
Network Working Group A. Atlas
Internet-Draft Juniper Networks
Intended status: Informational J. Halpern
Expires: August 23, 2016 Ericsson
 S. Hares
 Huawei
 D. Ward
 Cisco Systems
 T. Nadeau
 Brocade
 February 20, 2016

 An Architecture for the Interface to the Routing System
 draft-ietf-i2rs-architecture-13

Abstract

 This document describes the IETF architecture for a standard,
 programmatic interface for state transfer in and out of the Internet
 routing system. It describes the basic architecture, the components,
 and their interfaces with particular focus on those to be
 standardized as part of the Interface to Routing System (I2RS).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 23, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents

Atlas, et al. Expires August 23, 2016 [Page 1]

Internet-Draft I2RS Arch February 2016

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Drivers for the I2RS Architecture 4
 1.2. Architectural Overview 5
 2. Terminology . 9
 3. Key Architectural Properties 11
 3.1. Simplicity . 11
 3.2. Extensibility . 12
 3.3. Model-Driven Programmatic Interfaces 12
 4. Security Considerations 13
 4.1. Identity and Authentication 15
 4.2. Authorization . 15
 4.3. Client Redundancy . 16
 5. Network Applications and I2RS Client 16
 5.1. Example Network Application: Topology Manager 17
 6. I2RS Agent Role and Functionality 17
 6.1. Relationship to its Routing Element 17
 6.2. I2RS State Storage 18
 6.2.1. I2RS Agent Failure 18
 6.2.2. Starting and Ending 19
 6.2.3. Reversion . 19
 6.3. Interactions with Local Configuration 20
 6.4. Routing Components and Associated I2RS Services 21
 6.4.1. Routing and Label Information Bases 22
 6.4.2. IGPs, BGP and Multicast Protocols 22
 6.4.3. MPLS . 23
 6.4.4. Policy and QoS Mechanisms 23
 6.4.5. Information Modeling, Device Variation, and
 Information Relationships 23
 6.4.5.1. Managing Variation: Object Classes/Types and
 Inheritance 24
 6.4.5.2. Managing Variation: Optionality 24
 6.4.5.3. Managing Variation: Templating 25
 6.4.5.4. Object Relationships 25
 6.4.5.4.1. Initialization 25
 6.4.5.4.2. Correlation Identification 26
 6.4.5.4.3. Object References 26
 6.4.5.4.4. Active Reference 26
 7. I2RS Client Agent Interface 26

Atlas, et al. Expires August 23, 2016 [Page 2]

Internet-Draft I2RS Arch February 2016

 7.1. One Control and Data Exchange Protocol 26
 7.2. Communication Channels 27
 7.3. Capability Negotiation 27
 7.4. Scope Policy Specifications 28
 7.5. Connectivity . 28
 7.6. Notifications . 29
 7.7. Information collection 29
 7.8. Multi-Headed Control 30
 7.9. Transactions . 30
 8. Operational and Manageability Considerations 31
 9. IANA Considerations . 32
 10. Acknowledgements . 32
 11. Informative References 32
 Authors’ Addresses . 33

1. Introduction

 Routers that form the internet routing infrastructure maintain state
 at various layers of detail and function. For example, a typical
 router maintains a Routing Information Base (RIB), and implements
 routing protocols such as OSPF, IS-IS, and BGP to exchange
 reachability information, topology information, protocol state, and
 other information about the state of the network with other routers.

 Routers convert all of this information into forwarding entries which
 are then used to forward packets and flows between network elements.
 The forwarding plane and the specified forwarding entries then
 contain active state information that describes the expected and
 observed operational behavior of the router and which is also needed
 by the network applications. Network-oriented applications require
 easy access to this information to learn the network topology, to
 verify that programmed state is installed in the forwarding plane, to
 measure the behavior of various flows, routes or forwarding entries,
 as well as to understand the configured and active states of the
 router. Network-oriented applications also require easy access to an
 interface which will allow them to program and control state related
 to forwarding.

 This document sets out an architecture for a common, standards-based
 interface to this information. This Interface to the Routing System
 (I2RS) facilitates control and observation of the routing-related
 state (for example, a Routing Element RIB manager’s state), as well
 as enabling network-oriented applications to be built on top of
 today’s routed networks. The I2RS is a programmatic asynchronous
 interface for transferring state into and out of the internet routing
 system. This I2RS architecture recognizes that the routing system
 and a router’s Operating System (OS) provide useful mechanisms that
 applications could harness to accomplish application-level goals.

Atlas, et al. Expires August 23, 2016 [Page 3]

Internet-Draft I2RS Arch February 2016

 These network-oriented applications can leverage the I2RS
 programmatic interface to create new ways of combining retrieval of
 internet routing data, analyzing this data, setting state within
 routers.

 Fundamental to the I2RS are clear data models that define the
 semantics of the information that can be written and read. The I2RS
 provides a way for applications to customize network behavior while
 leveraging the existing routing system as desired. The I2RS provides
 a framework for applications (including controller applications) to
 register and to request the appropriate information for each
 particular application.

 Although the I2RS architecture is general enough to support
 information and data models for a variety of data, and aspects of the
 I2RS solution may be useful in domains other than routing, I2RS and
 this document are specifically focused on an interface for routing
 data.

1.1. Drivers for the I2RS Architecture

 There are four key drivers that shape the I2RS architecture. First
 is the need for an interface that is programmatic, asynchronous, and
 offers fast, interactive access for atomic operations. Second is the
 access to structured information and state that is frequently not
 directly configurable or modeled in existing implementations or
 configuration protocols. Third is the ability to subscribe to
 structured, filterable event notifications from the router. Fourth,
 the operation of I2RS is to be data-model driven to facilitate
 extensibility and provide standard data-models to be used by network
 applications.

 I2RS is described as an asynchronous programmatic interface, the key
 properties of which are described in Section 5 of
 [I-D.ietf-i2rs-problem-statement].

 The I2RS architecture facilitates obtaining information from the
 router. The I2RS architecture provides the ability to not only read
 specific information, but also to subscribe to targeted information
 streams, filtered events, and thresholded events.

 Such an interface also facilitates the injection of ephemeral state
 into the routing system. Ephemeral state on a router is the state
 which does not survive a the reboot of a routing device or the reboot
 of the software handling the I2RS software on a routing device. A
 non-routing protocol or application could inject state into a routing
 element via the state-insertion functionality of the I2RS and that
 state could then be distributed in a routing or signaling protocol

Atlas, et al. Expires August 23, 2016 [Page 4]

Internet-Draft I2RS Arch February 2016

 and/or be used locally (e.g. to program the co-located forwarding
 plane). I2RS will only permit modification of state that would be
 safe, conceptually, to modify via local configuration; no direct
 manipulation of protocol-internal dynamically determined data is
 envisioned.

1.2. Architectural Overview

 Figure 1 shows the basic architecture for I2RS between applications
 using I2RS, their associated I2RS Clients, and I2RS Agents.
 Applications access I2RS services through I2RS clients. A single
 client can provide access to one or more applications. This figure
 also shows the types of data models associated with the routing
 system (dynamic configuration, static configuration, local
 configuration, and routing and signaling configuration) which the
 I2RS Agent data models may access or augment.

 Figure 1 is similar to the figure 1 found in the
 [I-D.ietf-i2rs-problem-statement], but this figure shows additional
 detail on how the applications utilize I2RS clients to interact with
 I2RS Agents. Figure 1 also shows a logical view of the data models
 associated with the routing system rather than a functional view
 (RIB, FIB, topology, policy, routing/signaling protocols, etc.)

 In figure 1, Clients A and B each provide access to a single
 application (application A and B respectively), while Client P
 provides access to multiple applications.

 Applications can access I2RS services through local or remote
 clients. A local client operates on the same physical box as routing
 system. In contrast, a remote client operates across the network.
 In the figure, Applications A and B access I2RS services through
 local clients, while Applications C, D and E access I2RS services
 through a remote client. The details of how applications communicate
 with a remote client is out of scope for I2RS.

