
 TOC JOSE Working Group M. Jones

Internet-Draft Microsoft

Intended status: Standards Track January 16, 2012

Expires: July 19, 2012

JSON Web Algorithms (JWA)
draft-ietf-jose-json-web-algorithms-00

Abstract

The JSON Web Algorithms (JWA) specification enumerates cryptographic algorithms and
identifiers to be used with the JSON Web Signature (JWS) and JSON Web Encryption (JWE)
specifications.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in [RFC2119].

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note
that other groups may also distribute working documents as Internet-Drafts. The list of
current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated,
replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-
Drafts as reference material or to cite them other than as “work in progress.”

This Internet-Draft will expire on July 19, 2012.

Copyright Notice

Copyright (c) 2012 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted from this document
must include Simplified BSD License text as described in Section 4.e of the Trust Legal
Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction
2. Terminology
3. Cryptographic Algorithms for JWS
 3.1. Creating a JWS with HMAC SHA-256, HMAC SHA-384, or HMAC SHA-512
 3.2. Creating a JWS with RSA SHA-256, RSA SHA-384, or RSA SHA-512
 3.3. Creating a JWS with ECDSA P-256 SHA-256, ECDSA P-384 SHA-384, or
ECDSA P-521 SHA-512
 3.4. Additional Digital Signature/HMAC Algorithms
4. Cryptographic Algorithms for JWE

RFC 2119

 TOC

 TOC

 TOC

 4.1. Encrypting a JWE with TBD
 4.2. Additional Encryption Algorithms
5. IANA Considerations
6. Security Considerations
7. Open Issues and Things To Be Done (TBD)
8. References
 8.1. Normative References
 8.2. Informative References
Appendix A. Digital Signature/HMAC Algorithm Identifier Cross-Reference
Appendix B. Encryption Algorithm Identifier Cross-Reference
Appendix C. Acknowledgements
Appendix D. Document History
§ Author's Address

1. Introduction

The JSON Web Algorithms (JWA) specification enumerates cryptographic algorithms and
identifiers to be used with the JSON Web Signature (JWS) and JSON Web Encryption
(JWE) specifications. Enumerating the algorithms and identifiers for them in this
specification, rather than in the JWS and JWE specifications, is intended to allow them to
remain unchanged in the face of changes in the set of required, recommended, optional, and
deprecated algorithms over time. This specification also describes the semantics and
operations that are specific to these algorithms and algorithm families.

2. Terminology

This specification uses the terminology defined by the JSON Web Signature (JWS) and
JSON Web Encryption (JWE) specifications.

3. Cryptographic Algorithms for JWS

JWS uses cryptographic algorithms to sign the contents of the JWS Header and the JWS
Payload. The use of the following algorithms for producing JWSs is defined in this section.

The table below is the set of alg (algorithm) header parameter values defined by
this specification for use with JWS, each of which is explained in more detail in the following
sections:

Alg Parameter Value Algorithm

HS256 HMAC using SHA-256 hash algorithm

HS384 HMAC using SHA-384 hash algorithm

HS512 HMAC using SHA-512 hash algorithm

RS256 RSA using SHA-256 hash algorithm

RS384 RSA using SHA-384 hash algorithm

RS512 RSA using SHA-512 hash algorithm

ES256 ECDSA using P-256 curve and SHA-256 hash algorithm

ES384 ECDSA using P-384 curve and SHA-384 hash algorithm

ES512 ECDSA using P-521 curve and SHA-512 hash algorithm

 Table 1: JWS Defined "alg" Parameter Values

See for a table cross-referencing the digital signature and HMAC alg
(algorithm) values used in this specification with the equivalent identifiers used by other

[JWS]
[JWE]

[JWS]
[JWE]

Table 1

Appendix A

 TOC

 TOC

standards and software packages.

Of these algorithms, only HMAC SHA-256 MUST be implemented by conforming JWS
implementations. It is RECOMMENDED that implementations also support the RSA SHA-256
and ECDSA P-256 SHA-256 algorithms. Support for other algorithms and key sizes is
OPTIONAL.

3.1. Creating a JWS with HMAC SHA-256, HMAC SHA-384, or HMAC SHA-512

Hash based Message Authentication Codes (HMACs) enable one to use a secret plus a
cryptographic hash function to generate a Message Authentication Code (MAC). This can be
used to demonstrate that the MAC matches the hashed content, in this case the JWS
Secured Input, which therefore demonstrates that whoever generated the MAC was in
possession of the secret. The means of exchanging the shared key is outside the scope of
this specification.

