
 TOC JOSE Working Group M. Jones

Internet-Draft Microsoft

Intended status: Standards Track May 28, 2013

Expires: November 29, 2013

JSON Web Key (JWK)
draft-ietf-jose-json-web-key-11

Abstract

A JSON Web Key (JWK) is a JavaScript Object Notation (JSON) data structure that represents a
cryptographic key. This specification also defines a JSON Web Key Set (JWK Set) JSON data
structure for representing a set of JWKs. Cryptographic algorithms and identifiers for use with
this specification are described in the separate JSON Web Algorithms (JWA) specification.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note
that other groups may also distribute working documents as Internet-Drafts. The list of
current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated,
replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-
Drafts as reference material or to cite them other than as “work in progress.”

This Internet-Draft will expire on November 29, 2013.

Copyright Notice

Copyright (c) 2013 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted from this document
must include Simplified BSD License text as described in Section 4.e of the Trust Legal
Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction
 1.1. Notational Conventions
2. Terminology
3. JSON Web Key (JWK) Format
 3.1. "kty" (Key Type) Parameter
 3.2. "use" (Key Use) Parameter
 3.3. "alg" (Algorithm) Parameter
 3.4. "kid" (Key ID) Parameter
 3.5. "x5u" (X.509 URL) Header Parameter
 3.6. "x5t" (X.509 Certificate Thumbprint) Header Parameter
 3.7. "x5c" (X.509 Certificate Chain) Parameter
4. JSON Web Key Set (JWK Set) Format
 4.1. "keys" (JSON Web Key Set) Parameter
5. String Comparison Rules
6. Encrypted JWK and Encrypted JWK Set Formats

 TOC

 TOC

 TOC

7. IANA Considerations
 7.1. JSON Web Key Parameters Registry
 7.1.1. Registration Template
 7.1.2. Initial Registry Contents
 7.2. JSON Web Key Set Parameters Registry
 7.2.1. Registration Template
 7.2.2. Initial Registry Contents
 7.3. JSON Web Signature and Encryption Type Values Registration
 7.3.1. Registry Contents
 7.4. Media Type Registration
 7.4.1. Registry Contents
8. Security Considerations
9. References
 9.1. Normative References
 9.2. Informative References
Appendix A. Example JSON Web Key Sets
 A.1. Example Public Keys
 A.2. Example Private Keys
 A.3. Example Symmetric Keys
Appendix B. Example Use of "x5c" (X.509 Certificate Chain) Parameter
Appendix C. Acknowledgements
Appendix D. Document History
§ Author's Address

1. Introduction

A JSON Web Key (JWK) is a JavaScript Object Notation (JSON) data structure that
represents a cryptographic key. This specification also defines a JSON Web Key Set (JWK Set)
JSON data structure for representing a set of JWKs. Cryptographic algorithms and identifiers
for use with this specification are described in the separate JSON Web Algorithms (JWA)
specification.

Goals for this specification do not include representing certificate chains, representing
certified keys, and replacing X.509 certificates.

JWKs and JWK Sets are used in the JSON Web Signature (JWS) and JSON Web Encryption
(JWE) specifications.

1.1. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in Key words for use in RFCs to Indicate Requirement Levels

.

2. Terminology

JSON Web Key (JWK)
A JSON object that represents a cryptographic key.

JSON Web Key Set (JWK Set)
A JSON object that contains an array of JWKs as the value of its keys member.

Base64url Encoding
The URL- and filename-safe Base64 encoding described in [RFC4648],
Section 5, with the (non URL-safe) '=' padding characters omitted, as permitted by
Section 3.2. (See Appendix C of for notes on implementing base64url
encoding without padding.)

Collision Resistant Namespace
A namespace that allows names to be allocated in a manner such that they are
highly unlikely to collide with other names. For instance, collision resistance can be

[RFC4627]

[JWA]

[JWS]
[JWE]

[RFC2119]

RFC 4648

[JWS]

 TOC

 TOC

 TOC

achieved through administrative delegation of portions of the namespace or
through use of collision-resistant name allocation functions. Examples of Collision
Resistant Namespaces include: Domain Names, Object Identifiers (OIDs) as
defined in the ITU-T X.660 and X.670 Recommendation series, and Universally
Unique IDentifiers (UUIDs) . When using an administratively delegated
namespace, the definer of a name needs to take reasonable precautions to
ensure they are in control of the portion of the namespace they use to define the
name.

Encrypted JWK
A JWE with a JWK as its plaintext value.

Encrypted JWK Set
A JWE with a JWK Set as its plaintext value.

3. JSON Web Key (JWK) Format

A JSON Web Key (JWK) is a JSON object containing specific members, as specified below.
Those members that are common to all key types are defined below.

In addition to the common parameters, each JWK will have members that are specific to the
kind of key being represented. These members represent the parameters of the key. Section
5 of the JSON Web Algorithms (JWA) specification defines multiple kinds of
cryptographic keys and their associated members.

The member names within a JWK MUST be unique; objects with duplicate member names
MUST be rejected.

Additional members MAY be present in the JWK. If not understood by implementations
encountering them, they MUST be ignored. Member names used for representing key
parameters for different kinds of keys need not be distinct. Any new member name SHOULD
either be registered in the IANA JSON Web Key Parameters registry or be a
value that contains a Collision Resistant Namespace.