 An I2RS Client can access one or more I2RS agents. In the figure 1,
 Clients B and P access I2RS Agents 1 and 2. Likewise, an I2RS Agent
 can provide service to one or more clients. In this figure, I2RS
 Agent 1 provides services to Clients A, B and P while Agent 2
 provides services to only Clients B and P.

 I2RS agents and clients communicate with one another using an
 asynchronous protocol. Therefore, a single client can post multiple
 simultaneous requests, either to a single agent or to multiple
 agents. Furthermore, an agent can process multiple requests, either
 from a single client or from multiple clients, simultaneously.

Atlas, et al. Expires August 23, 2016 [Page 5]

Internet-Draft I2RS Arch February 2016

 The I2RS agent provides read and write access to selected data on the
 routing element that are organized into I2RS Services. Section 4
 describes how access is mediated by authentication and access control
 mechanisms. Figure 1 shows I2RS agents being able to write ephemeral
 static state (e.g. RIB entries), and to read from dynamic static
 (e.g. MPLS LSP-ID or number of active BGP peers). In addition, the

 In addition to read and write access, the I2RS agent allows clients
 to subscribe to different types of notifications about events
 affecting different object instances. One example of a notification
 of such an event (which is unrelated to an object creation,
 modification or deletion) is when a next-hop in the RIB is resolved
 in a way that allows it to be used by a RIB manager for installation
 in the forwarding plane as part of a particular route. Please see
 Section 7.6 and Section 7.7 for details.

 The scope of I2RS is to define the interactions between the I2RS
 agent and the I2RS client and the associated proper behavior of the
 I2RS agent and I2RS client.

 ****************** ***************** *****************
 * Application C * * Application D * * Application E *
 ****************** ***************** *****************
 ^ ^ ^
 | | | | |
 |--------------| | |--------------|
 | | |
 v v v

 * Client P *

 ^ ^
 | |-------------------------|
 *********************** | *********************** |
 * Application A * | * Application B * |
 * * | * * |
 * +----------------+ * | * +----------------+ * |
 * | Client A | * | * | Client B | * |
 * +----------------+ * | * +----------------+ * |
 ******* ^ ************* | ***** ^ ****** ^ ****** |
 | | | | | | |
 | |-------------| | | |-----|
 | | -----------------------| | |
 | | | | |
 ************ v * v * v ********* ***************** v * v ********
 * +---------------------+ * * +---------------------+ *
 * | Agent 1 | * * | Agent 2 | *

Atlas, et al. Expires August 23, 2016 [Page 6]

Internet-Draft I2RS Arch February 2016

 * +---------------------+ * * +---------------------+ *
 * ^ ^ ^ ^ * * ^ ^ ^ ^ *
 * | | | | * * | | | | *
 * v | | v * * v | | v *
 * +---------+ | | +--------+ * * +---------+ | | +--------+ *
 * | Routing | | | | Local | * * | Routing | | | | Local | *
 * | and | | | | Config | * * | and | | | | Config | *
 * |Signaling| | | +--------+ * * |Signaling| | | +--------+ *
 * +---------+ | | ^ * * +---------+ | | ^ *
 * ^ | | | * * ^ | | | *
 * | |----| | | * * | |----| | | *
 * v | v v * * v | v v *
 * +----------+ +------------+ * * +----------+ +------------+ *
 * | Dynamic | | Static | * * | Dynamic | | Static | *
 * | System | | System | * * | System | | System | *
 * | State | | State | * * | State | | State | *
 * +----------+ +------------+ * * +----------+ +------------+ *
 * * * *
 * Routing Element 1 * * Routing Element 2 *
 ******************************** ********************************

 Figure 1: Architecture of I2RS clients and agents

 Routing Element: A Routing Element implements some subset of the
 routing system. It does not need to have a forwarding plane
 associated with it. Examples of Routing Elements can include:

 * A router with a forwarding plane and RIB Manager that runs IS-
 IS, OSPF, BGP, PIM, etc.,

 * A BGP speaker acting as a Route Reflector,

 * An LSR that implements RSVP-TE, OSPF-TE, and PCEP and has a
 forwarding plane and associated RIB Manager,

 * A server that runs IS-IS, OSPF, BGP and uses ForCES to control
 a remote forwarding plane,

 A Routing Element may be locally managed, whether via CLI, SNMP,
 or NETCONF.

 Routing and Signaling: This block represents that portion of the
 Routing Element that implements part of the internet routing
 system. It includes not merely standardized protocols (i.e. IS-
 IS, OSPF, BGP, PIM, RSVP-TE, LDP, etc.), but also the RIB Manager
 layer.

Atlas, et al. Expires August 23, 2016 [Page 7]

Internet-Draft I2RS Arch February 2016

 Local Configuration: is the black box behavior for interactions
 between the ephemeral state that I2RS installs into the routing
 element; and this Local Configuration is defined by this document
 and the behaviors specified by the I2RS protocol.

 Dynamic System State: An I2RS agent needs access to state on a
 routing element beyond what is contained in the routing subsystem.
 Such state may include various counters, statistics, flow data,
 and local events. This is the subset of operational state that is
 needed by network applications based on I2RS that is not contained
 in the routing and signaling information. How this information is
 provided to the I2RS agent is out of scope, but the standardized
 information and data models for what is exposed are part of I2RS.

 Static System State: An I2RS agent needs access to static state on
 a routing element beyond what is contained in the routing
 subsystem. An example of such state is specifying queueing
 behavior for an interface or traffic. How the I2RS agent modifies
 or obtains this information is out of scope, but the standardized
 information and data models for what is exposed are part of I2RS.

 I2RS Agent: See the definition in Section 2.

 Application: A network application that needs to observe the
 network or manipulate the network to achieve its service
 requirements.

 I2RS Client: See the definition in Section 2.

 As can be seen in Figure 1, an I2RS client can communicate with
 multiple I2RS agents. An I2RS client may connect to one or more I2RS
 agents based upon its needs. Similarly, an I2RS agent may
 communicate with multiple I2RS clients - whether to respond to their
 requests, to send notifications, etc. Timely notifications are
 critical so that several simultaneously operating applications have
 up-to-date information on the state of the network.

 As can also be seen in Figure 1, an I2RS Agent may communicate with
 multiple clients. Each client may send the agent a variety of write
 operations. In order to keep the protocol simple, two clients should
 not attempt to write (modify) the same piece of information on an
 I2RS Agent. This is considered an error. However, such collisions
 may happen and section 7.8 (multi-headed control) describes how the
 I2RS agent resolves collision by first utilizing priority to resolve
 collisions, and second by servicing the requests in a first in, first
 served basis. The i2rs architecture includes this definition of
 behavior for this case simply for predictability not because this is
 an intended result. This predictability will simplify the error

Atlas, et al. Expires August 23, 2016 [Page 8]

Internet-Draft I2RS Arch February 2016

 handling and suppress oscillations. If additional error cases beyond
 this simple treatment are required, these error cases should be
 resolved by the network applications and management systems.

 In contrast, although multiple I2RS clients may need to supply data
 into the same list (e.g. a prefix or filter list), this is not
 considered an error and must be correctly handled. The nuances so
 that writers do not normally collide should be handled in the
 information models.

 The architectural goal for the I2RS is that such errors should
 produce predictable behaviors, and be reportable to interested
 clients. The details of the associated policy is discussed in
 Section 7.8. The same policy mechanism (simple priority per I2RS
 client) applies to interactions between the I2RS agent and the
 CLI/SNMP/NETCONF as described in Section 6.3.

 In addition it must be noted that there may be indirect interactions
 between write operations. A basic example of this is when two
 different but overlapping prefixes are written with different
 forwarding behavior. Detection and avoidance of such interactions is
 outside the scope of the I2RS work and is left to agent design and
 implementation.

