, the JWS
MUST be rejected.

There are three classes of Header Parameter Names: Reserved Header Parameter Names,
Public Header Parameter Names, and Private Header Parameter Names.

4.1. Reserved Header Parameter Names

Appendix A.1

Appendix A.1

 TOC

 TOC

 TOC

 TOC

 TOC

The following header parameter names are reserved with meanings as defined below. All the
names are short because a core goal of JWSs is for the representations to be compact.

Additional reserved header parameter names MAY be defined via the IANA JSON Web
Signature and Encryption Header Parameters registry . As indicated by the common
registry, JWSs and JWEs share a common header parameter space; when a parameter is
used by both specifications, its usage must be compatible between the specifications.

4.1.1. "alg" (Algorithm) Header Parameter

The alg (algorithm) header parameter identifies the cryptographic algorithm used to secure
the JWS. A list of defined alg values for use with JWS is presented in Section 3.1 of the JSON
Web Algorithms (JWA) specification. The processing of the alg header parameter
requires that the value MUST be one that is both supported and for which there exists a key
for use with that algorithm associated with the party that digitally signed or MACed the
content. The alg value is case sensitive. Its value MUST be a string containing a StringOrURI
value. This header parameter is REQUIRED.

alg values SHOULD either be defined in the IANA JSON Web Signature and Encryption
Algorithms registry or be a URI that contains a collision resistant namespace.

4.1.2. "jku" (JWK Set URL) Header Parameter

The jku (JWK Set URL) header parameter is an absolute URL that refers to a resource for a
set of JSON-encoded public keys, one of which corresponds to the key used to digitally sign
the JWS. The keys MUST be encoded as a JSON Web Key Set (JWK Set) as defined in the JSON
Web Key (JWK) specification. The protocol used to acquire the resource MUST provide
integrity protection; an HTTP GET request to retrieve the certificate MUST use TLS
[RFC2818] [RFC5246]; the identity of the server MUST be validated, as per
Section 3.1 of HTTP Over TLS . This header parameter is OPTIONAL.

4.1.3. "jwk" (JSON Web Key) Header Parameter

The jwk (JSON Web Key) header parameter is a public key that corresponds to the key used
to digitally sign the JWS. This key is represented as a JSON Web Key . This header
parameter is OPTIONAL.

4.1.4. "x5u" (X.509 URL) Header Parameter

The x5u (X.509 URL) header parameter is an absolute URL that refers to a resource for the
X.509 public key certificate or certificate chain corresponding to the key used to digitally sign
the JWS. The identified resource MUST provide a representation of the certificate or certificate
chain that conforms to [RFC5280] in PEM encoded form [RFC1421].
The certificate containing the public key of the entity that digitally signed the JWS MUST be
the first certificate. This MAY be followed by additional certificates, with each subsequent
certificate being the one used to certify the previous one. The protocol used to acquire the
resource MUST provide integrity protection; an HTTP GET request to retrieve the certificate
MUST use TLS [RFC2818] [RFC5246]; the identity of the server MUST
be validated, as per Section 3.1 of HTTP Over TLS . This header parameter is
OPTIONAL.

4.1.5. "x5t" (X.509 Certificate Thumbprint) Header Parameter

[JWA]

[JWA]

[JWA]

[JWK]
RFC 2818

RFC 5246
[RFC2818]

[JWK]

RFC 5280 RFC 1421

RFC 2818 RFC 5246
[RFC2818]

 TOC

 TOC

 TOC

 TOC

 TOC

The x5t (X.509 Certificate Thumbprint) header parameter provides a base64url encoded
SHA-1 thumbprint (a.k.a. digest) of the DER encoding of the X.509 certificate corresponding
to the key used to digitally sign the JWS. This header parameter is OPTIONAL.

If, in the future, certificate thumbprints need to be computed using hash functions other than
SHA-1, it is suggested that additional related header parameters be defined for that
purpose. For example, it is suggested that a new x5t#S256 (X.509 Certificate Thumbprint
using SHA-256) header parameter could be defined by registering it in the IANA JSON Web
Signature and Encryption Header Parameters registry .

4.1.6. "x5c" (X.509 Certificate Chain) Header Parameter

The x5c (X.509 Certificate Chain) header parameter contains the X.509 public key certificate
or certificate chain corresponding to the key used to digitally sign the JWS. The certificate or
certificate chain is represented as an array of certificate values. Each value is a base64-
encoded (not base64url encoded) DER/BER PKIX certificate value. The certificate containing
the public key of the entity that digitally signed the JWS MUST be the first certificate. This MAY
be followed by additional certificates, with each subsequent certificate being the one used to
certify the previous one. The recipient MUST verify the certificate chain according to

 and reject the JWS if any validation failure occurs. This header parameter is
OPTIONAL.

4.1.7. "kid" (Key ID) Header Parameter

The kid (key ID) header parameter is a hint indicating which key was used to secure the JWS.
This allows originators to explicitly signal a change of key to recipients. Should the recipient
be unable to locate a key corresponding to the kid value, they SHOULD treat that condition
as an error. The interpretation of the contents of the kid parameter is unspecified. Its value
MUST be a string. This header parameter is OPTIONAL.

4.1.8. "typ" (Type) Header Parameter

The typ (type) header parameter is used to declare the type of the secured content. The
type value JWS MAY be used to indicate that the secured content is a JWS. The typ value is
case sensitive. Its value MUST be a string. This header parameter is OPTIONAL.

MIME Media Type [RFC2045] values MAY be used as typ values.

typ values SHOULD either be defined in the IANA JSON Web Signature and Encryption "typ"
Values registry or be a URI that contains a collision resistant namespace.

4.2. Public Header Parameter Names

Additional header parameter names can be defined by those using JWSs. However, in order
to prevent collisions, any new header parameter name SHOULD either be defined in the IANA
JSON Web Signature and Encryption Header Parameters registry or be a URI that
contains a collision resistant namespace. In each case, the definer of the name or value
needs to take reasonable precautions to make sure they are in control of the part of the
namespace they use to define the header parameter name.

New header parameters should be introduced sparingly, as they can result in non-
interoperable JWSs.

