DHC Working Group Internet-Draft

Updates: 5460 (if approved)

Intended status: Standards Track

Expires: December 11, 2015

D. Raghuvanshi K. Kinnear D. Kukrety Cisco Systems, Inc. June 9, 2015

DHCPv6 Active Leasequery draft-ietf-dhc-dhcpv6-active-leasequery-03

Abstract

The Dynamic Host Configuration Protocol for IPv6 (DHCPv6) has been extended with a Leasequery capability that allows a requestor to request information about DHCPv6 bindings. That mechanism is limited to queries for DHCPv6 binding data updates prior to the time the DHCPv6 server receives the Leasequery request. Continuous update of an external requestor with Leasequery data is sometimes desired. This document expands on the DHCPv6 Leasequery protocol, and allows for active transfer of real-time DHCPv6 binding information data via TCP. This document also updates DHCPv6 Bulk Leasequery (RFC5460) by adding new options.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on December 11, 2015.

Copyright Notice

Copyright (c) 2015 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1.	Introduction	3
2.	Terminology	3
3.	Protocol Overview	5
4.	Interaction Between Active Leasequery and Bulk Leasequery	7
5.	Extension to DHCPv6 Bulk Leasequery	8
6.		8
6	6.1. Message Framing for TCP	8
E	6.2. Messages	8
	6.2.1. ACTIVELEASEQUERY	8
	6.2.2. STARTTLS	9
	6.2.3. Response Messages	9
F	6.3. Options	9
	6.3.1. OPTION_LQ_BASE_TIME	9
		10
		11
F		12
7.		12
		13
	∸	13
	3	13
		14
		15
(8.4.1. Processing Replies from a Request Containing a	т –
		17
c	_ ~	19
		20
C	<u>-</u>	20
	~ 1	20
	3	21
,	~ -	
		21
		22
	<u> </u>	22
		23
-		23
		25
		25
	<u>-</u>	26
		26
12.	. Acknowledgements	27

13. Mod	ification History		•	•	•	•	•		•		•	•	27
14. Ref	erences												27
14.1.	Normative References .												27
14.2.	Informative References												27
Duthors	' Addresses												28

1. Introduction

The DHCPv6 [RFC3315] protocol specifies a mechanism for the assignment of IPv6 address and configuration information to IPv6 nodes. IPv6 Prefix Delegation for DHCPv6 (PD) [RFC3633] specifies a mechanism for DHCPv6 delegation of IPv6 prefixes and related data. DHCPv6 servers maintain authoritative information including binding information for delegated IPv6 prefixes.

Requirements exist for external entities to keep up to date on the correspondence between DHCPv6 clients and their bindings. These entities need to keep up with the current binding activity of the DHCPv6 server. Keeping up with these binding activity is termed "active" leasequery.

The DHCPv6 Bulk Leasequery [RFC5460] capability can be used to recover useful information from a DHCPv6 server when some external entity starts up. This entity could be one which is directly involved in the DHCPv6 client - server transactions (e.g., a relay agent), or it could be an external process which needs information present in the DHCPv6 server's lease state database.

The Active Leasequery capability documented here is designed to allow an entity not directly involved in DHCPv6 client - server transactions to nevertheless keep current with the state of the DHCPv6 lease state information in real-time.

This document updates DHCPv6 Bulk Leasequery [RFC5460] by adding new options, as described in Section 6.2.1. For the DHCPv6 servers, supporting Bulk Leasequery and not Active Leasequery, Section 9.2 specifies the mechanism to reject incoming Active Leasequery requests.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

DHCPv6 terminology is defined in [RFC3315]. Terminology specific to DHCPv6 Active Leasequery can be found below:

o "Absolute Time"

A 32-bit unsigned quantity containing the number of seconds since midnight (UTC), January 1, 2000, modulo 2³².

"Active Leasequery"

Keeping up to date in real-time (or near real-time) with DHCPv6 binding activity.

"Bulk Leasequery"

Requesting and receiving the information about all or some of the existing DHCPv6 binding information in an efficient manner, as defined by [RFC5460].