2. Terminology

 The following terminology is used in this document.

 agent or I2RS Agent: An I2RS agent provides the supported I2RS
 services from the local system’s routing sub-systems by
 interacting with the routing element to provide specified
 behavior. The I2RS agent understands the I2RS protocol and can be
 contacted by I2RS clients.

 client or I2RS Client: A client implements the I2RS protocol, uses
 it to communicate with I2RS Agents, and uses the I2RS services to
 accomplish a task. It interacts with other elements of the
 policy, provisioning, and configuration system by means outside of
 the scope of the I2RS effort. It interacts with the I2RS agents
 to collect information from the routing and forwarding system.
 Based on the information and the policy oriented interactions, the
 I2RS client may also interact with I2RS agents to modify the state
 of their associated routing systems to achieve operational goals.
 An I2RS client can be seen as the part of an application that uses
 and supports I2RS and could be a software library.

 service or I2RS Service: For the purposes of I2RS, a service refers
 to a set of related state access functions together with the

Atlas, et al. Expires August 23, 2016 [Page 9]

Internet-Draft I2RS Arch February 2016

 policies that control their usage. The expectation is that a
 service will be represented by a data-model. For instance, ’RIB
 service’ could be an example of a service that gives access to
 state held in a device’s RIB.

 read scope: The read scope of an I2RS client within an I2RS agent
 is the set of information which the I2RS client is authorized to
 read within the I2RS agent. The read scope specifies the access
 restrictions to both see the existence of data and read the value
 of that data.

 notification scope: The set of events and associated information
 that the I2RS Client can request be pushed by the I2RS Agent.
 I2RS Clients have the ability to register for specific events and
 information streams, but must be constrained by the access
 restrictions associated with their notification scope.

 write scope: The set of field values which the I2RS client is
 authorized to write (i.e. add, modify or delete). This access can
 restrict what data can be modified or created, and what specific
 value sets and ranges can be installed.

 scope: When unspecified as either read scope, write scope, or
 notification scope, the term scope applies to the read scope,
 write scope, and notification scope.

 resources: A resource is an I2RS-specific use of memory, storage,
 or execution that a client may consume due to its I2RS operations.
 The amount of each such resource that a client may consume in the
 context of a particular agent may be constrained based upon the
 client’s security role. An example of such a resource could
 include the number of notifications registered for. These are not
 protocol-specific resources or network-specific resources.

 role or security role: A security role specifies the scope,
 resources, priorities, etc. that a client or agent has. If a
 identity has multiple roles in the security system, the identity
 is permitted to perform any operations any of those roles permit.
 Multiple identities may use the same security role.

 identity: A client is associated with exactly one specific
 identity. State can be attributed to a particular identity. It
 is possible for multiple communication channels to use the same
 identity; in that case, the assumption is that the associated
 client is coordinating such communication.

 Identity and scope: A single identity can be associated with
 multiple roles. Each role has its own scope and an identity

Atlas, et al. Expires August 23, 2016 [Page 10]

Internet-Draft I2RS Arch February 2016

 associated with multiple roles can use the combined scope of all
 its roles. More formally, each identity has:

 a read-scope that is the logical OR of the read-scopes
 associated with its roles,

 a write-scope that is the logical OR of the write-scopes
 associated with its roles, and

 a notification-scope that is the logical OR of the
 notification-scopes associated with its roles.

 secondary identity: An I2RS Client may supply a secondary opaque
 identity that is not interpreted by the I2RS Agent. An example
 use is when the I2RS Client is a go-between for multiple
 applications and it is necessary to track which application has
 requested a particular operation.

 Groups: NETCONF Network Access [RFC6536] uses the term group in
 terms of an Administrative group which supports the well-
 established distinction between a root account and other types of
 less-privileged conceptual user accounts. Group still refers to a
 single identity (e.g. root) which is shared by a group of users.

3. Key Architectural Properties

 Several key architectural properties for the I2RS protocol are
 elucidated below (simplicity, extensibility, and model-driven
 programmatic interfaces). However, some architecture properties such
 as performance and scaling are not described below because they are
 discussed in [I-D.ietf-i2rs-problem-statement], may may vary based on
 the particular use-cases.

3.1. Simplicity

 There have been many efforts over the years to improve the access to
 the information available to the routing and forwarding system.
 Making such information visible and usable to network management and
 applications has many well-understood benefits. There are two
 related challenges in doing so. First, the quantity and diversity of
 information potentially available is very large. Second, the
 variation both in the structure of the data and in the kinds of
 operations required tends to introduce protocol complexity.

 While the types of operations contemplated here are complex in their
 nature, it is critical that I2RS be easily deployable and robust.
 Adding complexity beyond what is needed to satisfy well known and
 understood requirements would hinder the ease of implementation, the

Atlas, et al. Expires August 23, 2016 [Page 11]

Internet-Draft I2RS Arch February 2016

 robustness of the protocol, and the deployability of the protocol.
 Overly complex data models tend to ossify information sets by
 attempting to describe and close off every possible option,
 complicating extensibility.

 Thus, one of the key aims for I2RS is the keep the protocol and
 modeling architecture simple. So for each architectural component or
 aspect, we ask ourselves "do we need this complexity, or is the
 behavior merely nice to have?"

3.2. Extensibility

 Extensibility of the protocol and data model is very important. In
 particular, given the necessary scope limitations of the initial
 work, it is critical that the initial design include strong support
 for extensibility.

 The scope of the I2RS work is being restricted in the interests of
 achieving a deliverable and deployable result. The I2RS Working
 Group is modeling only a subset of the data of interest. It is
 clearly desirable for the data models defined in the I2RS to be
 useful in more general settings. It should be easy to integrate data
 models from the I2RS with other data. Other work should be able to
 easily extend it to represent additional aspects of the network
 elements or network systems. This reinforces the criticality of
 designing the data models to be highly extensible, preferably in a
 regular and simple fashion.

 The I2RS Working Group is defining operations for the I2RS protocol.
 It would be optimistic to assume that more and different ones may not
 be needed when the scope of I2RS increases. Thus, it is important to
 consider extensibility not only of the underlying services’ data
 models, but also of the primitives and protocol operations.

3.3. Model-Driven Programmatic Interfaces

 A critical component of I2RS is the standard information and data
 models with their associated semantics. While many components of the
 routing system are standardized, associated data models for them are
 not yet available. Instead, each router uses different information,
 different mechanisms, and different CLI which makes a standard
 interface for use by applications extremely cumbersome to develop and
 maintain. Well-known data modeling languages exist and may be used
 for defining the data models for I2RS.

 There are several key benefits for I2RS in using model-driven
 architecture and protocol(s). First, it allows for transferring
 data-models whose content is not explicitly implemented or

Atlas, et al. Expires August 23, 2016 [Page 12]

Internet-Draft I2RS Arch February 2016

 understood. Second, tools can automate checking and manipulating
 data; this is particularly valuable for both extensibility and for
 the ability to easily manipulate and check proprietary data-models.

 The different services provided by I2RS can correspond to separate
 data-models. An I2RS agent may indicate which data-models are
 supported.

 The purpose of the data model is to provide an definition of the
 information regarding the routing system that can be used in
 operational networks. If routing information is being modeled for
 the first time, a logical information model may be standardized prior
 to creating the data model.

4. Security Considerations

 This I2RS architecture describes interfaces that clearly require
 serious consideration of security. As an architecture, I2RS has been
 designed to re-utilize existing protocols that carry network
 management information. Two of the existing protocols which the
 which may be re-used are NETCONF [RFC6241] and RESTCONF
 [I-D.ietf-netconf-restconf]. The I2RS protocol design process will
 be to specify additional requirements including security for these
 existing protocol in order to support the I2RS architecture. After
 an existing protocol, (e.g. NETCONF or RESTCONF) has been altered to
 fit the I2RS requirements, then it will be reviewed to determine if
 it meets the I2RS security requirements.

 Due to the re-use strategy of the I2RS architecture, this security
 section describes the assumed security environment for I2RS with
 additional details on: a) identity and authentication, b)
 authorization, and c) client redundancy. Each protocol proposed for
 inclusion as an I2RS protocol will need to be evaluated for the
 security constraints of the protocol. The detailed requirements for
 the I2RS protocol and the I2RS security environment will be defined
 within these global security environments.