The algorithm for implementing and validating HMACs is provided in [RFC2104].
This section defines the use of the HMAC SHA-256, HMAC SHA-384, and HMAC SHA-512
cryptographic hash functions as defined in [FIPS.180‑3]. The alg (algorithm)
header parameter values HS256, HS384, and HS512 are used in the JWS Header to indicate
that the Encoded JWS Signature contains a base64url encoded HMAC value using the
respective hash function.

The HMAC SHA-256 MAC is generated as follows:

1. Apply the HMAC SHA-256 algorithm to the UTF-8 representation of the JWS
Secured Input using the shared key to produce an HMAC value.

2. Base64url encode the resulting HMAC value.

The output is the Encoded JWS Signature for that JWS.

The HMAC SHA-256 MAC for a JWS is validated as follows:

1. Apply the HMAC SHA-256 algorithm to the UTF-8 representation of the JWS
Secured Input of the JWS using the shared key.

2. Base64url encode the resulting HMAC value.
3. If the JWS Signature and the base64url encoded HMAC value exactly match, then

one has confirmation that the shared key was used to generate the HMAC on
the JWS and that the contents of the JWS have not be tampered with.

4. If the validation fails, the JWS MUST be rejected.

Securing content with the HMAC SHA-384 and HMAC SHA-512 algorithms is performed
identically to the procedure for HMAC SHA-256 - just with correspondingly longer key and
result values.

3.2. Creating a JWS with RSA SHA-256, RSA SHA-384, or RSA SHA-512

This section defines the use of the RSASSA-PKCS1-v1_5 digital signature algorithm as
defined in [RFC3447], Section 8.2 (commonly known as PKCS#1), using SHA-256,
SHA-384, or SHA-512 as the hash function. The RSASSA-PKCS1-v1_5 algorithm is described
in [FIPS.186‑3], Section 5.5, and the SHA-256, SHA-384, and SHA-512
cryptographic hash functions are defined in [FIPS.180‑3]. The alg (algorithm)
header parameter values RS256, RS384, and RS512 are used in the JWS Header to indicate
that the Encoded JWS Signature contains a base64url encoded RSA digital signature using
the respective hash function.

A 2048-bit or longer key length MUST be used with this algorithm.

The RSA SHA-256 digital signature is generated as follows:

1. Generate a digital signature of the UTF-8 representation of the JWS Secured
Input using RSASSA-PKCS1-V1_5-SIGN and the SHA-256 hash function with the
desired private key. The output will be a byte array.

2. Base64url encode the resulting byte array.

RFC 2104

FIPS 180-3

RFC 3447

FIPS 186-3
FIPS 180-3

 TOC

2. Base64url encode the resulting byte array.

The output is the Encoded JWS Signature for that JWS.

The RSA SHA-256 digital signature for a JWS is validated as follows:

1. Take the Encoded JWS Signature and base64url decode it into a byte array. If
decoding fails, the JWS MUST be rejected.

2. Submit the UTF-8 representation of the JWS Secured Input and the public key
corresponding to the private key used by the signer to the RSASSA-PKCS1-V1_5-
VERIFY algorithm using SHA-256 as the hash function.

3. If the validation fails, the JWS MUST be rejected.

Signing with the RSA SHA-384 and RSA SHA-512 algorithms is performed identically to the
procedure for RSA SHA-256 - just with correspondingly longer key and result values.

3.3. Creating a JWS with ECDSA P-256 SHA-256, ECDSA P-384 SHA-384, or ECDSA P-
521 SHA-512

The Elliptic Curve Digital Signature Algorithm (ECDSA) is defined by [FIPS.186‑3].
ECDSA provides for the use of Elliptic Curve cryptography, which is able to provide equivalent
security to RSA cryptography but using shorter key lengths and with greater processing
speed. This means that ECDSA digital signatures will be substantially smaller in terms of
length than equivalently strong RSA digital signatures.

