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1.  Introduction

A JSON Web Key (JWK) is a JavaScript Object Notation (JSON)  data structure that
represents a cryptographic key. This specification also defines a JSON Web Key Set (JWK Set)
JSON data structure for representing a set of JWKs. Cryptographic algorithms and identifiers
for use with this specification are described in the separate JSON Web Algorithms (JWA) 
specification.

Goals for this specification do not include representing certificate chains, representing
certified keys, and replacing X.509 certificates.

JWKs and JWK Sets are used in the JSON Web Signature (JWS)  and JSON Web Encryption
(JWE)  specifications.

1.1.  Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in Key words for use in RFCs to Indicate Requirement Levels

.

2.  Terminology

JSON Web Key (JWK)
A JSON object that represents a cryptographic key.

JSON Web Key Set (JWK Set)
A JSON object that contains an array of JWKs as the value of its keys member.

Base64url Encoding
The URL- and filename-safe Base64 encoding described in  [RFC4648],
Section 5, with the (non URL-safe) '=' padding characters omitted, as permitted by
Section 3.2. (See Appendix C of  for notes on implementing base64url
encoding without padding.)

Collision Resistant Namespace
A namespace that allows names to be allocated in a manner such that they are
highly unlikely to collide with other names. For instance, collision resistance can be

[RFC4627]

[JWA]

[JWS]
[JWE]

[RFC2119]

RFC 4648

[JWS]
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achieved through administrative delegation of portions of the namespace or
through use of collision-resistant name allocation functions. Examples of Collision
Resistant Namespaces include: Domain Names, Object Identifiers (OIDs) as
defined in the ITU-T X.660 and X.670 Recommendation series, and Universally
Unique IDentifiers (UUIDs) . When using an administratively delegated
namespace, the definer of a name needs to take reasonable precautions to
ensure they are in control of the portion of the namespace they use to define the
name.

Encrypted JWK
A JWE with a JWK as its plaintext value.

Encrypted JWK Set
A JWE with a JWK Set as its plaintext value.

3.  JSON Web Key (JWK) Format

A JSON Web Key (JWK) is a JSON object containing specific members, as specified below.
Those members that are common to all key types are defined below.

In addition to the common parameters, each JWK will have members that are specific to the
kind of key being represented. These members represent the parameters of the key. Section
5 of the JSON Web Algorithms (JWA)  specification defines multiple kinds of
cryptographic keys and their associated members.

The member names within a JWK MUST be unique; objects with duplicate member names
MUST be rejected.

Additional members MAY be present in the JWK. If not understood by implementations
encountering them, they MUST be ignored. Member names used for representing key
parameters for different kinds of keys need not be distinct. Any new member name SHOULD
either be registered in the IANA JSON Web Key Parameters registry  or be a
value that contains a Collision Resistant Namespace.

3.1.  "kty" (Key Type) Parameter

The kty (key type) member identifies the cryptographic algorithm family used with the key.
kty values SHOULD either be registered in the IANA JSON Web Key Types registry  or
be a value that contains a Collision Resistant Namespace. The kty value is a case sensitive
string. Use of this member is REQUIRED.

A list of defined kty values can be found in the IANA JSON Web Key Types registry ; the
initial contents of this registry are the values defined in Section 5.1 of the JSON Web
Algorithms (JWA)  specification.

Additional members used with these kty values can be found in the IANA JSON Web Key
Parameters registry ; the initial contents of this registry are the values defined in
Sections 5.2 and 5.3 of the JSON Web Algorithms (JWA)  specification.

3.2.  "use" (Key Use) Parameter

The use (key use) member identifies the intended use of the key. Values defined by this
specification are:

sig (signature or MAC operation)
enc (encryption)

Other values MAY be used. The use value is a case sensitive string. Use of this member is
OPTIONAL.