3.1. "kty" (Key Type) Parameter

The kty (key type) member identifies the cryptographic algorithm family used with the key.
kty values SHOULD either be registered in the IANA JSON Web Key Types registry or
be a value that contains a Collision Resistant Namespace. The kty value is a case sensitive
string. Use of this member is REQUIRED.

A list of defined kty values can be found in the IANA JSON Web Key Types registry ; the
initial contents of this registry are the values defined in Section 5.1 of the JSON Web
Algorithms (JWA) specification.

Additional members used with these kty values can be found in the IANA JSON Web Key
Parameters registry ; the initial contents of this registry are the values defined in
Sections 5.2 and 5.3 of the JSON Web Algorithms (JWA) specification.

3.2. "use" (Key Use) Parameter

The use (key use) member identifies the intended use of the key. Values defined by this
specification are:

sig (signature or MAC operation)
enc (encryption)

Other values MAY be used. The use value is a case sensitive string. Use of this member is
OPTIONAL.

[RFC4122]

[JWA]

Section 7.1

[JWA]

[JWA]

[JWA]

Section 7.1
[JWA]

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

3.3. "alg" (Algorithm) Parameter

The alg (algorithm) member identifies the algorithm intended for use with the key. The
values used in this field are the same as those used in the JWS and JWE alg and
enc header parameters; these values can be found in the JSON Web Signature and
Encryption Algorithms registry . Use of this member is OPTIONAL.

3.4. "kid" (Key ID) Parameter

The kid (key ID) member can be used to match a specific key. This can be used, for
instance, to choose among a set of keys within a JWK Set during key rollover. The
interpretation of the kid value is unspecified. When kid values are used within a JWK Set,
different keys within the JWK Set SHOULD use distinct kid values. The kid value is a case
sensitive string. Use of this member is OPTIONAL.

When used with JWS or JWE, the kid value can be used to match a JWS or JWE kid header
parameter value.

3.5. "x5u" (X.509 URL) Header Parameter

The x5u (X.509 URL) member is a URI that refers to a resource for an X.509
public key certificate or certificate chain . The identified resource MUST provide a
representation of the certificate or certificate chain that conforms to [RFC5280] in
PEM encoded form . The key in the first certificate MUST match the bare public
key represented by other members of the JWK. The protocol used to acquire the resource
MUST provide integrity protection; an HTTP GET request to retrieve the certificate MUST use
TLS ; the identity of the server MUST be validated, as per Section
3.1 of HTTP Over TLS . Use of this member is OPTIONAL.

3.6. "x5t" (X.509 Certificate Thumbprint) Header Parameter

The x5t (X.509 Certificate Thumbprint) member is a base64url encoded SHA-1 thumbprint
(a.k.a. digest) of the DER encoding of an X.509 certificate . The key in the
certificate MUST match the bare public key represented by other members of the JWK. Use of
this member is OPTIONAL.

3.7. "x5c" (X.509 Certificate Chain) Parameter

x5c
The x5c (X.509 Certificate Chain) member contains a chain of one or more PKIX
certificates . The certificate chain is represented as a JSON array of
certificate value strings. Each string in the array is a base64 encoded (
Section 4 -- not base64url encoded) DER PKIX certificate value.
The PKIX certificate containing the key value MUST be the first certificate. This MAY
be followed by additional certificates, with each subsequent certificate being the
one used to certify the previous one. The key in the first certificate MUST match
the bare public key represented by other members of the JWK. Use of this member
is OPTIONAL.

4. JSON Web Key Set (JWK Set) Format

A JSON Web Key Set (JWK Set) is a JSON object that contains an array of JSON Web Key values
as the value of its keys member.

[JWS] [JWE]

[JWA]

[RFC3986]
[RFC5280]

RFC 5280
[RFC1421]

[RFC2818] [RFC5246]
[RFC2818]

[RFC5280]

[RFC5280]
[RFC4648]

[ITU.X690.1994]

 TOC

 TOC

 TOC

 TOC

The member names within a JWK Set MUST be unique; objects with duplicate member names
MUST be rejected.

Additional members MAY be present in the JWK Set. If not understood by implementations
encountering them, they MUST be ignored. Parameters for representing additional properties
of JWK Sets SHOULD either be registered in the IANA JSON Web Key Set Parameters registry

 or be a value that contains a Collision Resistant Namespace.

4.1. "keys" (JSON Web Key Set) Parameter

The value of the keys (JSON Web Key Set) member is an array of JSON Web Key (JWK) values.
Use of this member is REQUIRED.

5. String Comparison Rules

Processing a JWK inevitably requires comparing known strings to values in JSON objects. For
example, in checking what the key type is, the Unicode string encoding kty will be checked
against the member names in the JWK to see if there is a matching name.

Comparisons between JSON strings and other Unicode strings MUST be performed by
comparing Unicode code points without normalization as specified in the String Comparison
Rules in Section 5.3 of .

6. Encrypted JWK and Encrypted JWK Set Formats

JWKs containing non-public key material will need to be encrypted in some contexts to
prevent the disclosure of private or symmetric key values to unintended parties. The use of
an Encrypted JWK, which is a JWE with a JWK as its plaintext value, is RECOMMENED for this
purpose. The processing of Encrypted JWKs is identical to the processing of other JWEs. A cty
(content type) header parameter value of JWK can be used to indicate that the content of the
JWE is a JWK in contexts where this is useful.

