Network Working Group Z. Li Internet-Draft Huawei Intended status: Standards Track L. Ou Expires: December 11, 2020 Y. Luo China Telcom Co., Ltd. S. Lu Tencent H. Chen Futurewei S. Zhuang H. Wang Huawei June 9, 2020 BGP Extensions for Routing Policy Distribution (RPD) draft-ietf-idr-rpd-04 Abstract It is hard to adjust traffic and optimize traffic paths on a traditional IP network from time to time through manual configurations. It is desirable to have an automatic mechanism for setting up routing policies, which adjust traffic and optimize traffic paths automatically. This document describes BGP Extensions for Routing Policy Distribution (BGP RPD) to support this. Requirements Language The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119]. Status of This Memo This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." Li, et al. Expires December 11, 2020 [Page 1] Internet-Draft BGP RPD June 2020 This Internet-Draft will expire on December 11, 2020. Copyright Notice Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 3 3. Problem Statements . . . . . . . . . . . . . . . . . . . . . 3 3.1. Inbound Traffic Control . . . . . . . . . . . . . . . . . 3 3.2. Outbound Traffic Control . . . . . . . . . . . . . . . . 4 4. Protocol Extensions . . . . . . . . . . . . . . . . . . . . . 5 4.1. Using a New AFI and SAFI . . . . . . . . . . . . . . . . 5 4.2. BGP Wide Community . . . . . . . . . . . . . . . . . . . 6 4.2.1. New Wide Community Atoms . . . . . . . . . . . . . . 6 4.3. Capability Negotiation . . . . . . . . . . . . . . . . . 12 5. Consideration . . . . . . . . . . . . . . . . . . . . . . . . 12 5.1. Route-Policy . . . . . . . . . . . . . . . . . . . . . . 12 6. Contributors . . . . . . . . . . . . . . . . . . . . . . . . 13 7. Security Considerations . . . . . . . . . . . . . . . . . . . 13 8. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 14 9. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 14 10. References . . . . . . . . . . . . . . . . . . . . . . . . . 15 10.1. Normative References . . . . . . . . . . . . . . . . . . 16 10.2. Informative References . . . . . . . . . . . . . . . . . 16 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 17 1. Introduction It is difficult to optimize traffic paths on a traditional IP network because of: o Heavy configuration and error prone. Traffic can only be adjusted device by device. All routers that the traffic traverses need to be configured. The configuration workload is heavy. The Li, et al. Expires December 11, 2020 [Page 2] Internet-Draft BGP RPD June 2020 operation is not only time consuming but also prone to misconfiguration for Service Providers. o Complex. The routing policies used to control network routes are complex, posing difficulties to subsequent maintenance, high maintenance skills are required. It is desirable to have an automatic mechanism for setting up routing policies, which can simplify the routing policies configuration. This document describes extensions to BGP for Routing Policy Distribution to resolve these issues. 2. Terminology The following terminology is used in this document. o ACL:Access Control List o BGP: Border Gateway Protocol o FS: Flow Specification o PBR:Policy-Based Routing o RPD: Routing Policy Distribution o VPN: Virtual Private Network 3. Problem Statements It is obvious that providers have the requirements to adjust their business traffic from time to time because: o Business development or network failure introduces link congestion and overload. o Network transmission quality is decreased as the result of delay, loss and they need to adjust traffic to other paths. o To control OPEX and CPEX, prefer the transit provider with lower price. 3.1. Inbound Traffic Control In the scenario below, for the reasons above, the provider of AS100 saying P may wish the inbound traffic from AS200 enters AS100 through link L3 instead of the others. Since P doesn't have any Li, et al. Expires December 11, 2020 [Page 3] Internet-Draft BGP RPD June 2020 administration over AS200, so there is no way for P to modify the route selection criteria directly. Traffic from PE1 to Prefix1 -----------------------------------> +-----------------+ +-------------------------+ | +---------+ | L1 | +----+ +----------+| | |Speaker1 | +------------+ |IGW1| |policy || | +---------+ |** L2**| +----+ |controller|| | | ** ** | +----------+| | +---+ | **** | | | |PE1| | **** | | | +---+ | ** ** | | | +---------+ |** L3**| +----+ | | |Speaker2 | +------------+ |IGW2| AS100 | | +---------+ | L4 | +----+ | | | | | | AS200 | | | | | | ... | | | | | | +---------+ | | +----+ +-------+ | | |Speakern | | | |IGWn| |Prefix1| | | +---------+ | | +----+ +-------+ | +-----------------+ +-------------------------+ Prefix1 advertised from AS100 to AS200 <---------------------------------------- Inbound Traffic Control case 3.2. Outbound Traffic Control In the scenario below, the