This specification defines the use of ECDSA with the P-256 curve and the SHA-256
cryptographic hash function, ECDSA with the P-384 curve and the SHA-384 hash function,
and ECDSA with the P-521 curve and the SHA-512 hash function. The P-256, P-384, and P-
521 curves are also defined in FIPS 186-3. The alg (algorithm) header parameter values
ES256, ES384, and ES512 are used in the JWS Header to indicate that the Encoded JWS
Signature contains a base64url encoded ECDSA P-256 SHA-256, ECDSA P-384 SHA-384, or
ECDSA P-521 SHA-512 digital signature, respectively.

The ECDSA P-256 SHA-256 digital signature is generated as follows:

1. Generate a digital signature of the UTF-8 representation of the JWS Secured
Input using ECDSA P-256 SHA-256 with the desired private key. The output will
be the EC point (R, S), where R and S are unsigned integers.

2. Turn R and S into byte arrays in big endian order. Each array will be 32 bytes
long.

3. Concatenate the two byte arrays in the order R and then S.
4. Base64url encode the resulting 64 byte array.

The output is the Encoded JWS Signature for the JWS.

The ECDSA P-256 SHA-256 digital signature for a JWS is validated as follows:

1. Take the Encoded JWS Signature and base64url decode it into a byte array. If
decoding fails, the JWS MUST be rejected.

2. The output of the base64url decoding MUST be a 64 byte array.
3. Split the 64 byte array into two 32 byte arrays. The first array will be R and the

second S. Remember that the byte arrays are in big endian byte order; please
check the ECDSA validator in use to see what byte order it requires.

4. Submit the UTF-8 representation of the JWS Secured Input, R, S and the public
key (x, y) to the ECDSA P-256 SHA-256 validator.

5. If the validation fails, the JWS MUST be rejected.

The ECDSA validator will then determine if the digital signature is valid, given the inputs. Note
that ECDSA digital signature contains a value referred to as K, which is a random number
generated for each digital signature instance. This means that two ECDSA digital signatures
using exactly the same input parameters will output different signature values because their
K values will be different. The consequence of this is that one must validate an ECDSA digital
signature by submitting the previously specified inputs to an ECDSA validator.

Signing with the ECDSA P-384 SHA-384 and ECDSA P-521 SHA-512 algorithms is performed
identically to the procedure for ECDSA P-256 SHA-256 - just with correspondingly longer key
and result values.

FIPS 186-3

 TOC

 TOC

3.4. Additional Digital Signature/HMAC Algorithms

Additional algorithms MAY be used to protect JWSs with corresponding alg (algorithm)
header parameter values being defined to refer to them. New alg header parameter values
SHOULD either be defined in the IANA JSON Web Signature Algorithms registry or be a URI
that contains a collision resistant namespace. In particular, it is permissible to use the
algorithm identifiers defined in [RFC3275] and related specifications as alg
values.

4. Cryptographic Algorithms for JWE

JWE uses cryptographic algorithms to encrypt the Content Encryption Key (CEK) and the
Plaintext. This section specifies a set of specific algorithms for these purposes.

The table below is the set of alg (algorithm) header parameter values that are
defined by this specification for use with JWE. These algorithms are used to encrypt the CEK,
which produces the JWE Encrypted Key.

alg
Parameter
Value

Encryption Algorithm

RSA1_5 RSA using RSA-PKCS1-1.5 padding, as defined in [RFC3447]

RSA-OAEP RSA using Optimal Asymmetric Encryption Padding (OAEP), as defined in
[RFC3447]

ECDH-ES
Elliptic Curve Diffie-Hellman Ephemeral Static, as defined in [RFC6090], and
using the Concat KDF, as defined in , where the Digest Method is
SHA-256

A128KW Advanced Encryption Standard (AES) Key Wrap Algorithm using 128 bit keys, as
defined in [RFC3394]

A256KW Advanced Encryption Standard (AES) Key Wrap Algorithm using 256 bit keys, as
defined in [RFC3394]

A128GCM Advanced Encryption Standard (AES) using 128 bit keys in Galois/Counter Mode, as
defined in and

A256GCM Advanced Encryption Standard (AES) using 256 bit keys in Galois/Counter Mode, as
defined in and

 Table 2: JWE Defined "alg" Parameter Values

The table below is the set of enc (encryption method) header parameter values that
are defined by this specification for use with JWE. These algorithms are used to encrypt the
Plaintext, which produces the Ciphertext.

enc
Parameter
Value

Symmetric Encryption Algorithm

A128CBC Advanced Encryption Standard (AES) using 128 bit keys in Cipher Block Chaining
mode, as defined in and