 First, here is a brief description of the assumed security
 environment for I2RS. The I2RS Agent associated with a Routing
 Element is a trusted part of that Routing Element. For example, it
 may be part of a vendor-distributed signed software image for the
 entire Routing Element or it may be trusted signed application that
 an operator has installed. The I2RS Agent is assumed to have a
 separate authentication and authorization channel by which it can
 validate both the identity and permissions associated with an I2RS
 Client. To support numerous and speedy interactions between the I2RS
 Agent and I2RS Client, it is assumed that the I2RS Agent can also
 cache that particular I2RS Clients are trusted and their associated

Atlas, et al. Expires August 23, 2016 [Page 13]

Internet-Draft I2RS Arch February 2016

 authorized scope. This implies that the permission information may
 be old either in a pull model until the I2RS Agent re-requests it, or
 in a push model until the authentication and authorization channel
 can notify the I2RS Agent of changes.

 Mutual authentication between the I2RS Client and I2RS Agent is
 required. An I2RS Client must be able to trust that the I2RS Agent
 is attached to the relevant Routing Element so that write/modify
 operations are correctly applied and so that information received
 from the I2RS Agent can be trusted by the I2RS Client.

 An I2RS Client is not automatically trustworthy. Each I2RS Client is
 associated with identity with a set of scope limitations.
 Applications using the I2RSS should be aware of the scope limitations
 of that I2RS Client. If the I2RS Client is acting as a broker for
 multiple applications, then managing the security, authentication and
 authorization for that communication is out of scope; nothing
 prevents the broker from using I2RS protocol and a separate
 authentication and authorization channel from being used. Regardless
 of mechanism, an I2RS Client that is acting as a broker is
 responsible for determining that applications using it are trusted
 and permitted to make the particular requests.

 Different levels of integrity, confidentiality, and replay protection
 are relevant for different aspects of I2RS. The primary
 communication channel that is used for client authentication and then
 used by the client to write data requires integrity, confidentiality
 and replay protection. Appropriate selection of a default required
 transport protocol is the preferred way of meeting these
 requirements.

 Other communications via I2RS may not require integrity,
 confidentiality, and replay protection. For instance, if an I2RS
 Client subscribes to an information stream of prefix announcements
 from OSPF, those may require integrity but probably not
 confidentiality or replay protection. Similarly, an information
 stream of interface statistics may not even require guaranteed
 delivery. In Section 7.2, additional login regarding multiple
 communication channels and their use is provided. From the security
 perspective, it is critical to realize that an I2RS Agent may open a
 new communication channel based upon information provided by an I2RS
 Client (as described in Section 7.2). For example, an I2RS client
 may request notifications of certain events and the agent will open a
 communication channel to report such events. Therefore, to avoid an
 indirect attack, such a request must be done in the context of an
 authenticated and authorized client whose communications cannot have
 been altered.

Atlas, et al. Expires August 23, 2016 [Page 14]

Internet-Draft I2RS Arch February 2016

4.1. Identity and Authentication

 As discussed above, all control exchanges between the I2RS client and
 agent should be authenticated and integrity protected (such that the
 contents cannot be changed without detection). Further, manipulation
 of the system must be accurately attributable. In an ideal
 architecture, even information collection and notification should be
 protected; this may be subject to engineering tradeoffs during the
 design.

 I2RS clients may be operating on behalf of other applications. While
 those applications’ identities are not needed for authentication or
 authorization, each application should have a unique opaque
 identifier that can be provided by the I2RS client to the I2RS agent
 for purposes of tracking attribution of operations to support
 functionality such as troubleshooting and logging of network changes.

4.2. Authorization

 All operations using I2RS, both observation and manipulation, should
 be subject to appropriate authorization controls. Such authorization
 is based on the identity and assigned role of the I2RS client
 performing the operations and the I2RS agent in the network element.
 Multiple Identities may use the same role(s). As noted in the
 definition of the identity and role above, if multiple roles are
 associated with an identity then the identity is authorized to
 perform any operation authorized by any of its roles.

 I2RS Agents, in performing information collection and manipulation,
 will be acting on behalf of the I2RS clients. As such, each
 operation authorization will be based on the lower of the two
 permissions of the agent itself and of the authenticated client. The
 mechanism by which this authorization is applied within the device is
 outside of the scope of I2RS.

 The appropriate or necessary level of granularity for scope can
 depend upon the particular I2RS Service and the implementation’s
 granularity. An approach to a similar access control problem is
 defined in the NetConf Access Control Model (NACM) [RFC6536]; it
 allows arbitrary access to be specified for a data node instance
 identifier while defining meaningful manipulable defaults. The
 identity within NACM [RFC6536] can be specify as either a user name
 or a group user name (e.g. Root), and this name is linked a scope
 policy that is contained in a set of access control rules.
 Similarly, it is expected the I2RS identity links to one role which
 has a scope policy specified by a set of access control rules. This
 scope policy can be provided via Local Configuration, exposed as an

Atlas, et al. Expires August 23, 2016 [Page 15]

Internet-Draft I2RS Arch February 2016

 I2RS Service for manipulation by authorized clients, or via some
 other method (e.g. AAA service)

 When an I2RS client is authenticated, its identity is provided to the
 I2RS Agent, and this identity links to a role which links to the
 scope policy. Multiple identities may belong to the same role; for
 example, such a role might be an Internal-Routes-Monitor that allows
 reading of the portion of the I2RS RIB associated with IP prefixes
 used for internal device addresses in the AS."

4.3. Client Redundancy

 I2RS must support client redundancy. At the simplest, this can be
 handled by having a primary and a backup network application that
 both use the same client identity and can successfully authenticate
 as such. Since I2RS does not require a continuous transport
 connection and supports multiple transport sessions, this can provide
 some basic redundancy. However, it does not address the need for
 troubleshooting and logging of network changes to be informed about
 which network application is actually active. At a minimum, basic
 transport information about each connection and time can be logged
 with the identity.

5. Network Applications and I2RS Client

 I2RS is expected to be used by network-oriented applications in
 different architectures. While the interface between a network-
 oriented application and the I2RS client is outside the scope of
 I2RS, considering the different architectures is important to
 sufficiently specify I2RS.

 In the simplest architecture of direct access, a network-oriented
 application has an I2RS client as a library or driver for
 communication with routing elements.

 In the broker architecture, multiple network-oriented applications
 communicate in an unspecified fashion to a broker application that
 contains an I2RS Client. That broker application requires additional
 functionality for authentication and authorization of the network-
 oriented applications; such functionality is out of scope for I2RS
 but similar considerations to those described in Section 4.2 do
 apply. As discussed in Section 4.1, the broker I2RS Client should
 determine distinct opaque identifiers for each network-oriented
 application that is using it. The broker I2RS Client can pass along
 the appropriate value as a secondary identifier which can be used for
 tracking attribution of operations.

Atlas, et al. Expires August 23, 2016 [Page 16]

Internet-Draft I2RS Arch February 2016

 In a third architecture, a routing element or network-oriented
 application that uses an I2RS Client to access services on a
 different routing element may also contain an I2RS agent to provide
 services to other network-oriented applications. However, where the
 needed information and data models for those services differs from
 that of a conventional routing element, those models are, at least
 initially, out of scope for I2RS. Below is an example of such a
 network application

5.1. Example Network Application: Topology Manager

 A Topology Manager includes an I2RS client that uses the I2RS data
 models and protocol to collect information about the state of the
 network by communicating directly with one or more I2RS agents. From
 these I2RS agents, the Topology Manager collects routing
 configuration and operational data, such as interface and label-
 switched path (LSP) information. In addition, the Topology Manager
 may collect link-state data in several ways - either via I2RS models,
 by peering with BGP-LS[I-D.ietf-idr-ls-distribution] or listening
 into the IGP.

 The set of functionality and collected information that is the
 Topology Manager may be embedded as a component of a larger
 application, such as a path computation application. As a stand-
 alone application, the Topology Manager could be useful to other
 network applications by providing a coherent picture of the network
 state accessible via another interface. That interface might use the
 same I2RS protocol and could provide a topology service using
 extensions to the I2RS data models.

6. I2RS Agent Role and Functionality

 The I2RS Agent is part of a routing element. As such, it has
 relationships with that routing element as a whole, and with various
 components of that routing element.

6.1. Relationship to its Routing Element

 A Routing Element may be implemented with a wide variety of different
 architectures: an integrated router, a split architecture,
 distributed architecture, etc. The architecture does not need to
 affect the general I2RS agent behavior.