provider of AS100 saying P prefers link L3 for the traffic to the destination Prefix2 among multiple exits and links. This preference can be dynamic and changed frequently because of the reasons above. So the provider P expects an efficient and convenient solution. Li, et al. Expires December 11, 2020 [Page 4] Internet-Draft BGP RPD June 2020 Traffic from PE2 to Prefix2 -----------------------------------> +-------------------------+ +-----------------+ |+----------+ +----+ |L1 | +---------+ | ||policy | |IGW1| +------------+ |Speaker1 | | ||controller| +----+ |** **| +---------+ | |+----------+ |L2** ** | +-------+| | | **** | |Prefix2|| | | **** | +-------+| | |L3** ** | | | AS100 +----+ |** **| +---------+ | | |IGW2| +------------+ |Speaker2 | | | +----+ |L4 | +---------+ | | | | | |+---+ | | AS200 | ||PE2| ... | | | |+---+ | | | | +----+ | | +---------+ | | |IGWn| | | |Speakern | | | +----+ | | +---------+ | +-------------------------+ +-----------------+ Prefix2 advertised from AS200 to AS100 <---------------------------------------- Outbound Traffic Control case 4. Protocol Extensions A solution is proposed to use a new AFI and SAFI with the BGP Wide Community for encoding a routing policy. 4.1. Using a New AFI and SAFI A new AFI and SAFI are defined: the Routing Policy AFI whose codepoint 16398 has been assigned by IANA, and SAFI whose codepoint 75 has been assigned by IANA. The AFI and SAFI pair uses a new NLRI, which is defined as follows: Li, et al. Expires December 11, 2020 [Page 5] Internet-Draft BGP RPD June 2020 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+ | NLRI Length | +-+-+-+-+-+-+-+-+ | Policy Type | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Distinguisher (4 octets) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Peer IP (4/16 octets) ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Where: NLRI Length: 1 octet represents the length of NLRI. Policy Type: 1 octet indicates the type of a policy. 1 is for export policy. 2 is for import policy. Distinguisher: 4 octet value uniquely identifies the policy in the peer. Peer IP: 4/16 octet value indicates an IPv4/IPv6 peer. The NLRI containing the Routing Policy is carried in a BGP UPDATE message, which MUST contain the BGP mandatory attributes and MAY also contain some BGP optional attributes. When receiving a BGP UPDATE message, a BGP speaker processes it only if the peer IP address in the NLRI is the IP address of the BGP speaker or 0. The content of the Routing Policy is encoded in a BGP Wide Community. 4.2. BGP Wide Community The BGP wide community is defined in [I-D.ietf-idr-wide-bgp-communities]. It can be used to facilitate the delivery of new network services, and be extended easily for distributing different kinds of routing policies. 4.2.1. New Wide Community Atoms A wide community Atom is a TLV (or sub-TLV), which may be included in a BGP wide community container (or BGP wide community for short) containing some BGP Wide Community TLVs. Three BGP Wide Community TLVs are defined in [I-D.ietf-idr-wide-bgp-communities], which are BGP Wide Community Target(s) TLV, Exclude Target(s) TLV, and Li, et al. Expires December 11, 2020 [Page 6] Internet-Draft BGP RPD June 2020 Parameter(s) TLV. Each of these TLVs comprises a series of Atoms, each of which is a TLV (or sub-TLV). A new wide community Atom is defined for BGP Wide Community Target(s) TLV and a few new Atoms are defined for BGP Wide Community Parameter(s) TLV. For your reference, the format of the TLV is illustrated below: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Value (variable) ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Format of Wide Community Atom TLV A RouteAttr Atom TLV (or RouteAttr TLV/sub-TLV for short) is defined and may be included in a Target TLV. It has the following format. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type (TBD1) | Length (variable) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | sub-TLVs ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Format of RouteAttr Atom TLV The Type for RouteAttr is TBD1 (suggested value 48) to be assigned by IANA. In RouteAttr TLV, three sub-TLVs are defined: IP Prefix, AS- Path and Community sub-TLV. An IP prefix sub-TLV gives matching criteria on IPv4 prefixes. Its format is illustrated below: Li, et al. Expires December 11, 2020 [Page 7] Internet-Draft BGP RPD June 2020 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type (TBD2) | Length (N x 8) |M-Type | Flags | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | IPv4 Address | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Mask | GeMask | LeMask |M-Type | Flags | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~ . . . +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | IPv4 Address | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Mask | GeMask | LeMask | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Format