A256CBC Advanced Encryption Standard (AES) using 256 bit keys in Cipher Block Chaining
mode, as defined in and

A128GCM Advanced Encryption Standard (AES) using 128 bit keys in Galois/Counter Mode, as
defined in and

A256GCM Advanced Encryption Standard (AES) using 256 bit keys in Galois/Counter Mode, as
defined in and

XML DSIG

Table 2

RFC 3447

RFC 3447

RFC 6090
[NIST‑800‑56A]

RFC 3394

RFC 3394

[FIPS‑197] [NIST‑800‑38D]

[FIPS‑197] [NIST‑800‑38D]

Table 3

[FIPS‑197] [NIST‑800‑38A]

[FIPS‑197] [NIST‑800‑38A]

[FIPS‑197] [NIST‑800‑38D]

[FIPS‑197] [NIST‑800‑38D]

 TOC

 TOC

 TOC

 TOC

 TOC

 Table 3: JWE Defined "enc" Parameter Values

See for a table cross-referencing the encryption alg (algorithm) and alg
(encryption method) values used in this specification with the equivalent identifiers used by
other standards and software packages.

Of these algorithms, only RSA-PKCS1-1.5 with 2048 bit keys, AES-128-CBC, and AES-256-
CBC MUST be implemented by conforming JWE implementations. It is RECOMMENDED that
implementations also support ECDH-ES with 256 bit keys, AES-128-GCM, and AES-256-GCM.
Support for other algorithms and key sizes is OPTIONAL.

4.1. Encrypting a JWE with TBD

TBD: Descriptions of the particulars of using each specified encryption algorithm go here.

4.2. Additional Encryption Algorithms

Additional algorithms MAY be used to protect JWEs with corresponding alg (algorithm) and
enc (encryption method) header parameter values being defined to refer to them. New alg
and enc header parameter values SHOULD either be defined in the IANA JSON Web
Encryption Algorithms registry or be a URI that contains a collision resistant namespace. In
particular, it is permissible to use the algorithm identifiers defined in
[W3C.REC‑xmlenc‑core‑20021210],
[W3C.CR‑xmlenc‑core1‑20110303], and related specifications as alg and enc values.

5. IANA Considerations

This specification calls for:

A new IANA registry entitled "JSON Web Signature Algorithms" for values of the
JWS alg (algorithm) header parameter is defined in . Inclusion in the
registry is RFC Required in the [RFC5226] sense. The registry will just
record the alg value and a pointer to the RFC that defines it. This specification
defines inclusion of the algorithm values defined in .
A new IANA registry entitled "JSON Web Encryption Algorithms" for values used
with the JWE alg (algorithm) and enc (encryption method) header parameters is
defined in . Inclusion in the registry is RFC Required in the

 [RFC5226] sense. The registry will record the alg or enc value and a
pointer to the RFC that defines it. This specification defines inclusion of the
algorithm values defined in and .

6. Security Considerations

TBD

7. Open Issues and Things To Be Done (TBD)

The following items remain to be done in this draft:

Since RFC 3447 Section 8 explicitly calls for people NOT to adopt RSASSA-PKCS1
for new applications and instead requests that people transition to RSASSA-PSS,
we probably need some Security Considerations text explaining why RSASSA-
PKCS1 is being used (it's what's commonly implemented) and what the potential

Appendix B

XML Encryption
XML Encryption 1.1

Section 3.4
RFC 5226

Table 1

Section 4.2 RFC
5226

Table 2 Table 3

 TOC

 TOC

 TOC

PKCS1 is being used (it's what's commonly implemented) and what the potential
consequences are.
Consider having an algorithm that is a MAC using SHA-256 that provides content
integrity but for which there is no associated secret. This would be like the JWT
"alg":"none", in that no validation of the authenticity content is performed but a
checksum is provided.
Consider whether to define "alg":"none" here, rather than in the JWT spec.
Should we define the use of RFC 5649 key wrapping functions, which allow
arbitrary key sizes, in addition to the current use of RFC 3394 key wrapping
functions, which require that keys be multiples of 64 bits? Is this needed in
practice?
Decide whether to move the JWK algorithm family definitions "EC" and "RSA"
here. This would likely result in all the family-specific parameter definitions also
moving here ("crv", "x", "y", "mod", "exp"), leaving very little normative text in the
JWK spec itself. This seems like it would reduce spec readability and so was not
done.
It would be good to say somewhere, in normative language, that eventually the
algorithms and/or key sizes currently specified will no longer be considered
sufficiently secure and will be removed. Therefore, implementers MUST be
prepared for this eventuality.
Write the Security Considerations section.