 For scalability and generality, the I2RS agent may be responsible for
 collecting and delivering large amounts of data from various parts of
 the routing element. Those parts may or may not actually be part of
 a single physical device. Thus, for scalability and robustness, it
 is important that the architecture allow for a distributed set of

Atlas, et al. Expires August 23, 2016 [Page 17]

Internet-Draft I2RS Arch February 2016

 reporting components providing collected data from the I2RS agent
 back to the relevant I2RS clients. There may be multiple I2RS Agents
 within the same router. In such a case, they must have non-
 overlapping sets of information which they manipulate.

 To facilitate operations, deployment and troubleshooting, it is
 important that traceability of the requests received by I2RS Agent’s
 and actions taken be supported via a common data model.

6.2. I2RS State Storage

 State modification requests are sent to the I2RS agent in a routing
 element by I2RS clients. The I2RS agent is responsible for applying
 these changes to the system, subject to the authorization discussed
 above. The I2RS agent will retain knowledge of the changes it has
 applied, and the client on whose behalf it applied the changes. The
 I2RS agent will also store active subscriptions. These sets of data
 form the I2RS data store. This data is retained by the agent until
 the state is removed by the client, overridden by some other
 operation such as CLI, or the device reboots. Meaningful logging of
 the application and removal of changes is recommended. I2RS applied
 changes to the routing element state will not be retained across
 routing element reboot. The I2RS data store is not preserved across
 routing element reboots; thus the I2RS agent will not attempt to
 reapply such changes after a reboot.

6.2.1. I2RS Agent Failure

 It is expected that an I2RS Agent may fail independently of the
 associated routing element. This could happen because I2RS is
 disabled on the routing element or because the I2RS Agent, a separate
 process or even running on a separate processor, experiences an
 unexpected failure. Just as routing state learned from a failed
 source is removed, the ephemeral I2RS state will usually be removed
 shortly after the failure is detected or as part of a graceful
 shutdown process. To handle I2RS Agent failure, the I2RS Agent must
 use two different notifications.

 NOTIFICATION_I2RS_AGENT_STARTING: This notification signals to the
 I2RS Client(s) that the associated I2RS Agent has started. It
 includes an agent-boot-count that indicates how many times the
 I2RS Agent has restarted since the associated routing element
 restarted. The agent-boot-count allows an I2RS Client to
 determine if the I2RS Agent has restarted. (Note: This
 notification will be only transmitted to I2RS clients which are
 know in some way after a reboot.)

Atlas, et al. Expires August 23, 2016 [Page 18]

Internet-Draft I2RS Arch February 2016

 NOTIFICATION_I2RS_AGENT_TERMINATING: This notification reports that
 the associated I2RS Agent is shutting down gracefully, and that
 I2RS ephemeral state will be removed. It can optionally include a
 timestamp indicating when the I2RS Agent will shutdown. Use of
 this timestamp assumes that time synchronization has been done and
 the timestamp should not have granularity finer than one second
 because better accuracy of shutdown time is not guaranteed.

 There are two different failure types that are possible and each has
 different behavior.

 Unexpected failure: In this case, the I2RS Agent has unexpectedly
 crashed and thus cannot notify its clients of anything. Since
 I2RS does not require a persistent connection between the I2RS
 Client and I2RS Agent, it is necessary to have a mechanism for the
 I2RS Agent to notify I2RS Clients that had subscriptions or
 written ephemeral state; such I2RS Clients should be cached by the
 I2RS Agent’s system in persistent storage. When the I2RS Agent
 starts, it should send a NOTIFICATION_I2RS_AGENT_STARTING to each
 cached I2RS Client.

 Graceful failure: In this case, the I2RS Agent can do specific
 limited work as part of the process of being disabled. The I2RS
 Agent must send a NOTIFICATION_I2RS_AGENT_TERMINATING to all its
 cached I2RS Clients.

6.2.2. Starting and Ending

 When an I2RS client applies changes via the I2RS protocol, those
 changes are applied and left until removed or the routing element
 reboots. The network application may make decisions about what to
 request via I2RS based upon a variety of conditions that imply
 different start times and stop times. That complexity is managed by
 the network application and is not handled by I2RS.

6.2.3. Reversion

 An I2RS Agent may decide that some state should no longer be applied.
 An I2RS Client may instruct an Agent to remove state it has applied.
 In all such cases, the state will revert to what it would have been
 without the I2RS client-agent interaction; that state is generally
 whatever was specified via the CLI, NETCONF, SNMP, etc. I2RS Agents
 will not store multiple alternative states, nor try to determine
 which one among such a plurality it should fall back to. Thus, the
 model followed is not like the RIB, where multiple routes are stored
 at different preferences. (For I2RS state in the presence of two
 I2RS clients, please see section 1.2 and section 7.8)

Atlas, et al. Expires August 23, 2016 [Page 19]

Internet-Draft I2RS Arch February 2016

 An I2RS Client may register for notifications, subject to its
 notification scope, regarding state modification or removal by a
 particular I2RS Client.

6.3. Interactions with Local Configuration

 Changes may originate from either Local Configuration or from I2RS.
 The modifications and data stored by I2RS are separate from the local
 device configuration, but conflicts between the two must be resolved
 in a deterministic manner that respects operator-applied policy. The
 deterministic model is the result of general I2RS rules, system
 rules, knobs adjust by operator-applied policy, and the rules
 associated with the yang data model (often in MUST and WHEN clauses
 for dependencies).

 This operator-applied policy can determine whether Local
 Configuration overrides a particular I2RS client’s request or vice
 versa. To achieve this end, the I2RS data modules have a general
 rule that by default the Local Configuration always wins.
 Optionally, a routing element may permit a priority to be to be
 configured on the device for the Local Configuration mechanism
 interaction with the I2RS model. The policy mechanism would compare
 the I2RS client’s priority with that priority assigned to the Local
 Configuration in order to determine whether Local Configuration or
 I2RS wins.

 For the case when the I2RS ephemeral state always wins for a data
 model, if there is an I2RS ephemeral state value it is installed
 instead of the local configuration state. The local configuration
 information is stored so that if/when I2RS client removes I2RS
 ephemeral state the local configuration state can be restored.

 When the Local Configuration always wins, some communication between
 that subsystem and the I2RS Agent is still necessary. As an I2RS
 Agent connects to the routing sub-system, the I2RS Agent must also
 communicate with the Local Configuration to exchange model
 information so the I2RS agent knows the details of each specific
 device configuration change that the I2RS Agent is permitted to
 modify. In addition, when the system determines, that a client’s
 I2RS state is preempted, the I2RS agent must notify the affected I2RS
 clients; how the system determines this is implementation-dependent.

 It is critical that policy based upon the source is used because the
 resolution cannot be time-based. Simply allowing the most recent
 state to prevail could cause race conditions where the final state is
 not repeatably deterministic.

Atlas, et al. Expires August 23, 2016 [Page 20]

Internet-Draft I2RS Arch February 2016

6.4. Routing Components and Associated I2RS Services

 For simplicity, each logical protocol or set of functionality that
 can be compactly described in a separable information and data model
 is considered as a separate I2RS Service. A routing element need not
 implement all routing components described nor provide the associated
 I2RS services. I2RS Services should include a capability model so
 that peers can determine which parts of the service are supported.
 Each I2RS Service requires an information model that describes at
 least the following: data that can be read, data that can be written,
 notifications that can be subscribed to, and the capability model
 mentioned above.

 The initial services included in the I2RS architecture are as
 follows.