[RFC4122]

[JWA]

Section 7.1

[JWA]

[JWA]

[JWA]

Section 7.1
[JWA]
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3.3.  "alg" (Algorithm) Parameter

The alg (algorithm) member identifies the algorithm intended for use with the key. The
values used in this field are the same as those used in the JWS  and JWE  alg and
enc header parameters; these values can be found in the JSON Web Signature and
Encryption Algorithms registry . Use of this member is OPTIONAL.

3.4.  "kid" (Key ID) Parameter

The kid (key ID) member can be used to match a specific key. This can be used, for
instance, to choose among a set of keys within a JWK Set during key rollover. The
interpretation of the kid value is unspecified. When kid values are used within a JWK Set,
different keys within the JWK Set SHOULD use distinct kid values. The kid value is a case
sensitive string. Use of this member is OPTIONAL.

When used with JWS or JWE, the kid value can be used to match a JWS or JWE kid header
parameter value.

3.5.  "x5u" (X.509 URL) Header Parameter

The x5u (X.509 URL) member is a URI  that refers to a resource for an X.509
public key certificate or certificate chain . The identified resource MUST provide a
representation of the certificate or certificate chain that conforms to  [RFC5280] in
PEM encoded form . The key in the first certificate MUST match the bare public
key represented by other members of the JWK. The protocol used to acquire the resource
MUST provide integrity protection; an HTTP GET request to retrieve the certificate MUST use
TLS  ; the identity of the server MUST be validated, as per Section
3.1 of HTTP Over TLS . Use of this member is OPTIONAL.

3.6.  "x5t" (X.509 Certificate Thumbprint) Header Parameter

The x5t (X.509 Certificate Thumbprint) member is a base64url encoded SHA-1 thumbprint
(a.k.a. digest) of the DER encoding of an X.509 certificate . The key in the
certificate MUST match the bare public key represented by other members of the JWK. Use of
this member is OPTIONAL.

3.7.  "x5c" (X.509 Certificate Chain) Parameter

x5c
The x5c (X.509 Certificate Chain) member contains a chain of one or more PKIX
certificates . The certificate chain is represented as a JSON array of
certificate value strings. Each string in the array is a base64 encoded (
Section 4 -- not base64url encoded) DER  PKIX certificate value.
The PKIX certificate containing the key value MUST be the first certificate. This MAY
be followed by additional certificates, with each subsequent certificate being the
one used to certify the previous one. The key in the first certificate MUST match
the bare public key represented by other members of the JWK. Use of this member
is OPTIONAL.

4.  JSON Web Key Set (JWK Set) Format

A JSON Web Key Set (JWK Set) is a JSON object that contains an array of JSON Web Key values
as the value of its keys member.

[JWS] [JWE]

[JWA]

[RFC3986]
[RFC5280]

RFC 5280
[RFC1421]

[RFC2818] [RFC5246]
[RFC2818]

[RFC5280]

[RFC5280]
[RFC4648]

[ITU.X690.1994]
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The member names within a JWK Set MUST be unique; objects with duplicate member names
MUST be rejected.

Additional members MAY be present in the JWK Set. If not understood by implementations
encountering them, they MUST be ignored. Parameters for representing additional properties
of JWK Sets SHOULD either be registered in the IANA JSON Web Key Set Parameters registry

 or be a value that contains a Collision Resistant Namespace.

4.1.  "keys" (JSON Web Key Set) Parameter

The value of the keys (JSON Web Key Set) member is an array of JSON Web Key (JWK) values.
Use of this member is REQUIRED.

5.  String Comparison Rules

Processing a JWK inevitably requires comparing known strings to values in JSON objects. For
example, in checking what the key type is, the Unicode string encoding kty will be checked
against the member names in the JWK to see if there is a matching name.

Comparisons between JSON strings and other Unicode strings MUST be performed by
comparing Unicode code points without normalization as specified in the String Comparison
Rules in Section 5.3 of .