4.3. Private Header Parameter Names

[JWA]

[RFC5280]

RFC 2045

[JWA]

[JWA]

 TOC

A producer and consumer of a JWS may agree to any header parameter name that is not a
Reserved Name or a Public Name . Unlike Public Names, these
private names are subject to collision and should be used with caution.

5. Rules for Creating and Validating a JWS

To create a JWS, one MUST perform these steps. The order of the steps is not significant in
cases where there are no dependencies between the inputs and outputs of the steps.

1. Create the content to be used as the JWS Payload.
2. Base64url encode the bytes of the JWS Payload. This encoding becomes the

Encoded JWS Payload.
3. Create a JWS Header containing the desired set of header parameters. Note that

white space is explicitly allowed in the representation and no canonicalization
need be performed before encoding.

4. Base64url encode the bytes of the UTF-8 representation of the JWS Header to
create the Encoded JWS Header.

5. Compute the JWS Signature in the manner defined for the particular algorithm
being used. The JWS Secured Input is always the concatenation of the Encoded
JWS Header, a period ('.') character, and the Encoded JWS Payload. The alg
(algorithm) header parameter MUST be present in the JSON Header, with the
algorithm value accurately representing the algorithm used to construct the JWS
Signature.

6. Base64url encode the representation of the JWS Signature to create the
Encoded JWS Signature.

7. The three encoded parts, taken together, are the result. The Compact
Serialization of this result is the concatenation of the Encoded JWS Header, the
Encoded JWS Payload, and the Encoded JWS Signature in that order, with the
three strings being separated by period ('.') characters.

When validating a JWS, the following steps MUST be taken. The order of the steps is not
significant in cases where there are no dependencies between the inputs and outputs of the
steps. If any of the listed steps fails, then the JWS MUST be rejected.

1. Parse the three parts of the input (which are separated by period characters
when using the JWS Compact Serialization) into the Encoded JWS Header, the
Encoded JWS Payload, and the Encoded JWS Signature.

2. The Encoded JWS Header MUST be successfully base64url decoded following the
restriction given in this specification that no padding characters have been used.

3. The resulting JWS Header MUST be completely valid JSON syntax conforming to
 [RFC4627].

4. The resulting JWS Header MUST be validated to only include parameters and
values whose syntax and semantics are both understood and supported.

5. The Encoded JWS Payload MUST be successfully base64url decoded following the
restriction given in this specification that no padding characters have been used.

6. The Encoded JWS Signature MUST be successfully base64url decoded following
the restriction given in this specification that no padding characters have been
used.

7. The JWS Signature MUST be successfully validated against the JWS Secured Input
(the concatenation of the Encoded JWS Header, a period ('.') character, and the
Encoded JWS Payload) in the manner defined for the algorithm being used, which
MUST be accurately represented by the value of the alg (algorithm) header
parameter, which MUST be present.

Processing a JWS inevitably requires comparing known strings to values in the header. For
example, in checking what the algorithm is, the Unicode string encoding alg will be checked
against the member names in the JWS Header to see if there is a matching header
parameter name. A similar process occurs when determining if the value of the alg header
parameter represents a supported algorithm.

Comparisons between JSON strings and other Unicode strings MUST be performed as
specified below:

1. Remove any JSON applied escaping to produce an array of Unicode code points.
2. [USA15] MUST NOT be applied at any point to either

Section 4.1 Section 4.2

RFC 4627

Unicode Normalization

 TOC

 TOC

 TOC

the JSON string or to the string it is to be compared against.
3. Comparisons between the two strings MUST be performed as a Unicode code

point to code point equality comparison.

6. Securing JWSs with Cryptographic Algorithms

JWS uses cryptographic algorithms to digitally sign or MAC the contents of the JWS Header
and the JWS Payload. The JSON Web Algorithms (JWA) specification enumerates a set
of cryptographic algorithms and identifiers to be used with this specification. Specifically,
Section 3.1 enumerates a set of alg (algorithm) header parameter values intended for use
this specification. It also describes the semantics and operations that are specific to these
algorithms and algorithm families.

Public keys employed for digital signing can be identified using the Header Parameter
methods described in or can be distributed using methods that are outside the
scope of this specification.

7. IANA Considerations

7.1. Registration of application/jws MIME Media Type

This specification registers the application/jws MIME Media Type [RFC2045].

Type name:
application

Subtype name:
jws

Required parameters:
n/a

Optional parameters:
n/a

Encoding considerations:
n/a

Security considerations:
See the Security Considerations section of this document

Interoperability considerations:
n/a

Published specification:
[[this document]]

Applications that use this media type:
OpenID Connect

Additional information:
Magic number(s): n/a
File extension(s): n/a
Macintosh file type code(s): n/a

Person & email address to contact for further information:
Michael B. Jones
mbj@microsoft.com

Intended usage:
COMMON

Restrictions on usage:
none

Author:
Michael B. Jones
mbj@microsoft.com

Change controller:
IETF

[JWA]

Section 4.1

RFC 2045

 TOC

 TOC

 TOC

 TOC

 TOC

7.2. Registration of "JWS" Type Value

This specification registers the following typ header parameter value in the JSON Web
Signature and Encryption "typ" Values registry established by the JSON Web Algorithms (JWA)

 specification:

"typ" header parameter value:
"JWS"

Abbreviation for MIME type:
application/jws

Change controller:
IETF

Description:
[[this document]]

8. Security Considerations

8.1. Cryptographic Security Considerations

All the security considerations in [W3C.CR‑xmldsig‑core2‑20120124], also
apply to this specification, other than those that are XML specific. Likewise, many of the best
practices documented in
[W3C.WD‑xmldsig‑bestpractices‑20110809] also apply to this specification, other than those
that are XML specific.

Keys are only as strong as the amount of entropy used to generate them. A minimum of 128
bits of entropy should be used for all keys, and depending upon the application context, more
may be required.

When utilizing TLS to retrieve information, the authority providing the resource MUST be
authenticated and the information retrieved MUST be free from modification.