 *************************** ************** *****************
 * I2RS Protocol * * * * Dynamic *
 * * * Interfaces * * Data & *
 * +--------+ +-------+ * * * * Statistics *
 * | Client | | Agent | * ************** *****************
 * +--------+ +-------+ *
 * * ************** *************
 *************************** * * * *
 * Policy * * Base QoS *
 ******************** ******** * Templates * * Templates *
 * +--------+ * * * * * *************
 * BGP | BGP-LS | * * PIM * **************
 * +--------+ * * *
 ******************** ******** ****************************
 * MPLS +---------+ +-----+ *
 ********************************** * | RSVP-TE | | LDP | *
 * IGPs +------+ +------+ * * +---------+ +-----+ *
 * +--------+ | OSPF | |IS-IS | * * +--------+ *
 * | Common | +------+ +------+ * * | Common | *
 * +--------+ * * +--------+ *
 ********************************** ****************************

 **
 * RIB Manager *
 * +-------------------+ +---------------+ +------------+ *
 * | Unicast/multicast | | Policy-Based | | RIB Policy | *
 * | RIBs & LIBs | | Routing | | Controls | *
 * | route instances | | (ACLs, etc) | +------------+ *
 * +-------------------+ +---------------+ *
 **

 Figure 2: Anticipated I2RS Services

Atlas, et al. Expires August 23, 2016 [Page 21]

Internet-Draft I2RS Arch February 2016

 There are relationships between different I2RS Services - whether
 those be the need for the RIB to refer to specific interfaces, the
 desire to refer to common complex types (e.g. links, nodes, IP
 addresses), or the ability to refer to implementation-specific
 functionality (e.g. pre-defined templates to be applied to interfaces
 or for QoS behaviors that traffic is direct into). Section 6.4.5
 discusses information modeling constructs and the range of
 relationship types that are applicable.

6.4.1. Routing and Label Information Bases

 Routing elements may maintain one or more Information Bases.
 Examples include Routing Information Bases such as IPv4/IPv6 Unicast
 or IPv4/IPv6 Multicast. Another such example includes the MPLS Label
 Information Bases, per-platform or per-interface or per-context.
 This functionality, exposed via an I2RS Service, must interact
 smoothly with the same mechanisms that the routing element already
 uses to handle RIB input from multiple sources, so as to safely
 change the system state. Conceptually, this can be handled by having
 the I2RS Agent communicate with a RIB Manager as a separate routing
 source.

 The point-to-multipoint state added to the RIB does not need to match
 to well-known multicast protocol installed state. The I2RS Agent can
 create arbitrary replication state in the RIB, subject to the
 advertised capabilities of the routing element.

6.4.2. IGPs, BGP and Multicast Protocols

 A separate I2RS Service can expose each routing protocol on the
 device. Such I2RS services may include a number of different kinds
 of operations:

 o reading the various internal RIB(s) of the routing protocol is
 often helpful for understanding the state of the network.
 Directly writing to these protocol-specific RIBs or databases is
 out of scope for I2RS.

 o reading the various pieces of policy information the particular
 protocol instance is using to drive its operations.

 o writing policy information such as interface attributes that are
 specific to the routing protocol or BGP policy that may indirectly
 manipulate attributes of routes carried in BGP.

 o writing routes or prefixes to be advertised via the protocol.

 o joining/removing interfaces from the multicast trees

Atlas, et al. Expires August 23, 2016 [Page 22]

Internet-Draft I2RS Arch February 2016

 o subscribing to an information stream of route changes

 o receiving notifications about peers coming up or going down

 For example, the interaction with OSPF might include modifying the
 local routing element’s link metrics, announcing a locally-attached
 prefix, or reading some of the OSPF link-state database. However,
 direct modification of the link-state database must not be allowed in
 order to preserve network state consistency.

6.4.3. MPLS

 I2RS Services will be needed to expose the protocols that create
 transport LSPs (e.g. LDP and RSVP-TE) as well as protocols (e.g.
 BGP, LDP) that provide MPLS-based services (e.g. pseudowires, L3VPNs,
 L2VPNs, etc). This should include all local information about LSPs
 originating in, transiting, or terminating in this Routing Element.

6.4.4. Policy and QoS Mechanisms

 Many network elements have separate policy and QoS mechanisms,
 including knobs which affect local path computation and queue control
 capabilities. These capabilities vary widely across implementations,
 and I2RS cannot model the full range of information collection or
 manipulation of these attributes. A core set does need to be
 included in the I2RS information models and supported in the expected
 interfaces between the I2RS Agent and the network element, in order
 to provide basic capabilities and the hooks for future extensibility.

 By taking advantage of extensibility and sub-classing, information
 models can specify use of a basic model that can be replaced by a
 more detailed model.

6.4.5. Information Modeling, Device Variation, and Information
 Relationships

 I2RS depends heavily on information models of the relevant aspects of
 the Routing Elements to be manipulated. These models drive the data
 models and protocol operations for I2RS. It is important that these
 information models deal well with a wide variety of actual
 implementations of Routing Elements, as seen between different
 products and different vendors. There are three ways that I2RS
 information models can address these variations: class or type
 inheritance, optional features, and templating.

Atlas, et al. Expires August 23, 2016 [Page 23]

Internet-Draft I2RS Arch February 2016

6.4.5.1. Managing Variation: Object Classes/Types and Inheritance

 Information modelled by I2RS from a Routing Element can be described
 in terms of classes or types or object. Different valid inheritance
 definitions can apply. What is appropriate for I2RS to use is not
 determined in this architecture; for simplicity, class and subclass
 will be used as the example terminology. This I2RS architecture does
 require the ability to address variation in Routing Elements by
 allowing information models to define parent or base classes and
 subclasses.

 The base or parent class defines the common aspects that all Routing
 Elements are expected to support. Individual subclasses can
 represent variations and additional capabilities. When applicable,
 there may be several levels of refinement. The I2RS protocol can
 then provide mechanisms to allow an I2RS client to determine which
 classes a given I2RS Agent has available. Clients which only want
 basic capabilities can operate purely in terms of base or parent
 classes, while a client needing more details or features can work
 with the supported sub-class(es).

 As part of I2RS information modeling, clear rules should be specified
 for how the parent class and subclass can relate; for example, what
 changes can a subclass make to its parent? The description of such
 rules should be done so that it can apply across data modeling tools
 until the I2RS data modeling language is selected.

6.4.5.2. Managing Variation: Optionality

 I2RS Information Models must be clear about what aspects are
 optional. For instance, must an instance of a class always contain a
 particular data field X? If so, must the client provide a value for
 X when creating the object or is there a well-defined default value?
 From the Routing Element perspective, in the above example, each
 Information model should provide information that:

 o Is X required for the data field to be accepted and applied?

 o If X is optional, then how does "X" as an optional portion of data
 field interact with the required aspects of the data field?

 o Does the data field have defaults for the mandatory portion of the
 field and the optional portions of the field

 o Is X required to be within a particular set of values (e.g. range,
 length of strings)?

Atlas, et al. Expires August 23, 2016 [Page 24]

Internet-Draft I2RS Arch February 2016

 The information model needs to be clear about what read or write
 values are set by client and what responses or actions are required
 by the agent. It is important to indicate what is required or
 optional in client values and agent responses/actions.

6.4.5.3. Managing Variation: Templating

 A template is a collection of information to address a problem; it
 cuts across the notions of class and object instances. A template
 provides a set of defined values for a set of information fields and
 can specify a set of values that must be provided to complete the
 template. Further, a flexible template scheme may allow some of the
 defined values can be over-written.

 For instance, assigning traffic to a particular service class might
 be done by specifying a template Queueing with a parameter to
 indicate Gold, Silver, or Best Effort. The details of how that is
 carried out are not modeled. This does assume that the necessary
 templates are made available on the Routing Element via some
 mechanism other than I2RS. The idea is that by providing suitable
 templates for tasks that need to be accomplished, with templates
 implemented differently for different kinds of Routing Elements, the
 client can easily interact with the Routing Element without concern
 for the variations which are handled by values included in the
 template.

 If implementation variation can be exposed in other ways, templates
 may not be needed. However, templates themselves could be objects
 referenced in the protocol messages, with Routing Elements being
 configured with the proper templates to complete the operation. This
 is a topic for further discussion.

6.4.5.4. Object Relationships

 Objects (in a Routing Element or otherwise) do not exist in
 isolation. They are related to each other. One of the important
 things a class definition does is represent the relationships between
 instances of different classes. These relationships can be very
 simple, or quite complicated. The following lists the information
 relationships that the information models need to support.