JWK Sets containing non-public key material will similarly need to be encrypted. The use of an
Encrypted JWK Set, which is a JWE with a JWK Set as its plaintext value, is RECOMMENED for
this purpose. The processing of Encrypted JWK Sets is identical to the processing of other
JWEs. A cty (content type) header parameter value of JWK-SET can be used to indicate that
the content of the JWE is a JWK Set in contexts where this is useful.

7. IANA Considerations

The following registration procedure is used for all the registries established by this
specification.

Values are registered with a Specification Required after a two-week review
period on the [TBD]@ietf.org mailing list, on the advice of one or more Designated Experts.
However, to allow for the allocation of values prior to publication, the Designated Expert(s)
may approve registration once they are satisfied that such a specification will be published.

Registration requests must be sent to the [TBD]@ietf.org mailing list for review and
comment, with an appropriate subject (e.g., "Request for access token type: example"). [[
Note to RFC-EDITOR: The name of the mailing list should be determined in consultation with
the IESG and IANA. Suggested name: jose-reg-review.]]

Within the review period, the Designated Expert(s) will either approve or deny the registration
request, communicating this decision to the review list and IANA. Denials should include an
explanation and, if applicable, suggestions as to how to make the request successful.

Section 7.2

[JWS]

[RFC5226]

 TOC

 TOC

 TOC

IANA must only accept registry updates from the Designated Expert(s) and should direct all
requests for registration to the review mailing list.

7.1. JSON Web Key Parameters Registry

This specification establishes the IANA JSON Web Key Parameters registry for reserved JWK
parameter names. The registry records the reserved parameter name and a reference to the
specification that defines it. It also records whether the parameter conveys public or private
information. This specification registers the parameter names defined in . The
same JWK parameter name may be registered multiple times, provided that duplicate
parameter registrations are only for algorithm-specific JWK parameters; in this case, the
meaning of the duplicate parameter name is disambiguated by the kty value of the JWK
containing it.

7.1.1. Registration Template

Parameter Name:
The name requested (e.g., "example"). This name is case sensitive. Names that
match other registered names in a case insensitive manner SHOULD NOT be
accepted.

Parameter Information Class:
Registers whether the parameter conveys public or private information. Its value
must be one the words Public or Private.

Change Controller:
For Standards Track RFCs, state "IETF". For others, give the name of the
responsible party. Other details (e.g., postal address, email address, home page
URI) may also be included.

Specification Document(s):
Reference to the document(s) that specify the parameter, preferably including
URI(s) that can be used to retrieve copies of the document(s). An indication of the
relevant sections may also be included but is not required.

7.1.2. Initial Registry Contents

Parameter Name: kty
Parameter Information Class: Public
Change Controller: IETF
Specification Document(s): of [[this document]]

Parameter Name: use
Parameter Information Class: Public
Change Controller: IETF
Specification Document(s): of [[this document]]

Parameter Name: alg
Parameter Information Class: Public
Change Controller: IETF
Specification Document(s): of [[this document]]

Parameter Name: kid
Parameter Information Class: Public
Change Controller: IETF
Specification Document(s): of [[this document]]

Parameter Name: x5u
Parameter Information Class: Public
Change Controller: IETF
Specification Document(s): of [[this document]]

Parameter Name: x5t

Section 3

Section 3.1

Section 3.2

Section 3.3

Section 3.4

Section 3.5

 TOC

 TOC

 TOC

 TOC

 TOC

Parameter Information Class: Public
Change Controller: IETF
Specification Document(s): of [[this document]]

Parameter Name: x5c
Parameter Information Class: Public
Change Controller: IETF
Specification Document(s): of [[this document]]

7.2. JSON Web Key Set Parameters Registry

This specification establishes the IANA JSON Web Key Set Parameters registry for reserved
JWK Set parameter names. The registry records the reserved parameter name and a
reference to the specification that defines it. This specification registers the parameter
names defined in .

7.2.1. Registration Template

Parameter Name:
The name requested (e.g., "example"). This name is case sensitive. Names that
match other registered names in a case insensitive manner SHOULD NOT be
accepted.

Change Controller:
For Standards Track RFCs, state "IETF". For others, give the name of the
responsible party. Other details (e.g., postal address, email address, home page
URI) may also be included.

Specification Document(s):
Reference to the document(s) that specify the parameter, preferably including
URI(s) that can be used to retrieve copies of the document(s). An indication of the
relevant sections may also be included but is not required.

7.2.2. Initial Registry Contents

Parameter Name: keys
Change Controller: IETF
Specification Document(s): of [[this document]]

7.3. JSON Web Signature and Encryption Type Values Registration

7.3.1. Registry Contents

This specification registers the JWK and JWK-SET type values in the IANA JSON Web Signature
and Encryption Type Values registry :

"typ" Header Parameter Value: JWK
Abbreviation for MIME Type: application/jwk+json
Change Controller: IETF
Specification Document(s): of [[this document]]

"typ" Header Parameter Value: JWK-SET
Abbreviation for MIME Type: application/jwk-set+json
Change Controller: IETF
Specification Document(s): of [[this document]]

Section 3.6

Section 3.7

Section 4

Section 4.1

[JWS]

Section 3

Section 4

 TOC

 TOC

 TOC

7.4. Media Type Registration

7.4.1. Registry Contents

This specification registers the application/jwk+json and application/jwk-set+json
Media Types in the MIME Media Type registry to indicate,
respectively, that the content is a JWK or a JWK Set.