of IPv4 Prefix sub-TLV Type: TBD2 (suggested value 1) for IPv4 Prefix is to be assigned by IANA. Length: N x 8, where N is the number of tuples . M-Type: 4 bits for match types, four of which are defined: M-Type = 0: Exact match. M-Type = 1: Match prefix greater and equal to the given masks. M-Type = 2: Match prefix less and equal to the given masks. M-Type = 3: Match prefix within the range of the given masks. Flags: 4 bits. No flags are currently defined. IPv4 Address: 4 octets for an IPv4 address. Mask: 1 octet for the mask length. GeMask: 1 octet for match range, must be less than Mask or be 0. LeMask: 1 octet for match range, must be greater than Mask or be 0. For example, tuple represents an exact IP prefix match for 1.1.0.0/22. Li, et al. Expires December 11, 2020 [Page 8] Internet-Draft BGP RPD June 2020 represents match IP prefix 1.1.0.0/24 greater-equal 24. represents match IP prefix 17.1.0.0/24 less-equal 26. represents match IP prefix 18.1.0.0/24 greater-equal to 24 and less-equal 32. Similarly, an IPv6 Prefix sub-TLV represents match criteria on IPv6 prefixes. Its format is illustrated below: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type(TBD3) | Length (N x 20) |M-Type | Flags | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | IPv6 Address (16 octets) ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Mask | GeMask | LeMask |M-Type | Flags | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~ . . . +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | IPv6 Address (16 octets ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Mask | GeMask | LeMask | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Format of IPv6 Prefix sub-TLV An AS-Path sub-TLV represents a match criteria in a regular expression string. Its format is illustrated below: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type (TBD4) | Length (Variable) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | AS-Path Regex String | : : | ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Format of AS Path sub-TLV Type: TBD4 (suggested value 2) for AS-Path is to be assigned by IANA. Li, et al. Expires December 11, 2020 [Page 9] Internet-Draft BGP RPD June 2020 Length: Variable, maximum is 1024. AS-Path Regex String: AS-Path regular expression string. A community sub-TLV represents a list of communities to be matched all. Its format is illustrated below: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type (TBD5) | Length (N x 4 + 1) | Flags | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Community 1 Value | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~ . . . ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Community N Value | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Format of Community sub-TLV Type: TBD5 (suggested value 3) for Community is to be assigned by IANA. Length: N x 4 + 1, where N is the number of communities. Flags: 1 octet. No flags are currently defined. In Parameter(s) TLV, two action sub-TLVs are defined: MED change sub- TLV and AS-Path change sub-TLV. When the community in the container is MATCH AND SET ATTR, the Parameter(s) TLV includes some of these sub-TLVs. When the community is MATCH AND NOT ADVERTISE, the Parameter(s) TLV's value is empty. A MED change sub-TLV indicates an action to change the MED. Its format is illustrated below: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type (TBD6) | Length (5) | OP | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Value | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Format of MED Change sub-TLV Li, et al. Expires December 11, 2020 [Page 10] Internet-Draft BGP RPD June 2020 Type: TBD6 (suggested value 1) for MED Change is to be assigned by IANA. Length: 5. OP: 1 octet. Three are defined: OP = 0: assign the Value to the existing MED. OP = 1: add the Value to the existing MED. If the sum is greater than the maximum value for MED, assign the maximum value to MED. OP = 2: subtract the Value from the existing MED. If the existing MED minus the Value is less than 0, assign 0 to MED. Value: 4 octets. An AS-Path change sub-TLV indicates an action to change the AS-Path. Its format is illustrated below: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type (TBD7) | Length (n x 5) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | AS1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Count1 | +-+-+-+-+-+-+-+-+ ~ . . . +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ASn | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Countn | +-+-+-+-+-+-+-+-+ Format of AS-Path Change sub-TLV Type: TBD7 (suggested value 2) for AS-Path Change is to be assigned by IANA. Length: n x 5. ASi: 4 octet. An AS number. Counti: 1 octet. ASi repeats Counti times. Li, et al. Expires December 11, 2020 [Page 11] Internet-Draft BGP RPD June 2020 The sequence of AS numbers are added to the existing AS Path. 4.3. Capability Negotiation