6.4.5.4.1. Initialization

 The simplest relationship is that one object instance is initialized
 by copying another. For example, one may have an object instance
 that represents the default setup for a tunnel, and all new tunnels
 have fields copied from there if they are not set as part of
 establishment. This is closely related to the templates discussed

Atlas, et al. Expires August 23, 2016 [Page 25]

Internet-Draft I2RS Arch February 2016

 above, but not identical. Since the relationship is only momentary
 it is often not formally represented in modeling, but only captured
 in the semantic description of the default object.

6.4.5.4.2. Correlation Identification

 Often, it suffices to indicate in one object that it is related to a
 second object, without having a strong binding between the two. So
 an Identifier is used to represent the relationship. This can be
 used to allow for late binding, or a weak binding that does not even
 need to exist. A policy name in an object might indicate that if a
 policy by that name exists, it is to be applied under some
 circumstance. In modeling, this is often represented by the type of
 the value.

6.4.5.4.3. Object References

 Sometimes the relationship between objects is stronger. A valid ARP
 entry has to point to the active interface over which it was derived.
 This is the classic meaning of an object reference in programming.
 It can be used for relationships like containment or dependence.
 This is usually represented by an explicit modeling link.

6.4.5.4.4. Active Reference

 There is an even stronger form of coupling between objects if changes
 in one of the two objects are always to be reflected in the state of
 the other. For example, if a Tunnel has an MTU (maximum transmit
 unit), and link MTU changes need to immediately propagate to the
 Tunnel MTU, then the tunnel is actively coupled to the link
 interface. This kind of active state coupling implies some sort of
 internal bookkeeping to ensure consistency, often conceptualized as a
 subscription model across objects.

7. I2RS Client Agent Interface

7.1. One Control and Data Exchange Protocol

 This I2RS architecture assumes a data-model driven protocol where the
 data-models are defined in Yang 1.1 ([RFC6020]), Yang 1.1
 ([I-D.ietf-netmod-rfc6020bis]), and associated Yang based model
 drafts ([RFC6991], [RFC7223], [RFC7224], [RFC7277], [RFC7317]). Two
 the protocols to be expanded to support the I2RS protocol are NETCONF
 [RFC6241] and RESTCONF [I-D.ietf-netconf-restconf]. This helps meet
 the goal of simplicity and thereby enhances deployability. The I2RS
 protocol may need to use several underlying transports (TCP, SCTP
 (stream control transport protocol), DCCP (Datagram Congestion
 Control Protocol)), with suitable authentication and integrity

Atlas, et al. Expires August 23, 2016 [Page 26]

Internet-Draft I2RS Arch February 2016

 protection mechanisms. These different transports can support
 different types of communication (e.g. control, reading,
 notifications, and information collection) and different sets of
 data. Whatever transport is used for the data exchange, it must also
 support suitable congestion control mechanisms. The transports
 chosen should be operator and implementor friendly to ease adoption.

7.2. Communication Channels

 Multiple communication channels and multiple types of communication
 channels are required. There may be a range of requirements (e.g.
 confidentiality, reliability), and to support the scaling there may
 need to be channels originating from multiple sub-components of a
 routing element and/or to multiple parts of an I2RS client. All such
 communication channels will use the same higher-layer I2RS protocol
 (which combines secure transport and I2RS contextual information).
 The use of additional channels for communication will be coordinated
 between the I2RS client and the I2RS agent using this protocol.

 I2RS protocol communication may be delivered in-band via the routing
 system’s data plane. I2RS protocol communication might be delivered
 out-of-band via a management interface. Depending on what operations
 are requested, it is possible for the I2RS protocol communication to
 cause the in-band communication channels to stop working; this could
 cause the I2RS agent to become unreachable across that communication
 channel.

7.3. Capability Negotiation

 The support for different protocol capabilities and I2RS Services
 will vary across I2RS Clients and Routing Elements supporting I2RS
 Agents. Since each I2RS Service is required to include a capability
 model (see Section 6.4), negotiation at the protocol level can be
 restricted to protocol specifics and which I2RS Services are
 supported.

 Capability negotiation (such as which transports are supported beyond
 the minimum required to implement) will clearly be necessary. It is
 important that such negotiations be kept simple and robust, as such
 mechanisms are often a source of difficulty in implementation and
 deployment.

 The protocol capability negotiation can be segmented into the basic
 version negotiation (required to ensure basic communication), and the
 more complex capability exchange which can take place within the base
 protocol mechanisms. In particular, the more complex protocol and
 mechanism negotiation can be addressed by defining information models
 for both the I2RS Agent and the I2RS Client. These information

Atlas, et al. Expires August 23, 2016 [Page 27]

Internet-Draft I2RS Arch February 2016

 models can describe the various capability options. This can then
 represent and be used to communicate important information about the
 agent, and the capabilities thereof.

7.4. Scope Policy Specifications

 As section 4.1 and 4.2 describe, each I2RS Client will have a unique
 identity and it may have a secondary identity (see section 2) to aid
 in troubleshooting. As section 4 indicates, all authentication and
 authorization mechanisms are based on the primary Identity which
 links to a role with scope policy for reading data, for writing data,
 and limitations on the resources that can be consumed.
 Specifications for scope policy need to specify the data and value
 ranges for portion of scope policy.

7.5. Connectivity

 A client may or may not maintain an active communication channel with
 an agent. Therefore, an agent may need to open a communication
 channel to the client to communicate previously requested
 information. The lack of an active communication channel does not
 imply that the associated client is non-functional. When
 communication is required, the agent or client can open a new
 communication channel.

 State held by an agent that is owned by a client should not be
 removed or cleaned up when a client is no longer communicating - even
 if the agent cannot successfully open a new communication channel to
 the client.

 For many applications, it may be desirable to clean up state if a
 network application dies before removing the state it has created.
 Typically, this is dealt with in terms of network application
 redundancy. If stronger mechanisms are desired, mechanisms outside
 of I2RS may allow a supervisory network application to monitor I2RS
 clients, and based on policy known to the supervisor clean up state
 if applications die. More complex mechanism instantiated in the I2RS
 agent would add complications to the I2RS protocol and are thus left
 for future work.

 Some examples of such a mechanism include the following. In one
 option, the client could request state clean-up if a particular
 transport session is terminated. The second is to allow state
 expiration, expressed as a policy associated with the I2RS client’s
 role. The state expiration could occur after there has been no
 successful communication channel to or from the I2RS client for the
 policy-specified duration.

Atlas, et al. Expires August 23, 2016 [Page 28]

Internet-Draft I2RS Arch February 2016

7.6. Notifications

 As with any policy system interacting with the network, the I2RS
 Client needs to be able to receive notifications of changes in
 network state. Notifications here refers to changes which are
 unanticipated, represent events outside the control of the systems
 (such as interface failures on controlled devices), or are
 sufficiently sparse as to be anomalous in some fashion. A
 notification may also be due to a regular event.

 Such events may be of interest to multiple I2RS Clients controlling
 data handled by an I2RS Agent, and to multiple other I2RS clients
 which are collecting information without exerting control. The
 architecture therefore requires that it be practical for I2RS Clients
 to register for a range of notifications, and for the I2RS Agents to
 send notifications to a number of Clients. The I2RS Client should be
 able to filter the specific notifications that will be received; the
 specific types of events and filtering operations can vary by
 information model and need to be specified as part of the information
 model.

 The I2RS information model needs to include representation of these
 events. As discussed earlier, the capability information in the
 model will allow I2RS clients to understand which events a given I2RS
 Agent is capable of generating.

 For performance and scaling by the I2RS client and general
 information confidentiality, an I2RS Client needs to be able to
 register for just the events it is interested in. It is also
 possible that I2RS might provide a stream of notifications via a
 publish/subscribe mechanism that is not amenable to having the I2RS
 agent do the filtering.

7.7. Information collection

 One of the other important aspects of the I2RS is that it is intended
 to simplify collecting information about the state of network
 elements. This includes both getting a snapshot of a large amount of
 data about the current state of the network element, and subscribing
 to a feed of the ongoing changes to the set of data or a subset
 thereof. This is considered architecturally separate from
 notifications due to the differences in information rate and total
 volume.