Type Name: application
Subtype Name: jwk+json
Required Parameters: n/a
Optional Parameters: n/a
Encoding considerations: application/jwk+json values are represented as JSON
object; UTF-8 encoding SHOULD be employed for the JSON object.
Security Considerations: See the Security Considerations section of [[this
document]]
Interoperability Considerations: n/a
Published Specification: [[this document]]
Applications that use this media type: TBD
Additional Information: Magic number(s): n/a, File extension(s): n/a, Macintosh
file type code(s): n/a
Person & email address to contact for further information: Michael B. Jones,
mbj@microsoft.com
Intended Usage: COMMON
Restrictions on Usage: none
Author: Michael B. Jones, mbj@microsoft.com
Change Controller: IETF

Type Name: application
Subtype Name: jwk-set+json
Required Parameters: n/a
Optional Parameters: n/a
Encoding considerations: application/jwk-set+json values are represented as a
JSON Object; UTF-8 encoding SHOULD be employed for the JSON object.
Security Considerations: See the Security Considerations section of [[this
document]]
Interoperability Considerations: n/a
Published Specification: [[this document]]
Applications that use this media type: TBD
Additional Information: Magic number(s): n/a, File extension(s): n/a, Macintosh
file type code(s): n/a
Person & email address to contact for further information: Michael B. Jones,
mbj@microsoft.com
Intended Usage: COMMON
Restrictions on Usage: none
Author: Michael B. Jones, mbj@microsoft.com
Change Controller: IETF

8. Security Considerations

All of the security issues faced by any cryptographic application must be faced by a
JWS/JWE/JWK agent. Among these issues are protecting the user's private and symmetric
keys, preventing various attacks, and helping the user avoid mistakes such as inadvertently
encrypting a message for the wrong recipient. The entire list of security considerations is
beyond the scope of this document, but some significant considerations are listed here.

A key is no more trustworthy than the method by which it was received.

Private and symmetric keys must be protected from disclosure to unintended parties. One
recommended means of doing so is to encrypt JWKs or JWK Sets containing them by using

[RFC2046] [RFC4288]

 TOC

 TOC

 TOC

 TOC

 TOC

the JWK or JWK Set value as the plaintext of a JWE.

The security considerations in [RFC3447] and [RFC6030] about
protecting private and symmetric keys also apply to this specification.

The security considerations in [W3C.CR‑xmldsig‑core2‑20120124], about key
representations also apply to this specification, other than those that are XML specific.

9. References

9.1. Normative References

[ITU.X690.1994] International Telecommunications Union, “Information Technology - ASN.1 encoding rules: Specification of
Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER),” ITU-
T Recommendation X.690, 1994.

[JWA] Jones, M., “JSON Web Algorithms (JWA),” draft-ietf-jose-json-web-algorithms (work in progress),
May 2013 (HTML).

[JWE] Jones, M., Rescorla, E., and J. Hildebrand, “JSON Web Encryption (JWE),” draft-ietf-jose-json-web-
encryption (work in progress), May 2013 (HTML).

[JWS] Jones, M., Bradley, J., and N. Sakimura, “JSON Web Signature (JWS),” draft-ietf-jose-json-web-
signature (work in progress), May 2013 (HTML).

[RFC1421] Linn, J., “Privacy Enhancement for Internet Electronic Mail: Part I: Message Encryption and
Authentication Procedures,” RFC 1421, February 1993 (TXT).

[RFC2046] Freed, N. and N. Borenstein, “Multipurpose Internet Mail Extensions (MIME) Part Two: Media
Types,” RFC 2046, November 1996 (TXT).

[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels,” BCP 14, RFC 2119,
March 1997 (TXT, HTML, XML).

[RFC2818] Rescorla, E., “HTTP Over TLS,” RFC 2818, May 2000 (TXT).

[RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, “Uniform Resource Identifier (URI): Generic
Syntax,” STD 66, RFC 3986, January 2005 (TXT, HTML, XML).

[RFC4288] Freed, N. and J. Klensin, “Media Type Specifications and Registration Procedures,” RFC 4288,
December 2005 (TXT).

[RFC4627] Crockford, D., “The application/json Media Type for JavaScript Object Notation (JSON),” RFC 4627,
July 2006 (TXT).

[RFC4648] Josefsson, S., “The Base16, Base32, and Base64 Data Encodings,” RFC 4648, October 2006 (TXT).

[RFC5226] Narten, T. and H. Alvestrand, “Guidelines for Writing an IANA Considerations Section in RFCs,”
BCP 26, RFC 5226, May 2008 (TXT).

[RFC5246] Dierks, T. and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2,” RFC 5246,
August 2008 (TXT).

[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, “Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List (CRL) Profile,” RFC 5280, May 2008
(TXT).

[W3C.CR-
xmldsig-core2-
20120124]

Eastlake, D., Reagle, J., Yiu, K., Solo, D., Datta, P., Hirsch, F., Cantor, S., and T. Roessler, “XML Signature
Syntax and Processing Version 2.0,” World Wide Web Consortium CR CR-xmldsig-core2-20120124,
January 2012 (HTML).