It is necessary to negotiate the capability to support BGP Extensions for Routing Policy Distribution (RPD). The BGP RPD Capability is a new BGP capability [RFC5492]. The Capability Code for this capability is to be specified by the IANA. The Capability Length field of this capability is variable. The Capability Value field consists of one or more of the following tuples: +--------------------------------------------------+ | Address Family Identifier (2 octets) | +--------------------------------------------------+ | Subsequent Address Family Identifier (1 octet) | +--------------------------------------------------+ | Send/Receive (1 octet) | +--------------------------------------------------+ BGP RPD Capability The meaning and use of the fields are as follows: Address Family Identifier (AFI): This field is the same as the one used in [RFC4760]. Subsequent Address Family Identifier (SAFI): This field is the same as the one used in [RFC4760]. Send/Receive: This field indicates whether the sender is (a) willing to receive Routing Policies from its peer (value 1), (b) would like to send Routing Policies to its peer (value 2), or (c) both (value 3) for the . 5. Consideration 5.1. Route-Policy Routing policies are used to filter routes and control how routes are received and advertised. If route attributes, such as reachability, are changed, the path along which network traffic passes changes accordingly. When advertising, receiving, and importing routes, the router implements certain policies based on actual networking requirements to filter routes and change the attributes of the routes. Routing policies serve the following purposes: Li, et al. Expires December 11, 2020 [Page 12] Internet-Draft BGP RPD June 2020 o Control route advertising: Only routes that match the rules specified in a policy are advertised. o Control route receiving: Only the required and valid routes are received. This reduces the size of the routing table and improves network security. o Filter and control imported routes: A routing protocol may import routes discovered by other routing protocols. Only routes that satisfy certain conditions are imported to meet the requirements of the protocol. o Modify attributes of specified routes Attributes of the routes: that are filtered by a routing policy are modified to meet the requirements of the local device. o Configure fast reroute (FRR): If a backup next hop and a backup outbound interface are configured for the routes that match a routing policy, IP FRR, VPN FRR, and IP+VPN FRR can be implemented. Routing policies are implemented using the following procedures: 1. Define rules: Define features of routes to which routing policies are applied. Users define a set of matching rules based on different attributes of routes, such as the destination address and the address of the router that advertises the routes. 2. Implement the rules: Apply the matching rules to routing policies for advertising, receiving, and importing routes. 6. Contributors The following people have substantially contributed to the definition of the BGP-FS RPD and to the editing of this document: Peng Zhou Huawei Email: Jewpon.zhou@huawei.com 7. Security Considerations Protocol extensions defined in this document do not affect the BGP security other than those as discussed in the Security Considerations section of [RFC5575]. Li, et al. Expires December 11, 2020 [Page 13] Internet-Draft BGP RPD June 2020 8. Acknowledgements The authors would like to thank Acee Lindem, Jeff Haas, Jie Dong, Lucy Yong, Qiandeng Liang, Zhenqiang Li for their comments to this work. 9. IANA Considerations IANA has assigned a new AFI of value 16398 from the registry "Address Family Numbers" for Routing Policy. IANA has assigned a new SAFI of value 75 from the registry "Subsequent Address Family Identifiers (SAFI) Parameters" for Routing Policy. This document defines a new registry called "Routing Policy Type". The allocation policy of this registry is "First Come First Served (FCFS)" according to [RFC8126]. Following code points are defined: +-------------+-----------------------------------+-------------+ | Code Point | Description | Reference | +-------------+-----------------------------------+-------------+ | 0 | Reserved | | +-------------+-----------------------------------+-------------+ | 1 | Export Policy |This document| +-------------+-----------------------------------+-------------+ | 2 | Import Policy |This document| +-------------+-----------------------------------+-------------+ | 3 - 255 | To be assigned in FCFS | | +-------------+-----------------------------------+-------------+ This document requests assigning a code-point from the registry "BGP Community Container Atom Types" as follows: +---------------------+------------------------------+-------------+ | TLV Code Point | Description | Reference | +---------------------+------------------------------+-------------+ | TBD1 (48 suggested) | RouteAttr Atom |This document| +---------------------+------------------------------+-------------+ This document defines a new registry called "Route Attributes Sub- TLV" under RouteAttr Atom TLV. The allocation policy of this registry is "First Come First Served (FCFS)" according to [RFC8126]. Following Sub-TLV code points are defined: Li, et al. Expires December 11, 2020 [Page 14] Internet-Draft BGP RPD June 2020 +-------------+-----------------------------------+-------------+ | Code Point | Description | Reference | +-------------+-----------------------------------+-------------+ | 0 | Reserved | | +-------------+-----------------------------------+-------------+ | 1 | IPv4 Prefix Sub-TLV |This document| +-------------+-----------------------------------+-------------+ | 2 | AS-Path Sub-TLV |This document| +-------------+-----------------------------------+-------------+ | 3 | Community Sub-TLV |This document| +-------------+-----------------------------------+-------------+ | 4 | IPv6 Prefix Sub-TLV |This document| +-------------+-----------------------------------+-------------+ | 5 - 255 | To be assigned in FCFS | | +-------------+-----------------------------------+-------------+ This document defines a new registry called "Attribute Change Sub- TLV" under Parameter(s) TLV. The allocation policy of this registry is "First Come First Served (FCFS)" according to [RFC8126]. Following Sub-TLV code points are defined: +-------------+-----------------------------------+-------------+ | Code Point | Description | Reference | +-------------+-----------------------------------+-------------+ | 0 | Reserved | | +-------------+-----------------------------------+-------------+ | 1 | MED Change Sub-TLV |This document| +-------------+-----------------------------------+-------------+ | 2 | AS-Path Change Sub-TLV |This document| +-------------+-----------------------------------+-------------+ | 3 - 255 | To be assigned in FCFS | | +-------------+-----------------------------------+-------------+ This document requests assigning a new Code Point from the registry "Capability Codes" for Routing Policy Distribution as follows: +----------------+--------------------------------+-------------+ | Code Point | Description | Reference | +----------------+--------------------------------+-------------+ | 66 (Suggested)| Routing Policy Distribution |This document| +----------------+--------------------------------+-------------+ 10. References Li, et al. Expires December 11, 2020 [Page 15] Internet-Draft BGP RPD June 2020 10.1. Normative References [I-D.ietf-idr-wide-bgp-communities] Raszuk, R., Haas, J., Lange, A., Decraene, B., Amante, S., and P. Jakma, "BGP Community Container Attribute", draft- ietf-idr-wide-bgp-communities-05 (work in progress), July 2018. [RFC1997] Chandra, R., Traina, P., and T. Li, "BGP Communities Attribute", RFC 1997, DOI 10.17487/RFC1997, August 1996, . [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, . [RFC4271] Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A Border Gateway Protocol 4 (BGP-4)", RFC 4271, DOI 10.17487/RFC4271, January 2006, . [RFC4760] Bates, T., Chandra, R., Katz, D., and Y. Rekhter, "Multiprotocol Extensions for BGP-4", RFC 4760, DOI 10.17487/RFC4760, January 2007, . [RFC5492] Scudder, J. and R. Chandra, "Capabilities Advertisement with BGP-4", RFC 5492, DOI 10.17487/RFC5492, February 2009, . [RFC5575] Marques, P., Sheth, N., Raszuk, R., Greene, B., Mauch, J., and D. McPherson, "Dissemination of Flow Specification Rules", RFC 5575, DOI 10.17487/RFC5575, August 2009, . [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 8126, DOI 10.17487/RFC8126, June 2017, . 10.2. Informative References [I-D.ietf-idr-registered-wide-bgp-communities] Raszuk, R. and J. Haas, "Registered Wide BGP Community Values", draft-ietf-idr-registered-wide-bgp-communities-02 (work in progress), May 2016. Li, et al. Expires December 11, 2020 [Page 16] Internet-Draft BGP RPD June 2020 Authors' Addresses Zhenbin Li Huawei Huawei Bld., No.156 Beiqing Rd. Beijing 100095 China Email: lizhenbin@huawei.com Liang Ou China Telcom Co., Ltd. 109 West Zhongshan Ave,Tianhe District Guangzhou 510630 China Email: ouliang@chinatelecom.cn Yujia Luo China Telcom Co., Ltd. 109 West Zhongshan Ave,Tianhe District Guangzhou 510630 China Email: luoyuj@sdu.edu.cn Sujian Lu Tencent Tengyun Building,Tower A ,No. 397 Tianlin Road Shanghai, Xuhui District 200233 China Email: jasonlu@tencent.com Huaimo Chen Futurewei Boston, MA USA Email: Huaimo.chen@futurewei.com Li, et al. Expires December 11, 2020 [Page 17] Internet-Draft BGP RPD June 2020 Shunwan Zhuang Huawei Huawei Bld., No.156 Beiqing Rd. Beijing 100095 China Email: zhuangshunwan@huawei.com Haibo Wang Huawei Huawei Bld., No.156 Beiqing Rd. Beijing 100095 China Email: rainsword.wang@huawei.com Li, et al. Expires December 11, 2020 [Page 18]