6.  Encrypted JWK and Encrypted JWK Set Formats

JWKs containing non-public key material will need to be encrypted in some contexts to
prevent the disclosure of private or symmetric key values to unintended parties. The use of
an Encrypted JWK, which is a JWE with a JWK as its plaintext value, is RECOMMENED for this
purpose. The processing of Encrypted JWKs is identical to the processing of other JWEs. A cty
(content type) header parameter value of JWK can be used to indicate that the content of the
JWE is a JWK in contexts where this is useful.

JWK Sets containing non-public key material will similarly need to be encrypted. The use of an
Encrypted JWK Set, which is a JWE with a JWK Set as its plaintext value, is RECOMMENED for
this purpose. The processing of Encrypted JWK Sets is identical to the processing of other
JWEs. A cty (content type) header parameter value of JWK-SET can be used to indicate that
the content of the JWE is a JWK Set in contexts where this is useful.

7.  IANA Considerations

The following registration procedure is used for all the registries established by this
specification.

Values are registered with a Specification Required  after a two-week review
period on the [TBD]@ietf.org mailing list, on the advice of one or more Designated Experts.
However, to allow for the allocation of values prior to publication, the Designated Expert(s)
may approve registration once they are satisfied that such a specification will be published.

Registration requests must be sent to the [TBD]@ietf.org mailing list for review and
comment, with an appropriate subject (e.g., "Request for access token type: example"). [[
Note to RFC-EDITOR: The name of the mailing list should be determined in consultation with
the IESG and IANA. Suggested name: jose-reg-review. ]]

Within the review period, the Designated Expert(s) will either approve or deny the registration
request, communicating this decision to the review list and IANA. Denials should include an
explanation and, if applicable, suggestions as to how to make the request successful.

Section 7.2

[JWS]

[RFC5226]
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IANA must only accept registry updates from the Designated Expert(s) and should direct all
requests for registration to the review mailing list.

7.1.  JSON Web Key Parameters Registry

This specification establishes the IANA JSON Web Key Parameters registry for reserved JWK
parameter names. The registry records the reserved parameter name and a reference to the
specification that defines it. It also records whether the parameter conveys public or private
information. This specification registers the parameter names defined in . The
same JWK parameter name may be registered multiple times, provided that duplicate
parameter registrations are only for algorithm-specific JWK parameters; in this case, the
meaning of the duplicate parameter name is disambiguated by the kty value of the JWK
containing it.

7.1.1.  Registration Template

Parameter Name:
The name requested (e.g., "example"). This name is case sensitive. Names that
match other registered names in a case insensitive manner SHOULD NOT be
accepted.

Parameter Information Class:
Registers whether the parameter conveys public or private information. Its value
must be one the words Public or Private.

Change Controller:
For Standards Track RFCs, state "IETF". For others, give the name of the
responsible party. Other details (e.g., postal address, email address, home page
URI) may also be included.

Specification Document(s):
Reference to the document(s) that specify the parameter, preferably including
URI(s) that can be used to retrieve copies of the document(s). An indication of the
relevant sections may also be included but is not required.

7.1.2.  Initial Registry Contents

Parameter Name: kty
Parameter Information Class: Public
Change Controller: IETF
Specification Document(s):  of [[ this document ]]

Parameter Name: use
Parameter Information Class: Public
Change Controller: IETF
Specification Document(s):  of [[ this document ]]

Parameter Name: alg
Parameter Information Class: Public
Change Controller: IETF
Specification Document(s):  of [[ this document ]]

Parameter Name: kid
Parameter Information Class: Public
Change Controller: IETF
Specification Document(s):  of [[ this document ]]

Parameter Name: x5u
Parameter Information Class: Public
Change Controller: IETF
Specification Document(s):  of [[ this document ]]

Parameter Name: x5t

Section 3

Section 3.1

Section 3.2

Section 3.3

Section 3.4

Section 3.5
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Parameter Information Class: Public
Change Controller: IETF
Specification Document(s):  of [[ this document ]]

Parameter Name: x5c
Parameter Information Class: Public
Change Controller: IETF
Specification Document(s):  of [[ this document ]]

7.2.  JSON Web Key Set Parameters Registry

This specification establishes the IANA JSON Web Key Set Parameters registry for reserved
JWK Set parameter names. The registry records the reserved parameter name and a
reference to the specification that defines it. This specification registers the parameter
names defined in .