9.2. Informative References

[MagicSignatures] Panzer (editor), J., Laurie, B., and D. Balfanz, “Magic Signatures,” January 2011.

[RFC3447] Jonsson, J. and B. Kaliski, “Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography
Specifications Version 2.1,” RFC 3447, February 2003 (TXT).

[RFC4122] Leach, P., Mealling, M., and R. Salz, “A Universally Unique IDentifier (UUID) URN Namespace,”
RFC 4122, July 2005 (TXT, HTML, XML).

[RFC6030] Hoyer, P., Pei, M., and S. Machani, “Portable Symmetric Key Container (PSKC),” RFC 6030,
October 2010 (TXT).

Appendix A. Example JSON Web Key Sets

RFC 3447 RFC 6030

XML DSIG 2.0

mailto:mbj@microsoft.com
http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms
http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms
mailto:mbj@microsoft.com
mailto:ekr@rtfm.com
mailto:jhildebr@cisco.com
http://tools.ietf.org/html/draft-ietf-jose-json-web-encryption
http://tools.ietf.org/html/draft-ietf-jose-json-web-encryption
mailto:mbj@microsoft.com
mailto:ve7jtb@ve7jtb.com
mailto:n-sakimura@nri.co.jp
http://tools.ietf.org/html/draft-ietf-jose-json-web-signature
http://tools.ietf.org/html/draft-ietf-jose-json-web-signature
mailto:104-8456@mcimail.com
http://tools.ietf.org/html/rfc1421
http://www.rfc-editor.org/rfc/rfc1421.txt
mailto:ned@innosoft.com
mailto:nsb@nsb.fv.com
http://tools.ietf.org/html/rfc2046
http://www.rfc-editor.org/rfc/rfc2046.txt
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
http://tools.ietf.org/html/rfc2818
http://www.rfc-editor.org/rfc/rfc2818.txt
mailto:timbl@w3.org
mailto:fielding@gbiv.com
mailto:LMM@acm.org
http://tools.ietf.org/html/rfc3986
http://www.rfc-editor.org/rfc/rfc3986.txt
http://xml.resource.org/public/rfc/html/rfc3986.html
http://xml.resource.org/public/rfc/xml/rfc3986.xml
http://tools.ietf.org/html/rfc4288
http://www.rfc-editor.org/rfc/rfc4288.txt
http://tools.ietf.org/html/rfc4627
http://www.rfc-editor.org/rfc/rfc4627.txt
http://tools.ietf.org/html/rfc4648
http://www.rfc-editor.org/rfc/rfc4648.txt
http://tools.ietf.org/html/rfc5226
http://www.rfc-editor.org/rfc/rfc5226.txt
http://tools.ietf.org/html/rfc5246
http://www.rfc-editor.org/rfc/rfc5246.txt
http://tools.ietf.org/html/rfc5280
http://www.rfc-editor.org/rfc/rfc5280.txt
http://www.w3.org/TR/2012/CR-xmldsig-core2-20120124
http://www.w3.org/TR/2012/CR-xmldsig-core2-20120124
http://salmon-protocol.googlecode.com/svn/trunk/draft-panzer-magicsig-01.html
http://tools.ietf.org/html/rfc3447
http://www.rfc-editor.org/rfc/rfc3447.txt
mailto:paulle@microsoft.com
mailto:michael@refactored-networks.com
mailto:rsalz@datapower.com
http://tools.ietf.org/html/rfc4122
http://www.rfc-editor.org/rfc/rfc4122.txt
http://xml.resource.org/public/rfc/html/rfc4122.html
http://xml.resource.org/public/rfc/xml/rfc4122.xml
http://tools.ietf.org/html/rfc6030
http://www.rfc-editor.org/rfc/rfc6030.txt

 TOC

 TOC

A.1. Example Public Keys

The following example JWK Set contains two public keys represented as JWKs: one using an
Elliptic Curve algorithm and a second one using an RSA algorithm. The first specifies that the
key is to be used for encryption. The second specifies that the key is to be used with the
RS256 algorithm. Both provide a Key ID for key matching purposes. In both cases, integers
are represented using the base64url encoding of their big endian representations. (Long lines
are broken are for display purposes only.)

 {"keys":
 [
 {"kty":"EC",
 "crv":"P-256",
 "x":"MKBCTNIcKUSDii11ySs3526iDZ8AiTo7Tu6KPAqv7D4",
 "y":"4Etl6SRW2YiLUrN5vfvVHuhp7x8PxltmWWlbbM4IFyM",
 "use":"enc",
 "kid":"1"},

 {"kty":"RSA",
 "n": "0vx7agoebGcQSuuPiLJXZptN9nndrQmbXEps2aiAFbWhM78LhWx
 4cbbfAAtVT86zwu1RK7aPFFxuhDR1L6tSoc_BJECPebWKRXjBZCiFV4n3oknjhMs
 tn64tZ_2W-5JsGY4Hc5n9yBXArwl93lqt7_RN5w6Cf0h4QyQ5v-65YGjQR0_FDW2
 QvzqY368QQMicAtaSqzs8KJZgnYb9c7d0zgdAZHzu6qMQvRL5hajrn1n91CbOpbI
 SD08qNLyrdkt-bFTWhAI4vMQFh6WeZu0fM4lFd2NcRwr3XPksINHaQ-G_xBniIqb
 w0Ls1jF44-csFCur-kEgU8awapJzKnqDKgw",
 "e":"AQAB",
 "alg":"RS256",
 "kid":"2011-04-29"}
]
 }

A.2. Example Private Keys

The following example JWK Set contains two keys represented as JWKs containing both public
and private key values: one using an Elliptic Curve algorithm and a second one using an RSA
algorithm. This example extends the example in the previous section, adding private key
values. (Line breaks are for display purposes only.)