When cryptographic algorithms are implemented in such a way that successful operations
take a different amount of time than unsuccessful operations, attackers may be able to use
the time difference to obtain information about the keys employed. Therefore, such timing
differences must be avoided.

TBD: We need to also put in text about: Importance of keeping secrets secret. Rotating keys.
Strengths and weaknesses of the different algorithms.

TBD: Write security considerations about the implications of using a SHA-1 hash (for
compatibility reasons) for the x5t (x.509 certificate thumbprint).

TBD: We need a section on generating randomness in browsers; it's easy to screw up.

8.2. JSON Security Considerations

TBD: We need to look into any issues relating to security and JSON parsing. One wonders just
how secure most JSON parsing libraries are. Were they ever hardened for security scenarios?
If not, what kind of holes does that open up? We need to put in text about why strict JSON
validation is necessary - basically, that if malformed JSON is received then the intent of the
sender is impossible to reliably discern.

8.3. Unicode Comparison Security Considerations

Header parameter names and algorithm names are Unicode strings. For security reasons,
the representations of these names must be compared verbatim after performing any

[JWA]

XML DSIG 2.0

XML Signature Best Practices

 TOC

 TOC

 TOC

 TOC

escape processing (as per [RFC4627], Section 2.5). This means, for instance, that
these JSON strings must compare as being equal ("sig", "\u0073ig"), whereas these must all
compare as being not equal to the first set or to each other ("SIG", "Sig", "si\u0047").

JSON strings MAY contain characters outside the Unicode Basic Multilingual Plane. For
instance, the G clef character (U+1D11E) may be represented in a JSON string as
"\uD834\uDD1E". Ideally, JWS implementations SHOULD ensure that characters outside the
Basic Multilingual Plane are preserved and compared correctly; alternatively, if this is not
possible due to these characters exercising limitations present in the underlying JSON
implementation, then input containing them MUST be rejected.

9. Open Issues and Things To Be Done (TBD)

The following items remain to be done in this draft:

Add an example in which the payload is not a base64url encoded JSON object.
Finish the Security Considerations section.

10. References

10.1. Normative References

[JWA] Jones, M., “JSON Web Algorithms (JWA),” May 2012.

[JWK] Jones, M., “JSON Web Key (JWK),” May 2012.

[RFC1421] Linn, J., “Privacy Enhancement for Internet Electronic Mail: Part I: Message Encryption and
Authentication Procedures,” RFC 1421, February 1993 (TXT).

[RFC2045] Freed, N. and N. Borenstein, “Multipurpose Internet Mail Extensions (MIME) Part One: Format of
Internet Message Bodies,” RFC 2045, November 1996 (TXT).

[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels,” BCP 14, RFC 2119, March 1997
(TXT, HTML, XML).

[RFC2818] Rescorla, E., “HTTP Over TLS,” RFC 2818, May 2000 (TXT).

[RFC3629] Yergeau, F., “UTF-8, a transformation format of ISO 10646,” STD 63, RFC 3629, November 2003 (TXT).

[RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, “Uniform Resource Identifier (URI): Generic Syntax,”
STD 66, RFC 3986, January 2005 (TXT, HTML, XML).

[RFC4627] Crockford, D., “The application/json Media Type for JavaScript Object Notation (JSON),” RFC 4627,
July 2006 (TXT).

[RFC4648] Josefsson, S., “The Base16, Base32, and Base64 Data Encodings,” RFC 4648, October 2006 (TXT).

[RFC5246] Dierks, T. and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2,” RFC 5246,
August 2008 (TXT).

[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, “Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List (CRL) Profile,” RFC 5280, May 2008 (TXT).

[USA15] Davis, M., Whistler, K., and M. Dürst, “Unicode Normalization Forms,” Unicode Standard Annex 15, 09 2009.

10.2. Informative References

[CanvasApp] Facebook, “Canvas Applications,” 2010.

[JSS] Bradley, J. and N. Sakimura (editor), “JSON Simple Sign,” September 2010.

[JWE] Jones, M., Rescorla, E., and J. Hildebrand, “JSON Web Encryption (JWE),” May 2012.

[JWS-JS] Jones, M., Bradley, J., and N. Sakimura, “JSON Web Signature JSON Serialization (JWS-JS),”
March 2012.

[JWT] Jones, M., Balfanz, D., Bradley, J., Goland, Y., Panzer, J., Sakimura, N., and P. Tarjan, “JSON Web
Token (JWT),” May 2012.

[MagicSignatures] Panzer (editor), J., Laurie, B., and D. Balfanz, “Magic Signatures,” January 2011.

[W3C.CR-xmldsig-
core2-20120124]

Eastlake, D., Reagle, J., Yiu, K., Solo, D., Datta, P., Hirsch, F., Cantor, S., and T. Roessler, “XML Signature
Syntax and Processing Version 2.0,” World Wide Web Consortium CR CR-xmldsig-core2-20120124,
January 2012 (HTML).

[W3C.WD-xmldsig-
bestpractices-
20110809]

Datta, P. and F. Hirsch, “XML Signature Best Practices,” World Wide Web Consortium WD WD-xmldsig-
bestpractices-20110809, August 2011 (HTML).