7.2.1.  Registration Template

Parameter Name:
The name requested (e.g., "example"). This name is case sensitive. Names that
match other registered names in a case insensitive manner SHOULD NOT be
accepted.

Change Controller:
For Standards Track RFCs, state "IETF". For others, give the name of the
responsible party. Other details (e.g., postal address, email address, home page
URI) may also be included.

Specification Document(s):
Reference to the document(s) that specify the parameter, preferably including
URI(s) that can be used to retrieve copies of the document(s). An indication of the
relevant sections may also be included but is not required.

7.2.2.  Initial Registry Contents

Parameter Name: keys
Change Controller: IETF
Specification Document(s):  of [[ this document ]]

7.3.  JSON Web Signature and Encryption Type Values Registration

7.3.1.  Registry Contents

This specification registers the JWK and JWK-SET type values in the IANA JSON Web Signature
and Encryption Type Values registry :

"typ" Header Parameter Value: JWK
Abbreviation for MIME Type: application/jwk+json
Change Controller: IETF
Specification Document(s):  of [[ this document ]]

"typ" Header Parameter Value: JWK-SET
Abbreviation for MIME Type: application/jwk-set+json
Change Controller: IETF
Specification Document(s):  of [[ this document ]]

Section 3.6

Section 3.7

Section 4

Section 4.1

[JWS]

Section 3

Section 4
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7.4.  Media Type Registration

7.4.1.  Registry Contents

This specification registers the application/jwk+json and application/jwk-set+json
Media Types  in the MIME Media Type registry  to indicate,
respectively, that the content is a JWK or a JWK Set.

Type Name: application
Subtype Name: jwk+json
Required Parameters: n/a
Optional Parameters: n/a
Encoding considerations: application/jwk+json values are represented as JSON
object; UTF-8 encoding SHOULD be employed for the JSON object.
Security Considerations: See the Security Considerations section of [[ this
document ]]
Interoperability Considerations: n/a
Published Specification: [[ this document ]]
Applications that use this media type: TBD
Additional Information: Magic number(s): n/a, File extension(s): n/a, Macintosh
file type code(s): n/a
Person & email address to contact for further information: Michael B. Jones,
mbj@microsoft.com
Intended Usage: COMMON
Restrictions on Usage: none
Author: Michael B. Jones, mbj@microsoft.com
Change Controller: IETF

Type Name: application
Subtype Name: jwk-set+json
Required Parameters: n/a
Optional Parameters: n/a
Encoding considerations: application/jwk-set+json values are represented as a
JSON Object; UTF-8 encoding SHOULD be employed for the JSON object.
Security Considerations: See the Security Considerations section of [[ this
document ]]
Interoperability Considerations: n/a
Published Specification: [[ this document ]]
Applications that use this media type: TBD
Additional Information: Magic number(s): n/a, File extension(s): n/a, Macintosh
file type code(s): n/a
Person & email address to contact for further information: Michael B. Jones,
mbj@microsoft.com
Intended Usage: COMMON
Restrictions on Usage: none
Author: Michael B. Jones, mbj@microsoft.com
Change Controller: IETF

8.  Security Considerations

All of the security issues faced by any cryptographic application must be faced by a
JWS/JWE/JWK agent. Among these issues are protecting the user's private and symmetric
keys, preventing various attacks, and helping the user avoid mistakes such as inadvertently
encrypting a message for the wrong recipient. The entire list of security considerations is
beyond the scope of this document, but some significant considerations are listed here.

A key is no more trustworthy than the method by which it was received.