"blocked TCP connection"

A TCP connection is considered blocked if the underlying TCP transport will not accept new messages to be sent without blocking the thread that is attempting to send the message.

o "binding change/update"

Any change in the DHCPv6 binding state. This also includes expiration or deletion of the binding.

"catch-up information"

If a DHCPv6 Active Leasequery requestor sends OPTION_LQ_START_TIME option in an ACTIVELEASEQUERY message, the DHCPv6 server will attempt to send the requestor the information that changed since the time specified in the OPTION_LQ_START_TIME option. The binding information sent to satisfy this request is the catch-up information.

"catch-up phase"

The period while catch-up information is being sent is the catchup phase.

"clock skew"

The difference between the absolute time on a DHCPv6 server and the absolute time on the system where a requestor of an Active or Bulk Leasequery is executing is termed the "clock skew" for that Active or Bulk Leasequery connection. It is not absolutely constant but is likely to vary only slowly. While it is easy to think that this can be calculated precisely after one message is received by a requestor from a DHCPv6 server, a more accurate value is derived from continuously examining the instantaneous value developed from each message received from a DHCPv6 server and using it to make small adjustments to the existing value held in the requestor.

"DHCPv6 binding state"

Data stored on the DHCPv6 server related to binding.

"requestor"

The node that sends LEASEQUERY messages to one or more servers to retrieve information on the bindings for a client.

o "Transaction ID"

An opaque value used to match responses with queries initiated by an Active Leasequery requestor.

3. Protocol Overview

The Active Leasequery mechanism is modeled on the existing DHCPv6 Bulk Leasequery [RFC5460]; most differences arise from the long term nature of the TCP [RFC7414] connection required for Active Leasequery. A DHCPv6 server which supports Active Leasequery MUST support Bulk Leasequery [RFC5460] as well.

An Active Leasequery requestor opens a TCP connection to a DHCPv6 Server, using the DHCPv6 port 547. Note that this implies that the Leasequery requestor has server IP address(es) available via configuration or some other means, and that it has unicast IP reachability to the DHCPv6 server. No relaying for Active Leasequery is specified.

After establishing a connection, the requestor sends an ACTIVELEASEQUERY message over the connection. In response, the server sends updates to the requestor using LEASEQUERY-REPLY and LEASEQUERY-DATA messages. This response procedure is identical to [RFC5460], except that in the case of Active Leasequery the server sends updates whenever some activity occurs to change the binding state - thus the need for long lived connection.

Active Leasequery has features which allow this external entity to lose its connection and then reconnect and receive the latest information concerning any IPv6 bindings changed while it was not connected.

These features are designed to allow the Active Leasequery requestor to efficiently become current with respect to the lease state database after it has been restarted or the machine on which it is running has been reinitialized. It is easy to define a protocol which works when the requestor is always connected to the DHCPv6 server. Since that isn't sufficiently robust, much of the mechanism in this document is designed to deal efficiently with situations that occur when the Active Leasequery requestor becomes disconnected from the DHCPv6 server from which it is receiving updates and then reconnects to that server.

Central to this approach, if the Active Leasequery requestor loses service, it is allowed to specify the time of its most recent update in a subsequent Active Leasequery request and the DHCPv6 server will determine whether or not data was missed while the Active Leasequery requestor was not connected.

The DHCPv6 server processing the Active Leasequery request may limit the amount of data saved, and methods exist for the DHCPv6 server to inform the Active Leasequery requestor that data was missed - not all could be saved. In this situation, the Active Leasequery requestor should issue a Bulk Leasequery [RFC5460] to recover information not available through an Active Leasequery.

DHCPv6 servers are not required to keep any data corresponding to data missed on an Active Leasequery connection, but will typically choose to keep data corresponding to some recent activity available for subsequent queries by a DHCPv6 Active Leasequery requestor whose connection was temporarily interrupted. In other words, DHCPv6 servers supporting catch-up are required to have some mechanism to keep/save historic information of bindings.

An Active Leasequery requestor would typically use Bulk Leasequery to initialize its database with all current data when that database contains no binding information. In addition, it would use Bulk Leasequery to recover missed information in the event that its connection with the DHCPv6 server was lost for a longer time than the DHCPv6 server would keep track of the specific changes to the IPv6 binding information.