 {"keys":
 [
 {"kty":"EC",
 "crv":"P-256",
 "x":"MKBCTNIcKUSDii11ySs3526iDZ8AiTo7Tu6KPAqv7D4",
 "y":"4Etl6SRW2YiLUrN5vfvVHuhp7x8PxltmWWlbbM4IFyM",
 "d":"870MB6gfuTJ4HtUnUvYMyJpr5eUZNP4Bk43bVdj3eAE",
 "use":"enc",
 "kid":"1"},

 {"kty":"RSA",
 "n":"0vx7agoebGcQSuuPiLJXZptN9nndrQmbXEps2aiAFbWhM78LhWx4
 cbbfAAtVT86zwu1RK7aPFFxuhDR1L6tSoc_BJECPebWKRXjBZCiFV4n3oknjhMst
 n64tZ_2W-5JsGY4Hc5n9yBXArwl93lqt7_RN5w6Cf0h4QyQ5v-65YGjQR0_FDW2Q
 vzqY368QQMicAtaSqzs8KJZgnYb9c7d0zgdAZHzu6qMQvRL5hajrn1n91CbOpbIS
 D08qNLyrdkt-bFTWhAI4vMQFh6WeZu0fM4lFd2NcRwr3XPksINHaQ-G_xBniIqbw
 0Ls1jF44-csFCur-kEgU8awapJzKnqDKgw",
 "e":"AQAB",
 "d":"X4cTteJY_gn4FYPsXB8rdXix5vwsg1FLN5E3EaG6RJoVH-HLLKD9
 M7dx5oo7GURknchnrRweUkC7hT5fJLM0WbFAKNLWY2vv7B6NqXSzUvxT0_YSfqij
 wp3RTzlBaCxWp4doFk5N2o8Gy_nHNKroADIkJ46pRUohsXywbReAdYaMwFs9tv8d
 _cPVY3i07a3t8MN6TNwm0dSawm9v47UiCl3Sk5ZiG7xojPLu4sbg1U2jx4IBTNBz
 nbJSzFHK66jT8bgkuqsk0GjskDJk19Z4qwjwbsnn4j2WBii3RL-Us2lGVkY8fkFz
 me1z0HbIkfz0Y6mqnOYtqc0X4jfcKoAC8Q",

 TOC

 TOC

 "p":"83i-7IvMGXoMXCskv73TKr8637FiO7Z27zv8oj6pbWUQyLPQBQxtPV
 nwD20R-60eTDmD2ujnMt5PoqMrm8RfmNhVWDtjjMmCMjOpSXicFHj7XOuVIYQyqV
 WlWEh6dN36GVZYk93N8Bc9vY41xy8B9RzzOGVQzXvNEvn7O0nVbfs",
 "q":"3dfOR9cuYq-0S-mkFLzgItgMEfFzB2q3hWehMuG0oCuqnb3vobLyum
 qjVZQO1dIrdwgTnCdpYzBcOfW5r370AFXjiWft_NGEiovonizhKpo9VVS78TzFgx
 kIdrecRezsZ-1kYd_s1qDbxtkDEgfAITAG9LUnADun4vIcb6yelxk",
 "dp":"G4sPXkc6Ya9y8oJW9_ILj4xuppu0lzi_H7VTkS8xj5SdX3coE0oim
 YwxIi2emTAue0UOa5dpgFGyBJ4c8tQ2VF402XRugKDTP8akYhFo5tAA77Qe_Nmtu
 YZc3C3m3I24G2GvR5sSDxUyAN2zq8Lfn9EUms6rY3Ob8YeiKkTiBj0",
 "dq":"s9lAH9fggBsoFR8Oac2R_E2gw282rT2kGOAhvIllETE1efrA6huUU
 vMfBcMpn8lqeW6vzznYY5SSQF7pMdC_agI3nG8Ibp1BUb0JUiraRNqUfLhcQb_d9
 GF4Dh7e74WbRsobRonujTYN1xCaP6TO61jvWrX-L18txXw494Q_cgk",
 "qi":"GyM_p6JrXySiz1toFgKbWV-JdI3jQ4ypu9rbMWx3rQJBfmt0FoYzg
 UIZEVFEcOqwemRN81zoDAaa-Bk0KWNGDjJHZDdDmFhW3AN7lI-puxk_mHZGJ11rx
 yR8O55XLSe3SPmRfKwZI6yU24ZxvQKFYItdldUKGzO6Ia6zTKhAVRU",
 "alg":"RS256",
 "kid":"2011-04-29"}
]
 }

A.3. Example Symmetric Keys

The following example JWK Set contains two symmetric keys represented as JWKs: one
designated as being for use with the AES Key Wrap algorithm and a second one that is an
HMAC key. (Line breaks are for display purposes only.)