Private and symmetric keys must be protected from disclosure to unintended parties. One
recommended means of doing so is to encrypt JWKs or JWK Sets containing them by using

[RFC2046] [RFC4288]



 TOC 

 TOC 

 TOC 

 TOC 

 TOC 

the JWK or JWK Set value as the plaintext of a JWE.

The security considerations in  [RFC3447] and  [RFC6030] about
protecting private and symmetric keys also apply to this specification.

The security considerations in  [W3C.CR‑xmldsig‑core2‑20120124], about key
representations also apply to this specification, other than those that are XML specific.
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A.1.  Example Public Keys

The following example JWK Set contains two public keys represented as JWKs: one using an
Elliptic Curve algorithm and a second one using an RSA algorithm. The first specifies that the
key is to be used for encryption. The second specifies that the key is to be used with the
RS256 algorithm. Both provide a Key ID for key matching purposes. In both cases, integers
are represented using the base64url encoding of their big endian representations. (Long lines
are broken are for display purposes only.)

  {"keys":
    [
      {"kty":"EC",
       "crv":"P-256",
       "x":"MKBCTNIcKUSDii11ySs3526iDZ8AiTo7Tu6KPAqv7D4",
       "y":"4Etl6SRW2YiLUrN5vfvVHuhp7x8PxltmWWlbbM4IFyM",
       "use":"enc",
       "kid":"1"},

      {"kty":"RSA",
       "n": "0vx7agoebGcQSuuPiLJXZptN9nndrQmbXEps2aiAFbWhM78LhWx
  4cbbfAAtVT86zwu1RK7aPFFxuhDR1L6tSoc_BJECPebWKRXjBZCiFV4n3oknjhMs
  tn64tZ_2W-5JsGY4Hc5n9yBXArwl93lqt7_RN5w6Cf0h4QyQ5v-65YGjQR0_FDW2
  QvzqY368QQMicAtaSqzs8KJZgnYb9c7d0zgdAZHzu6qMQvRL5hajrn1n91CbOpbI
  SD08qNLyrdkt-bFTWhAI4vMQFh6WeZu0fM4lFd2NcRwr3XPksINHaQ-G_xBniIqb
  w0Ls1jF44-csFCur-kEgU8awapJzKnqDKgw",
       "e":"AQAB",
       "alg":"RS256",
       "kid":"2011-04-29"}
    ]
  }

A.2.  Example Private Keys

The following example JWK Set contains two keys represented as JWKs containing both public
and private key values: one using an Elliptic Curve algorithm and a second one using an RSA
algorithm. This example extends the example in the previous section, adding private key
values. (Line breaks are for display purposes only.)

  {"keys":
    [
      {"kty":"EC",
       "crv":"P-256",
       "x":"MKBCTNIcKUSDii11ySs3526iDZ8AiTo7Tu6KPAqv7D4",
       "y":"4Etl6SRW2YiLUrN5vfvVHuhp7x8PxltmWWlbbM4IFyM",
       "d":"870MB6gfuTJ4HtUnUvYMyJpr5eUZNP4Bk43bVdj3eAE",
       "use":"enc",
       "kid":"1"},