The messages sent by the server in response to an Active Leasequery request should be identical to the messages sent by the server to a Bulk Leasequery request regarding the way the data is encoded into the Active Leasequery responses. In addition, the actions taken by the Active Leasequery requestor to interpret the responses to an Active Leasequery request should be identical to the way that the requestor interprets the responses to a Bulk Leasequery request. Thus, the handling of OPTION CLIENT DATA and additional options discussed in the Bulk Leasequery specification [RFC5460] are to be followed when implementing Active Leasequery.

4. Interaction Between Active Leasequery and Bulk Leasequery

Active Leasequery is an extension of the Bulk Leasequery protocol [RFC5460]. The format of messages returned to an Active Leasequery requestor are identical to that defined for the Bulk Leasequery protocol [RFC5460].

Applications which employ Active Leasequery to keep a database up to date with respect to the DHCPv6 server's lease state database should use an initial Bulk Leasequery to bring their database into equivalence with that of the DHCPv6 server, and then use Active Leasequery to keep that database current with respect to the DHCPv6 server's lease state database.

There are several differences between the Active and Bulk Leasequery protocols. Active Leasequery defines a new message (ACTIVELEASEQUERY) to send Active Leasequery request to DHCPv6 server. An Active Leasequery connection sends all available updates to the requestor, based on OPTION_LQ_QUERY option (see Section 6.2.1).

An Active Leasequery connection does not ever "complete", though the DHCPv6 server may drop the connection for a variety of reasons associated with some sort of exception condition.

5. Extension to DHCPv6 Bulk Leasequery

This document extends to the capabilities of DHCPv6 Bulk Leasequery protocol [RFC5460] by defining new options (OPTION_LQ_BASE_TIME, OPTION_LQ_START_TIME and OPTION_LQ_END_TIME). DHCPv6 server sends OPTION_LQ_BASE_TIME option in Bulk Leasequery response if requestor ask for the same in Bulk Leasequery request. OPTION_LQ_START_TIME and OPTION_LQ_END_TIME can be used in Bulk Leasequery request made to DHCPv6 server. More details about these options are specified in Section 6.3.

6. Message and Option Definitions

6.1. Message Framing for TCP

The use of TCP for the Active Leasequery protocol permits one or more DHCPv6 messages to be sent in response to single Active Leasequery request. The receiver needs to be able to determine how large each message is. The same message framing technique used for DHCPv6 Bulk Leasequery [RFC5460] is used for Active Leasequery as well.

The intent in using the same format is that code which currently knows how to deal with a message returned from DHCPv6 Bulk Leasequery [RFC5460] will be able to deal with the message held inside of the TCP framing.

6.2. Messages

6.2.1. ACTIVELEASEQUERY

The new message type (ACTIVELEASEQUERY) is designed for keeping the requestor up to date in real-time (or near real-time) with DHCPv6 bindings. It asks the server to return DHCPv6 bindings activity that occurs subsequent to the receipt of the Active Leasequery request.

An ACTIVELEASEQUERY request MUST contain a transaction-id, and that transaction-id MUST BE locally unique on the TCP connection on which it is sent to the DHCPv6 server.

When sending an Active Leasequery request, the requestor MAY include the OPTION LO START TIME option in the ACTIVELEASEQUERY request. In this case, DHCPv6 server returns all the bindings changed on or after the OPTION_LQ_START_TIME.

If the requestor is interested in receiving all binding updates from the DHCPv6 server, it MUST NOT include the OPTION_LQ_QUERY option in the ACTIVELEASEQUERY message. But if the requestor is only interested in specific binding updates, it MAY include an

OPTION_LQ_QUERY option along with a query-types defined in [RFC5007] and [RFC5460].

Other DHCPv6 options used in the LEASEQUERY message (as specified in [RFC5460]) can also be used in the ACTIVELEASEQUERY request.

6.2.2. STARTTLS

The new message type (STARTTLS) is designed for establishment of a TLS connection between requestor and DHCPv6 server.