Atlas, et al. Expires August 23, 2016 [Page 29]

Internet-Draft I2RS Arch February 2016

7.8. Multi-Headed Control

 As was described earlier, an I2RS Agent interacts with multiple I2RS
 Clients who are actively controlling the network element. From an
 architecture and design perspective, the assumption is that by means
 outside of this system the data to be manipulated within the network
 element is appropriately partitioned so that any given piece of
 information is only being manipulated by a single I2RS Client.

 Nonetheless, unexpected interactions happen and two (or more) I2RS
 clients may attempt to manipulate the same piece of data. This is
 considered an error case. This architecture does not attempt to
 determine what the right state of data should be when such a
 collision happens. Rather, the architecture mandates that there be
 decidable means by which I2RS Agents handle the collisions. The
 mechanism for ensuring predictability is to have a simple priority
 associated with each I2RS clients, and the highest priority change
 remains in effect. In the case of priority ties, the first client
 whose attribution is associated with the data will keep control.

 In order for this approach to multi-headed control to be useful for
 I2RS Clients, it is important that it is possible for an I2RS Client
 to register for changes to any changes made by I2RS to data that it
 may care about. This is included in the I2RS event mechanisms. This
 also needs to apply to changes made by CLI/NETCONF/SNMP within the
 write-scope of the I2RS Agent, as the same priority mechanism (even
 if it is "CLI always wins") applies there. The I2RS client may then
 respond to the situation as it sees fit.

7.9. Transactions

 In the interest of simplicity, the I2RS architecture does not include
 multi-message atomicity and rollback mechanisms. Rather, it includes
 a small range of error handling for a set of operations included in a
 single message. An I2RS Client may indicate one of the following
 three error handling for a given message with multiple operations
 which it sends to an I2RS Agent:

 Perform all or none: This traditional SNMP semantic indicates that
 other I2RS agent will keep enough state when handling a single
 message to roll back the operations within that message. Either
 all the operations will succeed, or none of them will be applied
 and an error message will report the single failure which caused
 them not to be applied. This is useful when there are, for
 example, mutual dependencies across operations in the message.

 Perform until error: In this case, the operations in the message
 are applied in the specified order. When an error occurs, no

Atlas, et al. Expires August 23, 2016 [Page 30]

Internet-Draft I2RS Arch February 2016

 further operations are applied, and an error is returned
 indicating the failure. This is useful if there are dependencies
 among the operations and they can be topologically sorted.

 Perform all storing errors: In this case, the I2RS Agent will
 attempt to perform all the operations in the message, and will
 return error indications for each one that fails. This is useful
 when there is no dependency across the operation, or where the
 client would prefer to sort out the effect of errors on its own.

 In the interest of robustness and clarity of protocol state, the
 protocol will include an explicit reply to modification or write
 operations even when they fully succeed.

8. Operational and Manageability Considerations

 In order to facilitate troubleshooting of routing elements
 implementing I2RS agents, the routing elements should provide for a
 mechanism to show actively provisioned I2RS state and other I2RS
 Agent internal information. Note that this information may contain
 highly sensitive material subject to the Security Considerations of
 any data models implemented by that Agent and thus must be protected
 according to those considerations. Preferably, this mechanism should
 use a different privileged means other than simply connecting as an
 I2RS client to learn the data. Using a different mechanism should
 improve traceability and failure management.

 Manageability plays a key aspect in I2RS. Some initial examples
 include:

 Resource Limitations: Using I2RS, applications can consume
 resources, whether those be operations in a time-frame, entries in
 the RIB, stored operations to be triggered, etc. The ability to
 set resource limits based upon authorization is important.

 Configuration Interactions: The interaction of state installed via
 the I2RS and via a router’s configuration needs to be clearly
 defined. As described in this architecture, a simple priority
 that is configured is used to provide sufficient policy
 flexibility.

 Traceability of Interactions: The ability to trace the interactions
 of the requests received by the I2RS Agent’s and actions taken by
 the I2RS agents is needed so that operations can monitor I2RS
 Agents during deployment, and troubleshoot software or network
 problems.

Atlas, et al. Expires August 23, 2016 [Page 31]

Internet-Draft I2RS Arch February 2016

 Notification Subscription Service: The ability for an I2RS Client to
 subscribe to a notification stream pushed from the I2RS Agent
 (rather than having I2RS client poll the I2RS agent) provides a
 more scalable notification handling for the I2RS Agent-Client
 interactions.

9. IANA Considerations

 This document includes no request to IANA.

10. Acknowledgements

 Significant portions of this draft came from draft-ward-i2rs-
 framework-00 and draft-atlas-i2rs-policy-framework-00.

 The authors would like to thank Nitin Bahadur, Shane Amante, Ed
 Crabbe, Ken Gray, Carlos Pignataro, Wes George, Ron Bonica, Joe
 Clarke, Juergen Schoenwalder, Jeff Haas, Jamal Hadi Salim, Scott
 Brim, Thomas Narten, Dean Bogdanovic, Tom Petch, Robert Raszuk,
 Sriganesh Kini, John Mattsson, Nancy Cam-Winget, DaCheng Zhang, Qin
 Wu, Ahmed Abro, Salman Asadullah, Eric Yu, and Deborah Brungard for
 their suggestions and review.

11. Informative References

 [I-D.ietf-i2rs-problem-statement]
 Atlas, A., Nadeau, T., and D. Ward, "Interface to the
 Routing System Problem Statement", draft-ietf-i2rs-
 problem-statement-10 (work in progress), February 2016.

 [I-D.ietf-idr-ls-distribution]
 Gredler, H., Medved, J., Previdi, S., Farrel, A., and S.
 Ray, "North-Bound Distribution of Link-State and TE
 Information using BGP", draft-ietf-idr-ls-distribution-13
 (work in progress), October 2015.

 [I-D.ietf-netconf-restconf]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", draft-ietf-netconf-restconf-09 (work in
 progress), December 2015.

 [I-D.ietf-netmod-rfc6020bis]
 Bjorklund, M., "The YANG 1.1 Data Modeling Language",
 draft-ietf-netmod-rfc6020bis-11 (work in progress),
 February 2016.

Atlas, et al. Expires August 23, 2016 [Page 32]

Internet-Draft I2RS Arch February 2016

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <http://www.rfc-editor.org/info/rfc6020>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <http://www.rfc-editor.org/info/rfc6241>.

 [RFC6536] Bierman, A. and M. Bjorklund, "Network Configuration
 Protocol (NETCONF) Access Control Model", RFC 6536,
 DOI 10.17487/RFC6536, March 2012,
 <http://www.rfc-editor.org/info/rfc6536>.

 [RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <http://www.rfc-editor.org/info/rfc6991>.

 [RFC7223] Bjorklund, M., "A YANG Data Model for Interface
 Management", RFC 7223, DOI 10.17487/RFC7223, May 2014,
 <http://www.rfc-editor.org/info/rfc7223>.

 [RFC7224] Bjorklund, M., "IANA Interface Type YANG Module",
 RFC 7224, DOI 10.17487/RFC7224, May 2014,
 <http://www.rfc-editor.org/info/rfc7224>.

 [RFC7277] Bjorklund, M., "A YANG Data Model for IP Management",
 RFC 7277, DOI 10.17487/RFC7277, June 2014,
 <http://www.rfc-editor.org/info/rfc7277>.

 [RFC7317] Bierman, A. and M. Bjorklund, "A YANG Data Model for
 System Management", RFC 7317, DOI 10.17487/RFC7317, August
 2014, <http://www.rfc-editor.org/info/rfc7317>.

Authors’ Addresses

 Alia Atlas
 Juniper Networks
 10 Technology Park Drive
 Westford, MA 01886
 USA

 Email: akatlas@juniper.net

Atlas, et al. Expires August 23, 2016 [Page 33]

Internet-Draft I2RS Arch February 2016

 Joel Halpern
 Ericsson

 Email: Joel.Halpern@ericsson.com

 Susan Hares
 Huawei

 Email: shares@ndzh.com

 Dave Ward
 Cisco Systems
 Tasman Drive
 San Jose, CA 95134
 USA

 Email: wardd@cisco.com

 Thomas D. Nadeau
 Brocade

 Email: tnadeau@lucidvision.com

Atlas, et al. Expires August 23, 2016 [Page 34]