      {"kty":"RSA",
       "n":"0vx7agoebGcQSuuPiLJXZptN9nndrQmbXEps2aiAFbWhM78LhWx4
  cbbfAAtVT86zwu1RK7aPFFxuhDR1L6tSoc_BJECPebWKRXjBZCiFV4n3oknjhMst
  n64tZ_2W-5JsGY4Hc5n9yBXArwl93lqt7_RN5w6Cf0h4QyQ5v-65YGjQR0_FDW2Q
  vzqY368QQMicAtaSqzs8KJZgnYb9c7d0zgdAZHzu6qMQvRL5hajrn1n91CbOpbIS
  D08qNLyrdkt-bFTWhAI4vMQFh6WeZu0fM4lFd2NcRwr3XPksINHaQ-G_xBniIqbw
  0Ls1jF44-csFCur-kEgU8awapJzKnqDKgw",
       "e":"AQAB",
       "d":"X4cTteJY_gn4FYPsXB8rdXix5vwsg1FLN5E3EaG6RJoVH-HLLKD9
  M7dx5oo7GURknchnrRweUkC7hT5fJLM0WbFAKNLWY2vv7B6NqXSzUvxT0_YSfqij
  wp3RTzlBaCxWp4doFk5N2o8Gy_nHNKroADIkJ46pRUohsXywbReAdYaMwFs9tv8d
  _cPVY3i07a3t8MN6TNwm0dSawm9v47UiCl3Sk5ZiG7xojPLu4sbg1U2jx4IBTNBz
  nbJSzFHK66jT8bgkuqsk0GjskDJk19Z4qwjwbsnn4j2WBii3RL-Us2lGVkY8fkFz
  me1z0HbIkfz0Y6mqnOYtqc0X4jfcKoAC8Q",
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       "p":"83i-7IvMGXoMXCskv73TKr8637FiO7Z27zv8oj6pbWUQyLPQBQxtPV
  nwD20R-60eTDmD2ujnMt5PoqMrm8RfmNhVWDtjjMmCMjOpSXicFHj7XOuVIYQyqV
  WlWEh6dN36GVZYk93N8Bc9vY41xy8B9RzzOGVQzXvNEvn7O0nVbfs",
       "q":"3dfOR9cuYq-0S-mkFLzgItgMEfFzB2q3hWehMuG0oCuqnb3vobLyum
  qjVZQO1dIrdwgTnCdpYzBcOfW5r370AFXjiWft_NGEiovonizhKpo9VVS78TzFgx
  kIdrecRezsZ-1kYd_s1qDbxtkDEgfAITAG9LUnADun4vIcb6yelxk",
       "dp":"G4sPXkc6Ya9y8oJW9_ILj4xuppu0lzi_H7VTkS8xj5SdX3coE0oim
  YwxIi2emTAue0UOa5dpgFGyBJ4c8tQ2VF402XRugKDTP8akYhFo5tAA77Qe_Nmtu
  YZc3C3m3I24G2GvR5sSDxUyAN2zq8Lfn9EUms6rY3Ob8YeiKkTiBj0",
       "dq":"s9lAH9fggBsoFR8Oac2R_E2gw282rT2kGOAhvIllETE1efrA6huUU
  vMfBcMpn8lqeW6vzznYY5SSQF7pMdC_agI3nG8Ibp1BUb0JUiraRNqUfLhcQb_d9
  GF4Dh7e74WbRsobRonujTYN1xCaP6TO61jvWrX-L18txXw494Q_cgk",
       "qi":"GyM_p6JrXySiz1toFgKbWV-JdI3jQ4ypu9rbMWx3rQJBfmt0FoYzg
  UIZEVFEcOqwemRN81zoDAaa-Bk0KWNGDjJHZDdDmFhW3AN7lI-puxk_mHZGJ11rx
  yR8O55XLSe3SPmRfKwZI6yU24ZxvQKFYItdldUKGzO6Ia6zTKhAVRU",
       "alg":"RS256",
       "kid":"2011-04-29"}
    ]
  }

A.3.  Example Symmetric Keys

The following example JWK Set contains two symmetric keys represented as JWKs: one
designated as being for use with the AES Key Wrap algorithm and a second one that is an
HMAC key. (Line breaks are for display purposes only.)