RFC 4627

mailto:mbj@microsoft.com
http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms
mailto:mbj@microsoft.com
http://tools.ietf.org/html/draft-ietf-jose-json-web-key
mailto:104-8456@mcimail.com
http://tools.ietf.org/html/rfc1421
http://www.rfc-editor.org/rfc/rfc1421.txt
mailto:ned@innosoft.com
mailto:nsb@nsb.fv.com
http://tools.ietf.org/html/rfc2045
http://www.rfc-editor.org/rfc/rfc2045.txt
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
http://tools.ietf.org/html/rfc2818
http://www.rfc-editor.org/rfc/rfc2818.txt
http://tools.ietf.org/html/rfc3629
http://www.rfc-editor.org/rfc/rfc3629.txt
mailto:timbl@w3.org
mailto:fielding@gbiv.com
mailto:LMM@acm.org
http://tools.ietf.org/html/rfc3986
http://www.rfc-editor.org/rfc/rfc3986.txt
http://xml.resource.org/public/rfc/html/rfc3986.html
http://xml.resource.org/public/rfc/xml/rfc3986.xml
http://tools.ietf.org/html/rfc4627
http://www.rfc-editor.org/rfc/rfc4627.txt
http://tools.ietf.org/html/rfc4648
http://www.rfc-editor.org/rfc/rfc4648.txt
http://tools.ietf.org/html/rfc5246
http://www.rfc-editor.org/rfc/rfc5246.txt
http://tools.ietf.org/html/rfc5280
http://www.rfc-editor.org/rfc/rfc5280.txt
mailto:markdavis@google.com
mailto:ken@unicode.org
http://developers.facebook.com/docs/authentication/canvas
http://jsonenc.info/jss/1.0/
mailto:mbj@microsoft.com
mailto:ekr@rtfm.com
mailto:jhildebr@cisco.com
http://tools.ietf.org/html/draft-ietf-jose-json-web-encryption
mailto:mbj@microsoft.com
mailto:ve7jtb@ve7jtb.com
mailto:n-sakimura@nri.co.jp
http://tools.ietf.org/html/draft-jones-json-web-signature-json-serialization
mailto:mbj@microsoft.com
mailto:balfanz@google.com
mailto:ve7jtb@ve7jtb.com
mailto:yarong@microsoft.com
mailto:jpanzer@google.com
mailto:n-sakimura@nri.co.jp
mailto:pt@fb.com
http://tools.ietf.org/html/draft-jones-json-web-token
http://salmon-protocol.googlecode.com/svn/trunk/draft-panzer-magicsig-01.html
http://www.w3.org/TR/2012/CR-xmldsig-core2-20120124
http://www.w3.org/TR/2012/CR-xmldsig-core2-20120124
http://www.w3.org/TR/2011/WD-xmldsig-bestpractices-20110809
http://www.w3.org/TR/2011/WD-xmldsig-bestpractices-20110809

 TOC

 TOC

 TOC

Appendix A. JWS Examples

This section provides several examples of JWSs. While these examples all represent JSON
Web Tokens (JWTs) , the payload can be any base64url encoded content.

A.1. JWS using HMAC SHA-256

A.1.1. Encoding

The following example JWS Header declares that the data structure is a JSON Web Token (JWT)
 and the JWS Secured Input is secured using the HMAC SHA-256 algorithm.

{"typ":"JWT",
 "alg":"HS256"}

The following byte array contains the UTF-8 representation of the JWS Header:

[123, 34, 116, 121, 112, 34, 58, 34, 74, 87, 84, 34, 44, 13, 10, 32, 34, 97, 108, 103, 34, 58,
34, 72, 83, 50, 53, 54, 34, 125]

Base64url encoding these bytes yields this Encoded JWS Header value:

eyJ0eXAiOiJKV1QiLA0KICJhbGciOiJIUzI1NiJ9

The JWS Payload used in this example is the bytes of the UTF-8 representation of the JSON
object below. (Note that the payload can be any base64url encoded sequence of bytes, and
need not be a base64url encoded JSON object.)

{"iss":"joe",
 "exp":1300819380,
 "http://example.com/is_root":true}

The following byte array, which is the UTF-8 representation of the JSON object above, is the
JWS Payload:

[123, 34, 105, 115, 115, 34, 58, 34, 106, 111, 101, 34, 44, 13, 10, 32, 34, 101, 120, 112, 34,
58, 49, 51, 48, 48, 56, 49, 57, 51, 56, 48, 44, 13, 10, 32, 34, 104, 116, 116, 112, 58, 47, 47,
101, 120, 97, 109, 112, 108, 101, 46, 99, 111, 109, 47, 105, 115, 95, 114, 111, 111, 116, 34,
58, 116, 114, 117, 101, 125]

Base64url encoding the above yields the Encoded JWS Payload value (with line breaks for
display purposes only):

eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt
cGxlLmNvbS9pc19yb290Ijp0cnVlfQ

Concatenating the Encoded JWS Header, a period character, and the Encoded JWS Payload
yields this JWS Secured Input value (with line breaks for display purposes only):

eyJ0eXAiOiJKV1QiLA0KICJhbGciOiJIUzI1NiJ9
.

[JWT]

[JWT]

 TOC

 TOC

 TOC

eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt
cGxlLmNvbS9pc19yb290Ijp0cnVlfQ

The UTF-8 representation of the JWS Secured Input (which is the same as the ASCII
representation) is the following byte array:

[101, 121, 74, 48, 101, 88, 65, 105, 79, 105, 74, 75, 86, 49, 81, 105, 76, 65, 48, 75, 73, 67,
74, 104, 98, 71, 99, 105, 79, 105, 74, 73, 85, 122, 73, 49, 78, 105, 74, 57, 46, 101, 121, 74,
112, 99, 51, 77, 105, 79, 105, 74, 113, 98, 50, 85, 105, 76, 65, 48, 75, 73, 67, 74, 108, 101,
72, 65, 105, 79, 106, 69, 122, 77, 68, 65, 52, 77, 84, 107, 122, 79, 68, 65, 115, 68, 81, 111,
103, 73, 109, 104, 48, 100, 72, 65, 54, 76, 121, 57, 108, 101, 71, 70, 116, 99, 71, 120, 108,
76, 109, 78, 118, 98, 83, 57, 112, 99, 49, 57, 121, 98, 50, 57, 48, 73, 106, 112, 48, 99, 110,
86, 108, 102, 81]

HMACs are generated using keys. This example uses the key represented by the following
byte array:

[3, 35, 53, 75, 43, 15, 165, 188, 131, 126, 6, 101, 119, 123, 166, 143, 90, 179, 40, 230, 240,
84, 201, 40, 169, 15, 132, 178, 210, 80, 46, 191, 211, 251, 90, 146, 210, 6, 71, 239, 150, 138,
180, 195, 119, 98, 61, 34, 61, 46, 33, 114, 5, 46, 79, 8, 192, 205, 154, 245, 103, 208, 128,
163]

Running the HMAC SHA-256 algorithm on the bytes of the UTF-8 representation of the JWS
Secured Input (which is the same as the ASCII representation) with this key yields the
following byte array:

[116, 24, 223, 180, 151, 153, 224, 37, 79, 250, 96, 125, 216, 173, 187, 186, 22, 212, 37, 77,
105, 214, 191, 240, 91, 88, 5, 88, 83, 132, 141, 121]

Base64url encoding the above HMAC output yields the Encoded JWS Signature value:

dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk

A.1.2. Decoding

Decoding the JWS first requires removing the base64url encoding from the Encoded JWS
Header, the Encoded JWS Payload, and the Encoded JWS Signature. We base64url decode the
inputs and turn them into the corresponding byte arrays. We decode the Encoded JWS
Header byte array containing the UTF-8 representation of the JWS Header into the JWS
Header string.