8. References

8.1. Normative References

[FIPS-197] National Institute of Standards and Technology (NIST), “Advanced Encryption Standard (AES),” FIPS PUB 197,
November 2001.

[FIPS.180-
3]

National Institute of Standards and Technology, “Secure Hash Standard (SHS),” FIPS PUB 180-3, October 2008.

[FIPS.186-
3]

National Institute of Standards and Technology, “Digital Signature Standard (DSS),” FIPS PUB 186-3, June 2009.

[JWE] Jones, M., Rescorla, E., and J. Hildebrand, “JSON Web Encryption (JWE),” January 2012.

[JWS] Jones, M., Bradley, J., and N. Sakimura, “JSON Web Signature (JWS),” January 2012.

[NIST-800-
38A]

National Institute of Standards and Technology (NIST), “Recommendation for Block Cipher Modes of Operation,”
NIST PUB 800-38A, December 2001.

[NIST-800-
38D]

National Institute of Standards and Technology (NIST), “Recommendation for Block Cipher Modes of Operation:
Galois/Counter Mode (GCM) and GMAC,” NIST PUB 800-38D, December 2001.

[NIST-800-
56A]

National Institute of Standards and Technology (NIST), “Recommendation for Pair-Wise Key Establishment Schemes
Using Discrete Logarithm Cryptography (Revised),” NIST PUB 800-56A, March 2007.

[RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, “HMAC: Keyed-Hashing for Message Authentication,”
RFC 2104, February 1997 (TXT).

[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels,” BCP 14, RFC 2119, March 1997
(TXT, HTML, XML).

[RFC3394] Schaad, J. and R. Housley, “Advanced Encryption Standard (AES) Key Wrap Algorithm,” RFC 3394,
September 2002 (TXT).

[RFC3447] Jonsson, J. and B. Kaliski, “Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography
Specifications Version 2.1,” RFC 3447, February 2003 (TXT).

[RFC5226] Narten, T. and H. Alvestrand, “Guidelines for Writing an IANA Considerations Section in RFCs,” BCP 26,
RFC 5226, May 2008 (TXT).

[RFC6090] McGrew, D., Igoe, K., and M. Salter, “Fundamental Elliptic Curve Cryptography Algorithms,” RFC 6090,
February 2011 (TXT).

8.2. Informative References

[CanvasApp] Facebook, “Canvas Applications,” 2010.

[I-D.rescorla-jsms] Rescorla, E. and J. Hildebrand, “JavaScript Message Security Format,” draft-rescorla-jsms-00 (work in
progress), March 2011 (TXT).

[JCA] Oracle, “Java Cryptography Architecture,” 2011.

[JSE] Bradley, J. and N. Sakimura (editor), “JSON Simple Encryption,” September 2010.

[JSS] Bradley, J. and N. Sakimura (editor), “JSON Simple Sign,” September 2010.

[MagicSignatures] Panzer (editor), J., Laurie, B., and D. Balfanz, “Magic Signatures,” August 2010.

http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
mailto:mbj@microsoft.com
mailto:ekr@rtfm.com
mailto:jhildebr@cisco.com
http://tools.ietf.org/html/draft-ietf-jose-json-web-encryption
mailto:mbj@microsoft.com
mailto:ve7jtb@ve7jtb.com
mailto:n-sakimura@nri.co.jp
http://tools.ietf.org/html/draft-ietf-jose-json-web-signature
mailto:hugo@watson.ibm.com
mailto:mihir@cs.ucsd.edu
mailto:canetti@watson.ibm.com
http://tools.ietf.org/html/rfc2104
http://www.rfc-editor.org/rfc/rfc2104.txt
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
http://tools.ietf.org/html/rfc3394
http://www.rfc-editor.org/rfc/rfc3394.txt
http://tools.ietf.org/html/rfc3447
http://www.rfc-editor.org/rfc/rfc3447.txt
http://tools.ietf.org/html/rfc5226
http://www.rfc-editor.org/rfc/rfc5226.txt
http://tools.ietf.org/html/rfc6090
http://www.rfc-editor.org/rfc/rfc6090.txt
http://developers.facebook.com/docs/authentication/canvas
http://tools.ietf.org/html/draft-rescorla-jsms-00
http://www.ietf.org/internet-drafts/draft-rescorla-jsms-00.txt
http://download.java.net/jdk7/docs/technotes/guides/security/SunProviders.html
http://jsonenc.info/enc/1.0/
http://jsonenc.info/jss/1.0/
http://salmon-protocol.googlecode.com/svn/trunk/draft-panzer-magicsig-experimental-00.html