  {"keys":
    [
      {"kty":"oct",
       "alg":"A128KW",
       "k":"GawgguFyGrWKav7AX4VKUg"},

      {"kty":"oct",
       "k":"AyM1SysPpbyDfgZld3umj1qzKObwVMkoqQ-EstJQLr_T-1qS0gZH75
  aKtMN3Yj0iPS4hcgUuTwjAzZr1Z9CAow",
       "kid":"HMAC key used in JWS A.1 example"}
    ]
  }

Appendix B.  Example Use of "x5c" (X.509 Certificate Chain) Parameter

The following is a non-normative example of a JWK with a RSA signing key represented both
as a bare public key and as an X.509 certificate using the x5c parameter:

  {"kty":"RSA",
   "use":"sig",
   "kid":"1b94c",
   "n":"vrjOfz9Ccdgx5nQudyhdoR17V-IubWMeOZCwX_jj0hgAsz2J_pqYW08
   PLbK_PdiVGKPrqzmDIsLI7sA25VEnHU1uCLNwBuUiCO11_-7dYbsr4iJmG0Q
   u2j8DsVyT1azpJC_NG84Ty5KKthuCaPod7iI7w0LK9orSMhBEwwZDCxTWq4a
   YWAchc8t-emd9qOvWtVMDC2BXksRngh6X5bUYLy6AyHKvj-nUy1wgzjYQDwH
   MTplCoLtU-o-8SNnZ1tmRoGE9uJkBLdh5gFENabWnU5m1ZqZPdwS-qo-meMv
   VfJb6jJVWRpl2SUtCnYG2C32qvbWbjZ_jBPD5eunqsIo1vQ",
   "e":"AQAB",
   "x5c":
    ["MIIDQjCCAiqgAwIBAgIGATz/FuLiMA0GCSqGSIb3DQEBBQUAMGIxCzAJB
    gNVBAYTAlVTMQswCQYDVQQIEwJDTzEPMA0GA1UEBxMGRGVudmVyMRwwGgYD
    VQQKExNQaW5nIElkZW50aXR5IENvcnAuMRcwFQYDVQQDEw5CcmlhbiBDYW1
    wYmVsbDAeFw0xMzAyMjEyMzI5MTVaFw0xODA4MTQyMjI5MTVaMGIxCzAJBg
    NVBAYTAlVTMQswCQYDVQQIEwJDTzEPMA0GA1UEBxMGRGVudmVyMRwwGgYDV
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    QQKExNQaW5nIElkZW50aXR5IENvcnAuMRcwFQYDVQQDEw5CcmlhbiBDYW1w
    YmVsbDCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAL64zn8/QnH
    YMeZ0LncoXaEde1fiLm1jHjmQsF/449IYALM9if6amFtPDy2yvz3YlRij66
    s5gyLCyO7ANuVRJx1NbgizcAblIgjtdf/u3WG7K+IiZhtELto/A7Fck9Ws6
    SQvzRvOE8uSirYbgmj6He4iO8NCyvaK0jIQRMMGQwsU1quGmFgHIXPLfnpn
    fajr1rVTAwtgV5LEZ4Iel+W1GC8ugMhyr4/p1MtcIM42EA8BzE6ZQqC7VPq
    PvEjZ2dbZkaBhPbiZAS3YeYBRDWm1p1OZtWamT3cEvqqPpnjL1XyW+oyVVk
    aZdklLQp2Btgt9qr21m42f4wTw+Xrp6rCKNb0CAwEAATANBgkqhkiG9w0BA
    QUFAAOCAQEAh8zGlfSlcI0o3rYDPBB07aXNswb4ECNIKG0CETTUxmXl9KUL
    +9gGlqCz5iWLOgWsnrcKcY0vXPG9J1r9AqBNTqNgHq2G03X09266X5CpOe1
    zFo+Owb1zxtp3PehFdfQJ610CDLEaS9V9Rqp17hCyybEpOGVwe8fnk+fbEL
    2Bo3UPGrpsHzUoaGpDftmWssZkhpBJKVMJyf/RuP2SmmaIzmnw9JiSlYhzo
    4tpzd5rFXhjRbg4zW9C+2qok+2+qDM1iJ684gPHMIY8aLWrdgQTxkumGmTq
    gawR+N5MDtdPTEQ0XfIBc2cJEUyMTY5MPvACWpkA6SdS4xSvdXK3IVfOWA=="]
  }
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