A.1.3. Validating

Next we validate the decoded results. Since the alg parameter in the header is "HS256", we
validate the HMAC SHA-256 value contained in the JWS Signature. If any of the validation
steps fail, the JWS MUST be rejected.

First, we validate that the JWS Header string is legal JSON.

To validate the HMAC value, we repeat the previous process of using the correct key and the
UTF-8 representation of the JWS Secured Input (which is the same as the ASCII
representation) as input to the HMAC SHA-256 function and then taking the output and
determining if it matches the JWS Signature. If it matches exactly, the HMAC has been
validated.

A.2. JWS using RSA SHA-256

 TOC
A.2.1. Encoding

The JWS Header in this example is different from the previous example in two ways: First,
because a different algorithm is being used, the alg value is different. Second, for illustration
purposes only, the optional "typ" parameter is not used. (This difference is not related to the
algorithm employed.) The JWS Header used is:

{"alg":"RS256"}

The following byte array contains the UTF-8 representation of the JWS Header:

[123, 34, 97, 108, 103, 34, 58, 34, 82, 83, 50, 53, 54, 34, 125]

Base64url encoding these bytes yields this Encoded JWS Header value:

eyJhbGciOiJSUzI1NiJ9

The JWS Payload used in this example, which follows, is the same as in the previous example.
Since the Encoded JWS Payload will therefore be the same, its computation is not repeated
here.

{"iss":"joe",
 "exp":1300819380,
 "http://example.com/is_root":true}

Concatenating the Encoded JWS Header, a period character, and the Encoded JWS Payload
yields this JWS Secured Input value (with line breaks for display purposes only):

eyJhbGciOiJSUzI1NiJ9
.
eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt
cGxlLmNvbS9pc19yb290Ijp0cnVlfQ

The UTF-8 representation of the JWS Secured Input (which is the same as the ASCII
representation) is the following byte array:

[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 83, 85, 122, 73, 49, 78, 105, 74, 57, 46, 101,
121, 74, 112, 99, 51, 77, 105, 79, 105, 74, 113, 98, 50, 85, 105, 76, 65, 48, 75, 73, 67, 74,
108, 101, 72, 65, 105, 79, 106, 69, 122, 77, 68, 65, 52, 77, 84, 107, 122, 79, 68, 65, 115, 68,
81, 111, 103, 73, 109, 104, 48, 100, 72, 65, 54, 76, 121, 57, 108, 101, 71, 70, 116, 99, 71,
120, 108, 76, 109, 78, 118, 98, 83, 57, 112, 99, 49, 57, 121, 98, 50, 57, 48, 73, 106, 112, 48,
99, 110, 86, 108, 102, 81]

The RSA key consists of a public part (n, e), and a private exponent d. The values of the RSA
key used in this example, presented as the byte arrays representing big endian integers are:

Parameter
Name

Value

n

[161, 248, 22, 10, 226, 227, 201, 180, 101, 206, 141, 45, 101, 98, 99, 54, 43, 146, 125,
190, 41, 225, 240, 36, 119, 252, 22, 37, 204, 144, 161, 54, 227, 139, 217, 52, 151, 197,
182, 234, 99, 221, 119, 17, 230, 124, 116, 41, 249, 86, 176, 251, 138, 143, 8, 154, 220,
75, 105, 137, 60, 193, 51, 63, 83, 237, 208, 25, 184, 119, 132, 37, 47, 236, 145, 79,
228, 133, 119, 105, 89, 75, 234, 66, 128, 211, 44, 15, 85, 191, 98, 148, 79, 19, 3, 150,
188, 110, 155, 223, 110, 189, 210, 189, 163, 103, 142, 236, 160, 198, 104, 247, 1, 179,
141, 191, 251, 56, 200, 52, 44, 226, 254, 109, 39, 250, 222, 74, 90, 72, 116, 151, 157,
212, 185, 207, 154, 222, 196, 199, 91, 5, 133, 44, 44, 15, 94, 248, 165, 193, 117, 3,
146, 249, 68, 232, 237, 100, 193, 16, 198, 182, 71, 96, 154, 164, 120, 58, 235, 156,
108, 154, 215, 85, 49, 48, 80, 99, 139, 131, 102, 92, 111, 111, 122, 130, 163, 150, 112,

 TOC

 TOC

42, 31, 100, 27, 130, 211, 235, 242, 57, 34, 25, 73, 31, 182, 134, 135, 44, 87, 22, 245,
10, 248, 53, 141, 154, 139, 157, 23, 195, 64, 114, 143, 127, 135, 216, 154, 24, 216,
252, 171, 103, 173, 132, 89, 12, 46, 207, 117, 147, 57, 54, 60, 7, 3, 77, 111, 96, 111,
158, 33, 224, 84, 86, 202, 229, 233, 161]

e [1, 0, 1]