 TOC

 TOC

[RFC3275] Eastlake, D., Reagle, J., and D. Solo, “(Extensible Markup Language) XML-Signature Syntax and
Processing,” RFC 3275, March 2002 (TXT).

[W3C.CR-xmlenc-
core1-20110303]

Hirsch, F., Roessler, T., Reagle, J., and D. Eastlake, “XML Encryption Syntax and Processing Version
1.1,” World Wide Web Consortium CR CR-xmlenc-core1-20110303, March 2011 (HTML).

[W3C.REC-xmlenc-
core-20021210]

Eastlake, D. and J. Reagle, “XML Encryption Syntax and Processing,” World Wide Web Consortium
Recommendation REC-xmlenc-core-20021210, December 2002 (HTML).

Appendix A. Digital Signature/HMAC Algorithm Identifier Cross-Reference

This appendix contains a table cross-referencing the digital signature and HMAC alg
(algorithm) values used in this specification with the equivalent identifiers used by other
standards and software packages. See [RFC3275] and

 [JCA] for more information about the names defined by those documents.

Algorithm JWS XML DSIG JCA OID

HMAC using
SHA-256
hash
algorithm

HS256 http://www.w3.org/2001/04/xmldsig-
more#hmac-sha256

HmacSHA256 1.2.840.113549.2.9

HMAC using
SHA-384
hash
algorithm

HS384 http://www.w3.org/2001/04/xmldsig-
more#hmac-sha384

HmacSHA384 1.2.840.113549.2.10

HMAC using
SHA-512
hash
algorithm

HS512 http://www.w3.org/2001/04/xmldsig-
more#hmac-sha512

HmacSHA512 1.2.840.113549.2.11

RSA using
SHA-256
hash
algorithm

RS256 http://www.w3.org/2001/04/xmldsig-
more#rsa-sha256

SHA256withRSA 1.2.840.113549.1.1.11

RSA using
SHA-384
hash
algorithm

RS384 http://www.w3.org/2001/04/xmldsig-
more#rsa-sha384

SHA384withRSA 1.2.840.113549.1.1.12

RSA using
SHA-512
hash
algorithm

RS512 http://www.w3.org/2001/04/xmldsig-
more#rsa-sha512

SHA512withRSA 1.2.840.113549.1.1.13

ECDSA using
P-256 curve
and SHA-256
hash
algorithm

ES256
http://www.w3.org/2001/04/xmldsig-
more#ecdsa-sha256 SHA256withECDSA 1.2.840.10045.4.3.2

ECDSA using
P-384 curve
and SHA-384
hash
algorithm

ES384
http://www.w3.org/2001/04/xmldsig-
more#ecdsa-sha384 SHA384withECDSA 1.2.840.10045.4.3.3

ECDSA using
P-521 curve
and SHA-512
hash
algorithm

ES512
http://www.w3.org/2001/04/xmldsig-
more#ecdsa-sha512 SHA512withECDSA 1.2.840.10045.4.3.4

 Table 4: Digital Signature/HMAC Algorithm Identifier Cross-Reference

Appendix B. Encryption Algorithm Identifier Cross-Reference

XML DSIG Java Cryptography
Architecture

http://tools.ietf.org/html/rfc3275
http://www.rfc-editor.org/rfc/rfc3275.txt
http://www.w3.org/TR/2011/CR-xmlenc-core1-20110303
http://www.w3.org/TR/2011/CR-xmlenc-core1-20110303
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210

 TOC

This appendix contains a table cross-referencing the alg (algorithm) and enc (encryption
method) values used in this specification with the equivalent identifiers used by other
standards and software packages. See [W3C.REC‑xmlenc‑core‑20021210],

 [W3C.CR‑xmlenc‑core1‑20110303], and
 [JCA] for more information about the names defined by those documents.