 {"keys":
 [
 {"kty":"oct",
 "alg":"A128KW",
 "k":"GawgguFyGrWKav7AX4VKUg"},

 {"kty":"oct",
 "k":"AyM1SysPpbyDfgZld3umj1qzKObwVMkoqQ-EstJQLr_T-1qS0gZH75
 aKtMN3Yj0iPS4hcgUuTwjAzZr1Z9CAow",
 "kid":"HMAC key used in JWS A.1 example"}
]
 }

Appendix B. Example Use of "x5c" (X.509 Certificate Chain) Parameter

The following is a non-normative example of a JWK with a RSA signing key represented both
as a bare public key and as an X.509 certificate using the x5c parameter:

 {"kty":"RSA",
 "use":"sig",
 "kid":"1b94c",
 "n":"vrjOfz9Ccdgx5nQudyhdoR17V-IubWMeOZCwX_jj0hgAsz2J_pqYW08
 PLbK_PdiVGKPrqzmDIsLI7sA25VEnHU1uCLNwBuUiCO11_-7dYbsr4iJmG0Q
 u2j8DsVyT1azpJC_NG84Ty5KKthuCaPod7iI7w0LK9orSMhBEwwZDCxTWq4a
 YWAchc8t-emd9qOvWtVMDC2BXksRngh6X5bUYLy6AyHKvj-nUy1wgzjYQDwH
 MTplCoLtU-o-8SNnZ1tmRoGE9uJkBLdh5gFENabWnU5m1ZqZPdwS-qo-meMv
 VfJb6jJVWRpl2SUtCnYG2C32qvbWbjZ_jBPD5eunqsIo1vQ",
 "e":"AQAB",
 "x5c":
 ["MIIDQjCCAiqgAwIBAgIGATz/FuLiMA0GCSqGSIb3DQEBBQUAMGIxCzAJB
 gNVBAYTAlVTMQswCQYDVQQIEwJDTzEPMA0GA1UEBxMGRGVudmVyMRwwGgYD
 VQQKExNQaW5nIElkZW50aXR5IENvcnAuMRcwFQYDVQQDEw5CcmlhbiBDYW1
 wYmVsbDAeFw0xMzAyMjEyMzI5MTVaFw0xODA4MTQyMjI5MTVaMGIxCzAJBg
 NVBAYTAlVTMQswCQYDVQQIEwJDTzEPMA0GA1UEBxMGRGVudmVyMRwwGgYDV

 TOC

 TOC

 QQKExNQaW5nIElkZW50aXR5IENvcnAuMRcwFQYDVQQDEw5CcmlhbiBDYW1w
 YmVsbDCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAL64zn8/QnH
 YMeZ0LncoXaEde1fiLm1jHjmQsF/449IYALM9if6amFtPDy2yvz3YlRij66
 s5gyLCyO7ANuVRJx1NbgizcAblIgjtdf/u3WG7K+IiZhtELto/A7Fck9Ws6
 SQvzRvOE8uSirYbgmj6He4iO8NCyvaK0jIQRMMGQwsU1quGmFgHIXPLfnpn
 fajr1rVTAwtgV5LEZ4Iel+W1GC8ugMhyr4/p1MtcIM42EA8BzE6ZQqC7VPq
 PvEjZ2dbZkaBhPbiZAS3YeYBRDWm1p1OZtWamT3cEvqqPpnjL1XyW+oyVVk
 aZdklLQp2Btgt9qr21m42f4wTw+Xrp6rCKNb0CAwEAATANBgkqhkiG9w0BA
 QUFAAOCAQEAh8zGlfSlcI0o3rYDPBB07aXNswb4ECNIKG0CETTUxmXl9KUL
 +9gGlqCz5iWLOgWsnrcKcY0vXPG9J1r9AqBNTqNgHq2G03X09266X5CpOe1
 zFo+Owb1zxtp3PehFdfQJ610CDLEaS9V9Rqp17hCyybEpOGVwe8fnk+fbEL
 2Bo3UPGrpsHzUoaGpDftmWssZkhpBJKVMJyf/RuP2SmmaIzmnw9JiSlYhzo
 4tpzd5rFXhjRbg4zW9C+2qok+2+qDM1iJ684gPHMIY8aLWrdgQTxkumGmTq
 gawR+N5MDtdPTEQ0XfIBc2cJEUyMTY5MPvACWpkA6SdS4xSvdXK3IVfOWA=="]
 }

Appendix C. Acknowledgements

A JSON representation for RSA public keys was previously introduced by John Panzer, Ben
Laurie, and Dirk Balfanz in [MagicSignatures].

This specification is the work of the JOSE Working Group, which includes dozens of active and
dedicated participants. In particular, the following individuals contributed ideas, feedback, and
wording that influenced this specification:

Dirk Balfanz, Richard Barnes, John Bradley, Brian Campbell, Breno de Medeiros, Joe
Hildebrand, Edmund Jay, Ben Laurie, James Manger, Matt Miller, Tony Nadalin, Axel Nennker,
John Panzer, Eric Rescorla, Nat Sakimura, Jim Schaad, Paul Tarjan, Hannes Tschofenig, and
Sean Turner.

Jim Schaad and Karen O'Donoghue chaired the JOSE working group and Sean Turner and
Stephen Farrell served as Security area directors during the creation of this specification.