d

[18, 174, 113, 164, 105, 205, 10, 43, 195, 126, 82, 108, 69, 0, 87, 31, 29, 97, 117, 29,
100, 233, 73, 112, 123, 98, 89, 15, 157, 11, 165, 124, 150, 60, 64, 30, 63, 207, 47, 44,
211, 189, 236, 136, 229, 3, 191, 198, 67, 155, 11, 40, 200, 47, 125, 55, 151, 103, 31,
82, 19, 238, 216, 193, 90, 37, 216, 213, 206, 160, 2, 94, 227, 171, 46, 139, 127, 121,
33, 111, 198, 59, 234, 86, 39, 83, 180, 6, 68, 198, 161, 81, 39, 217, 178, 149, 69, 64,
160, 187, 225, 163, 5, 86, 152, 45, 78, 159, 222, 95, 100, 37, 241, 77, 75, 113, 52, 65,
181, 93, 199, 59, 155, 74, 237, 204, 146, 172, 227, 146, 126, 55, 245, 125, 12, 253, 94,
117, 129, 250, 81, 44, 143, 73, 97, 169, 235, 11, 128, 248, 168, 7, 70, 114, 138, 85,
255, 70, 71, 31, 52, 37, 6, 59, 157, 83, 100, 47, 94, 222, 30, 132, 214, 19, 8, 26, 250,
92, 34, 208, 81, 40, 91, 214, 59, 148, 59, 86, 93, 137, 138, 5, 104, 84, 19, 229, 60, 60,
108, 101, 37, 255, 31, 227, 78, 61, 220, 112, 240, 213, 100, 80, 253, 164, 139, 161, 46,
16, 78, 157, 235, 159, 184, 24, 129, 225, 196, 189, 242, 93, 146, 71, 244, 80, 200, 101,
146, 121, 104, 231, 115, 52, 244, 65, 79, 117, 167, 80, 225, 57, 84, 110, 58, 138, 115,
157]

The RSA private key (n, d) is then passed to the RSA signing function, which also takes the
hash type, SHA-256, and the bytes of the UTF-8 representation of the JWS Secured Input
(which is the same as the ASCII representation) as inputs. The result of the digital signature
is a byte array S, which represents a big endian integer. In this example, S is:

Result
Name

Value

S

[112, 46, 33, 137, 67, 232, 143, 209, 30, 181, 216, 45, 191, 120, 69, 243, 65, 6, 174, 27,
129, 255, 247, 115, 17, 22, 173, 209, 113, 125, 131, 101, 109, 66, 10, 253, 60, 150, 238,
221, 115, 162, 102, 62, 81, 102, 104, 123, 0, 11, 135, 34, 110, 1, 135, 237, 16, 115, 249, 69,
229, 130, 173, 252, 239, 22, 216, 90, 121, 142, 232, 198, 109, 219, 61, 184, 151, 91, 23,
208, 148, 2, 190, 237, 213, 217, 217, 112, 7, 16, 141, 178, 129, 96, 213, 248, 4, 12, 167, 68,
87, 98, 184, 31, 190, 127, 249, 217, 46, 10, 231, 111, 36, 242, 91, 51, 187, 230, 244, 74,
230, 30, 177, 4, 10, 203, 32, 4, 77, 62, 249, 18, 142, 212, 1, 48, 121, 91, 212, 189, 59, 65,
238, 202, 208, 102, 171, 101, 25, 129, 253, 228, 141, 247, 127, 55, 45, 195, 139, 159, 175,
221, 59, 239, 177, 139, 93, 163, 204, 60, 46, 176, 47, 158, 58, 65, 214, 18, 202, 173, 21,
145, 18, 115, 160, 95, 35, 185, 232, 56, 250, 175, 132, 157, 105, 132, 41, 239, 90, 30, 136,
121, 130, 54, 195, 212, 14, 96, 69, 34, 165, 68, 200, 242, 122, 122, 45, 184, 6, 99, 209, 108,
247, 202, 234, 86, 222, 64, 92, 178, 33, 90, 69, 178, 194, 85, 102, 181, 90, 193, 167, 72,
160, 112, 223, 200, 163, 42, 70, 149, 67, 208, 25, 238, 251, 71]

Base64url encoding the digital signature produces this value for the Encoded JWS Signature
(with line breaks for display purposes only):

cC4hiUPoj9Eetdgtv3hF80EGrhuB__dzERat0XF9g2VtQgr9PJbu3XOiZj5RZmh7
AAuHIm4Bh-0Qc_lF5YKt_O8W2Fp5jujGbds9uJdbF9CUAr7t1dnZcAcQjbKBYNX4
BAynRFdiuB--f_nZLgrnbyTyWzO75vRK5h6xBArLIARNPvkSjtQBMHlb1L07Qe7K
0GarZRmB_eSN9383LcOLn6_dO--xi12jzDwusC-eOkHWEsqtFZESc6BfI7noOPqv
hJ1phCnvWh6IeYI2w9QOYEUipUTI8np6LbgGY9Fs98rqVt5AXLIhWkWywlVmtVrB
p0igcN_IoypGlUPQGe77Rw

A.2.2. Decoding

Decoding the JWS from this example requires processing the Encoded JWS Header and
Encoded JWS Payload exactly as done in the first example.

A.2.3. Validating

 TOC

 TOC

Since the alg parameter in the header is "RS256", we validate the RSA SHA-256 digital
signature contained in the JWS Signature. If any of the validation steps fail, the JWS MUST be
rejected.

First, we validate that the JWS Header string is legal JSON.

Validating the JWS Signature is a little different from the previous example. First, we
base64url decode the Encoded JWS Signature to produce a digital signature S to check. We
then pass (n, e), S and the bytes of the UTF-8 representation of the JWS Secured Input (which
is the same as the ASCII representation) to an RSA signature verifier that has been
configured to use the SHA-256 hash function.

A.3. JWS using ECDSA P-256 SHA-256

A.3.1. Encoding

The JWS Header for this example differs from the previous example because a different
algorithm is being used. The JWS Header used is:

{"alg":"ES256"}

The following byte array contains the UTF-8 representation of the JWS Header:

[123, 34, 97, 108, 103, 34, 58, 34, 69, 83, 50, 53, 54, 34, 125]

Base64url encoding these bytes yields this Encoded JWS Header value:

eyJhbGciOiJFUzI1NiJ9

The JWS Payload used in this example, which follows, is the same as in the previous
examples. Since the Encoded JWS Payload will therefore be the same, its computation is not
repeated here.