More details about this message are specified in Section 8.2.

6.2.3. Response Messages

The LEASEQUERY-REPLY message is defined in [RFC5007]. The LEASEQUERY-DATA and LEASEQUERY-DONE messages are defined in [RFC5460].

In an Active Leasequery exchange, a single LEASEQUERY-REPLY message is used to indicate the success or failure of a query, and to carry data that do not change in the context of a single query and answer, such as the Server-ID and Client-ID options. If a query is successful, the DHCPv6 server MUST respond to it with exactly one LEASEQUERY-REPLY message. If the server is returning binding data, the LEASEQUERY-REPLY also contains the first client's binding data in an OPTION_CLIENT_DATA option. Additional binding data is returned using LEASEQUERY-DATA message as explained in DHCPv6 Bulk Leasequery [RFC5460]. In case of failure query, single LEASEQUERY-REPLY message is returned without any binding data.

6.3. Options

New options (OPTION_LQ_BASE_TIME, OPTION_LQ_START_TIME and OPTION LO END TIME) are defined as an extension to DHCPv6 Bulk Leasequery [RFC5460]. The reply messages for Active Leasequery uses these options along with the options defined in [RFC3315], [RFC5007] and [RFC5460].

6.3.1. OPTION_LQ_BASE_TIME

The OPTION_LO_BASE_TIME option is the current time the message was created to be sent by the DHCPv6 server to the requestor of the Active or Bulk Leasequery if requestor ask for the same in Active or Bulk Leasequery request. This MUST be an absolute time (i.e. seconds since midnight January 1, 2000 UTC). All of the other time based options in the reply message are relative to this time, including

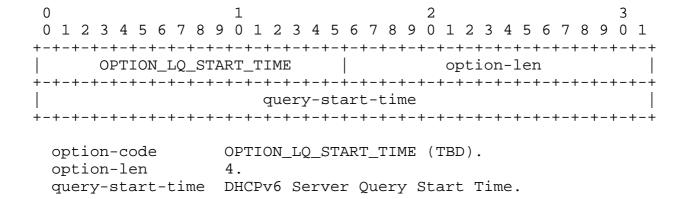
OPTION_CLT_TIME [RFC5007]. This time is in the context of the DHCPv6 server who placed this option in a message.

This is an unsigned integer in network byte order.

The code for this option is TBD.

0	1	2 3						
0 1 2 3 4 5 6 7 8	9 0 1 2 3 4 5 6 7 8 9	0 1 2 3 4 5 6 7 8 9 0 1						
+-								
OPTION_LQ_BA	SE_TIME	option-len						
+-+-+-+-+-+-+-+	+-							
base-time								
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-								
option-code OPTION_LQ_BASE_TIME (TBD). option-len 4.								
base-time	DHCPv6 Server Base T	ime.						

6.3.2. OPTION_LQ_START_TIME


The OPTION_LQ_START_TIME option specifies a query start time to the DHCPv6 server. If specified, only bindings that have changed on or after the OPTION_LQ_START_TIME should be included in the response to the query. This option MAY be used in Active or Bulk Leasequery requests made to a DHCPv6 server.

The requestor MUST determine the OPTION LO START TIME using lease information it has received from the DHCPv6 server. This MUST be an absolute time in the DHCPv6 server's context (see Section 8.5).

Typically (though this is not a requirement) the OPTION_LQ_START_TIME option will contain the value most recently received in a OPTION_LQ_BASE_TIME option by the requestor, as this will indicate the last successful communication with the DHCPv6 server.

This is an unsigned integer in network byte order.

The code for this option is TBD.

6.3.3. OPTION LO END TIME

The OPTION_LQ_END_TIME option specifies a query end time to the DHCPv6 server. If specified, only bindings that have changed on or before the OPTION_LQ_END_TIME should be included in the response to the query. This option MAY be used in a Bulk Leasequery request. But it MUST NOT be used in an Active Leasequery request.

The requestor MUST determine the OPTION_LQ_END_TIME based on lease information it has received from the DHCPv6 server. This MUST be an absolute time in the context of the DHCPv6 server.