Algorithm JWE XML ENC JCA

RSA using RSA-
PKCS1-1.5 padding

RSA1_5 http://www.w3.org/2001/04/xmlenc#rsa-1_5 RSA/ECB/PKCS1Padding

RSA using Optimal
Asymmetric
Encryption Padding
(OAEP)

RSA-
OAEP

http://www.w3.org/2001/04/xmlenc#rsa-
oaep-mgf1p

RSA/ECB/OAEPWithSHA-
1AndMGF1Padding

Elliptic Curve Diffie-
Hellman Ephemeral
Static

ECDH-ES
http://www.w3.org/2009/xmlenc11#ECDH-
ES TBD

Advanced
Encryption Standard
(AES) Key Wrap
Algorithm

 [RFC3394]
using 128 bit keys

A128KW http://www.w3.org/2001/04/xmlenc#kw-
aes128

TBD

Advanced
Encryption Standard
(AES) Key Wrap
Algorithm

 [RFC3394]
using 256 bit keys

A256KW http://www.w3.org/2001/04/xmlenc#kw-
aes256

TBD

Advanced
Encryption Standard
(AES) using 128 bit
keys in Cipher Block
Chaining mode

A128CBC
http://www.w3.org/2001/04/xmlenc#aes128-
cbc AES/CBC/PKCS5Padding

Advanced
Encryption Standard
(AES) using 256 bit
keys in Cipher Block
Chaining mode

A256CBC
http://www.w3.org/2001/04/xmlenc#aes256-
cbc AES/CBC/PKCS5Padding

Advanced
Encryption Standard
(AES) using 128 bit
keys in
Galois/Counter
Mode

A128GCM http://www.w3.org/2009/xmlenc11#aes128-
gcm

AES/GCM/NoPadding

Advanced
Encryption Standard
(AES) using 256 bit
keys in
Galois/Counter
Mode

A256GCM http://www.w3.org/2009/xmlenc11#aes256-
gcm

AES/GCM/NoPadding

 Table 5: Encryption Algorithm Identifier Cross-Reference

Appendix C. Acknowledgements

Solutions for signing and encrypting JSON content were previously explored by
 [MagicSignatures], [JSS],

[CanvasApp], [JSE], and
 [I‑D.rescorla‑jsms], all of which influenced this draft. Dirk Balfanz, John Bradley,

Yaron Y. Goland, John Panzer, Nat Sakimura, and Paul Tarjan all made significant

XML Encryption
XML Encryption 1.1 Java Cryptography
Architecture

RFC
3394

RFC
3394

Magic
Signatures JSON Simple Sign Canvas Applications

JSON Simple Encryption JavaScript Message Security
Format

 TOC

 TOC

contributions to the design of this specification and its related specifications.

Appendix D. Document History

-00

Created the initial IETF draft based upon draft-jones-json-web-signature-04 and
draft-jones-json-web-encryption-02 with no normative changes.
Changed terminology to no longer call both digital signatures and HMACs
"signatures".

Author's Address

 Michael B. Jones
 Microsoft

Email: mbj@microsoft.com
URI: http://self-issued.info/

mailto:mbj@microsoft.com
http://self-issued.info/

	JSON Web Algorithms (JWA) draft-ietf-jose-json-web-algorithms-00
	Abstract
	Requirements Language
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Cryptographic Algorithms for JWS
	3.1. Creating a JWS with HMAC SHA-256, HMAC SHA-384, or HMAC SHA-512
	3.2. Creating a JWS with RSA SHA-256, RSA SHA-384, or RSA SHA-512
	3.3. Creating a JWS with ECDSA P-256 SHA-256, ECDSA P-384 SHA-384, or ECDSA P-521 SHA-512
	3.4. Additional Digital Signature/HMAC Algorithms
	4. Cryptographic Algorithms for JWE
	4.1. Encrypting a JWE with TBD
	4.2. Additional Encryption Algorithms
	5. IANA Considerations
	6. Security Considerations
	7. Open Issues and Things To Be Done (TBD)
	8. References
	8.1. Normative References
	8.2. Informative References
	Appendix A. Digital Signature/HMAC Algorithm Identifier Cross-Reference
	Appendix B. Encryption Algorithm Identifier Cross-Reference
	Appendix C. Acknowledgements
	Appendix D. Document History
	Author's Address