{"iss":"joe",
 "exp":1300819380,
 "http://example.com/is_root":true}

Concatenating the Encoded JWS Header, a period character, and the Encoded JWS Payload
yields this JWS Secured Input value (with line breaks for display purposes only):

eyJhbGciOiJFUzI1NiJ9
.
eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt
cGxlLmNvbS9pc19yb290Ijp0cnVlfQ

The UTF-8 representation of the JWS Secured Input (which is the same as the ASCII
representation) is the following byte array:

[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 70, 85, 122, 73, 49, 78, 105, 74, 57, 46, 101,
121, 74, 112, 99, 51, 77, 105, 79, 105, 74, 113, 98, 50, 85, 105, 76, 65, 48, 75, 73, 67, 74,
108, 101, 72, 65, 105, 79, 106, 69, 122, 77, 68, 65, 52, 77, 84, 107, 122, 79, 68, 65, 115, 68,
81, 111, 103, 73, 109, 104, 48, 100, 72, 65, 54, 76, 121, 57, 108, 101, 71, 70, 116, 99, 71,
120, 108, 76, 109, 78, 118, 98, 83, 57, 112, 99, 49, 57, 121, 98, 50, 57, 48, 73, 106, 112, 48,
99, 110, 86, 108, 102, 81]

 TOC

 TOC

The ECDSA key consists of a public part, the EC point (x, y), and a private part d. The values
of the ECDSA key used in this example, presented as the byte arrays representing big endian
integers are:

Parameter
Name

Value

x [127, 205, 206, 39, 112, 246, 196, 93, 65, 131, 203, 238, 111, 219, 75, 123, 88, 7, 51,
53, 123, 233, 239, 19, 186, 207, 110, 60, 123, 209, 84, 69]

y [199, 241, 68, 205, 27, 189, 155, 126, 135, 44, 223, 237, 185, 238, 185, 244, 179, 105,
93, 110, 169, 11, 36, 173, 138, 70, 35, 40, 133, 136, 229, 173]

d [142, 155, 16, 158, 113, 144, 152, 191, 152, 4, 135, 223, 31, 93, 119, 233, 203, 41, 96,
110, 190, 210, 38, 59, 95, 87, 194, 19, 223, 132, 244, 178]

The ECDSA private part d is then passed to an ECDSA signing function, which also takes the
curve type, P-256, the hash type, SHA-256, and the bytes of the UTF-8 representation of the
JWS Secured Input (which is the same as the ASCII representation) as inputs. The result of
the digital signature is the EC point (R, S), where R and S are unsigned integers. In this
example, the R and S values, given as byte arrays representing big endian integers are:

Result
Name

Value

R [14, 209, 33, 83, 121, 99, 108, 72, 60, 47, 127, 21, 88, 7, 212, 2, 163, 178, 40, 3, 58, 249,
124, 126, 23, 129, 154, 195, 22, 158, 166, 101]

S [197, 10, 7, 211, 140, 60, 112, 229, 216, 241, 45, 175, 8, 74, 84, 128, 166, 101, 144, 197,
242, 147, 80, 154, 143, 63, 127, 138, 131, 163, 84, 213]

Concatenating the S array to the end of the R array and base64url encoding the result
produces this value for the Encoded JWS Signature (with line breaks for display purposes
only):

DtEhU3ljbEg8L38VWAfUAqOyKAM6-Xx-F4GawxaepmXFCgfTjDxw5djxLa8ISlSA
pmWQxfKTUJqPP3-Kg6NU1Q

A.3.2. Decoding

Decoding the JWS from this example requires processing the Encoded JWS Header and
Encoded JWS Payload exactly as done in the first example.

A.3.3. Validating

Since the alg parameter in the header is "ES256", we validate the ECDSA P-256 SHA-256
digital signature contained in the JWS Signature. If any of the validation steps fail, the JWS
MUST be rejected.

First, we validate that the JWS Header string is legal JSON.

Validating the JWS Signature is a little different from the first example. First, we base64url
decode the Encoded JWS Signature as in the previous examples but we then need to split the
64 member byte array that must result into two 32 byte arrays, the first R and the second S.
We then pass (x, y), (R, S) and the bytes of the UTF-8 representation of the JWS Secured
Input (which is the same as the ASCII representation) to an ECDSA signature verifier that has
been configured to use the P-256 curve with the SHA-256 hash function.

As explained in Section 3.4 of the JSON Web Algorithms (JWA) specification, the use of
the k value in ECDSA means that we cannot validate the correctness of the digital signature
in the same way we validated the correctness of the HMAC. Instead, implementations MUST
use an ECDSA validator to validate the digital signature.

[JWA]

 TOC

 TOC

A.4. Example Plaintext JWS

The following example JWS Header declares that the encoded object is a Plaintext JWS:

{"alg":"none"}

Base64url encoding the bytes of the UTF-8 representation of the JWS Header yields this
Encoded JWS Header:

eyJhbGciOiJub25lIn0

The JWS Payload used in this example, which follows, is the same as in the previous
examples. Since the Encoded JWS Payload will therefore be the same, its computation is not
repeated here.

{"iss":"joe",
 "exp":1300819380,
 "http://example.com/is_root":true}

The Encoded JWS Signature is the empty string.

Concatenating these parts in the order Header.Payload.Signature with period characters
between the parts yields this complete JWS (with line breaks for display purposes only):

eyJhbGciOiJub25lIn0
.
eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt
cGxlLmNvbS9pc19yb290Ijp0cnVlfQ
.

Appendix B. Notes on implementing base64url encoding without padding

This appendix describes how to implement base64url encoding and decoding functions
without padding based upon standard base64 encoding and decoding functions that do use
padding.