Appendix D. Document History

[[to be removed by the RFC editor before publication as an RFC]]

-11

Stated that when kid values are used within a JWK Set, different keys within the
JWK Set SHOULD use distinct kid values.
Added optional x5u (X.509 URL), x5t (X.509 Certificate Thumbprint), and x5c
(X.509 Certificate Chain) JWK parameters.
Added section on Encrypted JWK and Encrypted JWK Set Formats.
Added a Parameter Information Class value to the JSON Web Key Parameters
registry, which registers whether the parameter conveys public or private
information.
Registered application/jwk+json and application/jwk-set+json MIME
types and JWK and JWK-SET typ header parameter values, addressing issue
#21.

-10

No changes were made, other than to the version number and date.

-09

Expanded the scope of the JWK specification to include private and symmetric
key representations, as specified by draft-jones-jose-json-private-and-
symmetric-key-00.
Defined that members that are not understood must be ignored.

-08

Magic Signatures

Changed the name of the JWK key type parameter from alg to kty to enable
use of alg to indicate the particular algorithm that the key is intended to be
used with.
Clarified statements of the form "This member is OPTIONAL" to "Use of this
member is OPTIONAL".
Referenced String Comparison Rules in JWS.
Added seriesInfo information to Internet Draft references.

-07

Changed the name of the JWK RSA modulus parameter from mod to n and the
name of the JWK RSA exponent parameter from xpo to e, so that the identifiers
are the same as those used in RFC 3447.

-06

Changed the name of the JWK RSA exponent parameter from exp to xpo so as
to allow the potential use of the name exp for a future extension that might
define an expiration parameter for keys. (The exp name is already used for this
purpose in the JWT specification.)
Clarify that the alg (algorithm family) member is REQUIRED.
Correct an instance of "JWK" that should have been "JWK Set".
Applied changes made by the RFC Editor to RFC 6749's registry language to this
specification.

-05

Indented artwork elements to better distinguish them from the body text.

-04

Refer to the registries as the primary sources of defined values and then
secondarily reference the sections defining the initial contents of the registries.
Normatively reference [W3C.CR‑xmldsig‑core2‑20120124] for its
security considerations.
Added this language to Registration Templates: "This name is case sensitive.
Names that match other registered names in a case insensitive manner
SHOULD NOT be accepted."
Described additional open issues.
Applied editorial suggestions.

-03

Clarified that kid values need not be unique within a JWK Set.
Moved JSON Web Key Parameters registry to the JWK specification.
Added "Collision Resistant Namespace" to the terminology section.
Changed registration requirements from RFC Required to Specification Required
with Expert Review.
Added Registration Template sections for defined registries.
Added Registry Contents sections to populate registry values.
Numerous editorial improvements.

-02

Simplified JWK terminology to get replace the "JWK Key Object" and "JWK
Container Object" terms with simply "JSON Web Key (JWK)" and "JSON Web Key
Set (JWK Set)" and to eliminate potential confusion between single keys and sets
of keys. As part of this change, the top-level member name for a set of keys was
changed from jwk to keys.
Clarified that values with duplicate member names MUST be rejected.
Established JSON Web Key Set Parameters registry.
Explicitly listed non-goals in the introduction.
Moved algorithm-specific definitions from JWK to JWA.
Reformatted to give each member definition its own section heading.

-01

Corrected the Magic Signatures reference.

XML DSIG 2.0

 TOC

-00

Created the initial IETF draft based upon draft-jones-json-web-key-03 with no
normative changes.

Author's Address

 Michael B. Jones
 Microsoft

Email: mbj@microsoft.com
URI: http://self-issued.info/

mailto:mbj@microsoft.com
http://self-issued.info/

	JSON Web Key (JWK) draft-ietf-jose-json-web-key-11
	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Notational Conventions
	2. Terminology
	3. JSON Web Key (JWK) Format
	3.1. "kty" (Key Type) Parameter
	3.2. "use" (Key Use) Parameter
	3.3. "alg" (Algorithm) Parameter
	3.4. "kid" (Key ID) Parameter
	3.5. "x5u" (X.509 URL) Header Parameter
	3.6. "x5t" (X.509 Certificate Thumbprint) Header Parameter
	3.7. "x5c" (X.509 Certificate Chain) Parameter
	4. JSON Web Key Set (JWK Set) Format
	4.1. "keys" (JSON Web Key Set) Parameter
	5. String Comparison Rules
	6. Encrypted JWK and Encrypted JWK Set Formats
	7. IANA Considerations
	7.1. JSON Web Key Parameters Registry
	7.1.1. Registration Template
	7.1.2. Initial Registry Contents
	7.2. JSON Web Key Set Parameters Registry
	7.2.1. Registration Template
	7.2.2. Initial Registry Contents
	7.3. JSON Web Signature and Encryption Type Values Registration
	7.3.1. Registry Contents
	7.4. Media Type Registration
	7.4.1. Registry Contents
	8. Security Considerations
	9. References
	9.1. Normative References
	9.2. Informative References
	Appendix A. Example JSON Web Key Sets
	A.1. Example Public Keys
	A.2. Example Private Keys
	A.3. Example Symmetric Keys
	Appendix B. Example Use of "x5c" (X.509 Certificate Chain) Parameter
	Appendix C. Acknowledgements
	Appendix D. Document History
	Author's Address