In the absence of information to the contrary, the requestor SHOULD assume that the time context of the DHCPv6 server is identical to the time context of the requestor (see Section 8.5).

This is an unsigned integer in network byte order.

The code for this option is TBD.

0	1	2	3					
0 1 2 3 4 5 6 7 8	9 0 1 2 3 4 5	6 7 8 9 0 1 2	3 4 5 6 7 8 9 0 1					
+-								
OPTION_LQ_END_TIME option-len								
+-+-+-+-+-+-+-	+-							
query-end-time								
+-								
option-code	OPTION_LQ_ENI	D_TIME (TBD).						
option-len	4.							
query-end-time	DHCPv6 Server	C Query End Tir	me.					

6.4. Connection and Transmission Parameters

Active Leasequery uses the same port configuration as DHCPv6 Bulk Leasequery [RFC5460]. It also uses the other transmission parameters (BULK_LQ_DATA_TIMEOUT and BULK_LQ_MAX_CONNS) as defined in [RFC5460].

This section presents a table of values used to control Active Leasequery behavior, including recommended defaults. Implementations MAY make these values configurable. However, configuring too-small timeout values may lead to harmful behavior both to this application as well as to other traffic in the network. As a result, timeout values smaller than the default values SHOULD NOT be used.

Parameter	+ Default	Description
ACTIVE_LQ_RCV_TIMEOUT	 120 secs 	Active Leasequery receive timeout
ACTIVE_LQ_SEND_TIMEOUT	120 secs	Active Leasequery send timeout
ACTIVE_LQ_IDLE_TIMEOUT	60 secs	Active Leasequery idle timeout

7. Information Communicated by Active Leasequery

While the information communicated by a DHCPv6 Bulk Leasequery [RFC5460] is taken directly from the DHCPv6 server's lease state database, the information communicated by an Active Leasequery is real-time information. As such, it is the information which is currently associated with a particular binding in the DHCPv6 server's lease state database.

This is of significance, because if the Active Leasequery requestor runs slowly or the requestor disconnects from the DHCPv6 server and then reconnects with an OPTION_LQ_START_TIME option (signaling a catch-up operation), the information communicated to the Active Leasequery requestor is only the most current information from the DHCPv6 server's lease state database.

The requestor of an Active Leasequery MUST NOT assume that every lease state change is communicated across an Active Leasequery connection. Even if the Active Leasequery requestor remains connected, the DHCPv6 server is only required to transmit information about a binding that is current when the message is created and handed off to the TCP stack to send to the requestor.

If the TCP connection blocks and the DHCPv6 server is waiting to send information down the connection, when the connection becomes available to be written the DHCPv6 server MAY create the message to send at this time. The current state of the binding will be sent, and any transition in state or other information that occurred while the TCP connection was blocked will be lost.

Thus, the Active Leasequery protocol does not allow the requestor to build a complete history of every activity on every lease. effective history of the important state changes for a lease can be created if the parameters of the DHCPv6 server are tuned to take into account the requirements of an Active Leasequery requestor. instance, the period after the expiration or release of a binding could be configured long enough (say several minutes, well more than the receive timeout), so that an Active Leasequery requestor would be less likely to miss any changes in the binding.

8. Requestor Behavior

8.1. General Processing

A requestor attempts to establish a TCP connection to a DHCPv6 Server in order to initiate an Active Leasequery exchange. If the attempt fails, the Requestor MAY retry.

If an Active Leasequery is terminated prematurely by a LEASEQUERY-DONE with a DHCPv6 status code (carried in an OPTION_STATUS_CODE option) of QueryTerminated or by the failure of the connection over which it was being submitted, the requestor MAY retry the request after the creation of a new connection.

Messages from the DHCPv6 server come as multiple responses to a single ACTIVELEASEQUERY message. Thus, each ACTIVELEASEQUERY request MUST have an xid (transaction-id) unique on the connection on which it is sent, and all of the messages which come as a response to it contain the same xid as the request. It is the xid which allows the data-streams of two or more different ACTIVELEASEQUERY requests to be de-multiplexed by the requestor.