To be concrete, example C# code implementing these functions is shown below. Similar code
could be used in other languages.

static string base64urlencode(byte [] arg)
{
 string s = Convert.ToBase64String(arg); // Standard base64 encoder
 s = s.Split('=')[0]; // Remove any trailing '='s
 s = s.Replace('+', '-'); // 62nd char of encoding
 s = s.Replace('/', '_'); // 63rd char of encoding
 return s;
}

static byte [] base64urldecode(string arg)
{
 string s = arg;
 s = s.Replace('-', '+'); // 62nd char of encoding
 s = s.Replace('_', '/'); // 63rd char of encoding
 switch (s.Length % 4) // Pad with trailing '='s

 TOC

 TOC

 {
 case 0: break; // No pad chars in this case
 case 2: s += "=="; break; // Two pad chars
 case 3: s += "="; break; // One pad char
 default: throw new System.Exception(
 "Illegal base64url string!");
 }
 return Convert.FromBase64String(s); // Standard base64 decoder
}

As per the example code above, the number of '=' padding characters that needs to be
added to the end of a base64url encoded string without padding to turn it into one with
padding is a deterministic function of the length of the encoded string. Specifically, if the
length mod 4 is 0, no padding is added; if the length mod 4 is 2, two '=' padding characters
are added; if the length mod 4 is 3, one '=' padding character is added; if the length mod 4 is
1, the input is malformed.

An example correspondence between unencoded and encoded values follows. The byte
sequence below encodes into the string below, which when decoded, reproduces the byte
sequence.

3 236 255 224 193

A-z_4ME

Appendix C. Acknowledgements

Solutions for signing JSON content were previously explored by
[MagicSignatures], [JSS], and [CanvasApp], all of
which influenced this draft. Dirk Balfanz, Yaron Y. Goland, John Panzer, and Paul Tarjan all
made significant contributions to the design of this specification.

Appendix D. Document History

-02

Clarified that it is an error when a kid value is included and no matching key is
found.
Removed assumption that kid (key ID) can only refer to an asymmetric key.
Clarified that JWSs with duplicate Header Parameter Names MUST be rejected.
Clarified the relationship between typ header parameter values and MIME types.
Registered application/jws MIME type and "JWS" typ header parameter value.
Simplified JWK terminology to get replace the "JWK Key Object" and "JWK
Container Object" terms with simply "JSON Web Key (JWK)" and "JSON Web Key
Set (JWK Set)" and to eliminate potential confusion between single keys and sets
of keys. As part of this change, the header parameter name for a public key
value was changed from jpk (JSON Public Key) to jwk (JSON Web Key).
Added suggestion on defining additional header parameters such as x5t#S256
in the future for certificate thumbprints using hash algorithms other than SHA-1.
Specify RFC 2818 server identity validation, rather than RFC 6125 (paralleling the
same decision in the OAuth specs).
Generalized language to refer to Message Authentication Codes (MACs) rather
than Hash-based Message Authentication Codes (HMACs) unless in a context
specific to HMAC algorithms.
Reformatted to give each header parameter its own section heading.

-01

Moved definition of Plaintext JWSs (using "alg":"none") here from the JWT

Magic Signatures
JSON Simple Sign Canvas Applications

 TOC

specification since this functionality is likely to be useful in more contexts that
just for JWTs.
Added jpk and x5c header parameters for including JWK public keys and X.509
certificate chains directly in the header.
Clarified that this specification is defining the JWS Compact Serialization.
Referenced the new JWS-JS spec, which defines the JWS JSON Serialization.
Added text "New header parameters should be introduced sparingly since an
implementation that does not understand a parameter MUST reject the JWS".
Clarified that the order of the creation and validation steps is not significant in
cases where there are no dependencies between the inputs and outputs of the
steps.
Changed "no canonicalization is performed" to "no canonicalization need be
performed".
Corrected the Magic Signatures reference.
Made other editorial improvements suggested by JOSE working group
participants.

-00

Created the initial IETF draft based upon draft-jones-json-web-signature-04 with
no normative changes.
Changed terminology to no longer call both digital signatures and HMACs
"signatures".

Authors' Addresses

 Michael B. Jones
 Microsoft

Email: mbj@microsoft.com
URI: http://self-issued.info/

 John Bradley
 Ping Identity

Email: ve7jtb@ve7jtb.com

 Nat Sakimura
 Nomura Research Institute

Email: n-sakimura@nri.co.jp

mailto:mbj@microsoft.com
http://self-issued.info/
mailto:ve7jtb@ve7jtb.com
mailto:n-sakimura@nri.co.jp

	JSON Web Signature (JWS) draft-ietf-jose-json-web-signature-02
	Abstract
	Requirements Language
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. JSON Web Signature (JWS) Overview
	3.1. Example JWS
	4. JWS Header
	4.1. Reserved Header Parameter Names
	4.1.1. "alg" (Algorithm) Header Parameter
	4.1.2. "jku" (JWK Set URL) Header Parameter
	4.1.3. "jwk" (JSON Web Key) Header Parameter
	4.1.4. "x5u" (X.509 URL) Header Parameter
	4.1.5. "x5t" (X.509 Certificate Thumbprint) Header Parameter
	4.1.6. "x5c" (X.509 Certificate Chain) Header Parameter
	4.1.7. "kid" (Key ID) Header Parameter
	4.1.8. "typ" (Type) Header Parameter
	4.2. Public Header Parameter Names
	4.3. Private Header Parameter Names
	5. Rules for Creating and Validating a JWS
	6. Securing JWSs with Cryptographic Algorithms
	7. IANA Considerations
	7.1. Registration of application/jws MIME Media Type
	7.2. Registration of "JWS" Type Value
	8. Security Considerations
	8.1. Cryptographic Security Considerations
	8.2. JSON Security Considerations
	8.3. Unicode Comparison Security Considerations
	9. Open Issues and Things To Be Done (TBD)
	10. References
	10.1. Normative References
	10.2. Informative References
	Appendix A. JWS Examples
	A.1. JWS using HMAC SHA-256
	A.1.1. Encoding
	A.1.2. Decoding
	A.1.3. Validating
	A.2. JWS using RSA SHA-256
	A.2.1. Encoding
	A.2.2. Decoding
	A.2.3. Validating
	A.3. JWS using ECDSA P-256 SHA-256
	A.3.1. Encoding
	A.3.2. Decoding
	A.3.3. Validating
	A.4. Example Plaintext JWS
	Appendix B. Notes on implementing base64url encoding without padding
	Appendix C. Acknowledgements
	Appendix D. Document History
	Authors' Addresses