8.2. Initiating a Connection

A Requestor SHOULD be able to operate in either insecure or secure mode. This MAY be a feature that is administratively controlled.

When operating in insecure mode, requestor should proceed with the Active Leasequery request after the establishment of a TCP connection.

When operating in secure mode, requestor MUST attempt to negotiate a TLS [RFC5246] connection over the TCP connection. If this negotiation fails, the requestor MUST drop the TCP connection.

A requestor requests the establishment of a TLS connection by sending the STARTTLS message to the DHCPv6 server as the first message over the TCP connection. This message indicates to the DHCPv6 server that a TLS connection over this TCP connection is desired. There are four possibilities after the requestor sends the STARTTLS message to the DHCPv6 server:

- 1. No response from the DHCPv6 server.
- 2. The DHCPv6 server drops the TCP connection after it receives the STARTTLS message.
- 3. DHCPv6 server responds with REPLY [RFC3315] message with DHCPv6 status code of TLSConnectionRefused.
- 4. DHCPv6 server responds with REPLY [RFC3315] message without DHCPv6 status code, indicating success.

In any of the first three possibilities, the DHCPv6 server can be assumed to not support TLS. In this case, the requestor MUST drop the TCP connection.

In the final possibility, where the DHCPv6 server has responded with a REPLY message without DHCPv6 status code in response to the requestor's STARTTLS message, the requestor SHOULD initiate the exchange of the messages involved in a TLS handshake [RFC5246]. During the TLS handshake, the requestor MUST verify DHCPv6 server's digital certificate.

If the handshake exchange yields a functioning TLS connection, then the requestor SHOULD transmit an Active Leasequery message over that TLS connection and use that TLS connection for all further interactions in which it engages with the DHCPv6 server over this TCP connection.

If the handshake exchange does not yield a functioning TLS connection, then the requestor MUST drop the TCP connection.

8.3. Forming an Active Leasequery

The Active Leasequery is designed to create a long lived connection between the requestor and the DHCPv6 server processing the active query. The DHCPv6 server SHOULD send binding information back across this connection with minimal delay after it learns of the binding

information. It learns about bindings either because it makes the bindings itself or because it has received information about a binding from another server.

An important capability of the Active Leasequery is the ability of the requestor to specify that some recent data be sent immediately to the requestor in parallel with the transmission of the ongoing binding information in more or less real time. This capability is used in order to allow an Active Leasequery requestor to recover missed information in the event that it temporarily loses connectivity with the DHCPv6 server processing a previous Active Leasequery.

Note that until all of the recent data (catch-up data) has been received, the requestor MUST NOT keep track of the base-time (OPTION_LO_BASE_TIME) received in Leasequery reply messages to use later in a subsequent Active Leasequery request.

This capability is enabled by the transmission of an OPTION LO BASE TIME option with each Leasequery reply sent as the result of a previous Active Leasequery. The requestor SHOULD keep track of the highest base-time received from a particular DHCPv6 server over an Active Leasequery connection, and in the event that the requestor finds it necessary (for whatever reason) to reestablish an Active Leasequery connection to that DHCPv6 server, the requestor SHOULD place this highest base-time value into an OPTION_LQ_START_TIME option in the new Active Leasequery request.

If the requestor doesn't wish to request an update of information missed when it was not connected to the DHCPv6 server, then it SHOULD NOT include the OPTION_LQ_START_TIME option in the Active Leasequery request.

If the TCP connection becomes blocked or stops being writable while the requestor is sending its query, the requestor SHOULD terminate the connection after BULK_LQ_DATA_TIMEOUT. We make this recommendation to allow requesters to control the period of time they are willing to wait before abandoning a connection, independent of notifications from the TCP implementations they may be using.

8.4. Processing Active Replies

The Requestor attempts to read a DHCPv6 LEASEQUERY-REPLY message from the TCP connection. If the stream of replies becomes blocked, the Requestor SHOULD terminate the connection after ACTIVE_LQ_RCV_TIMEOUT, and MAY begin retry processing if configured to do so.

The requestor examines the LEASEQUERY-REPLY message, and determines how to proceed. Message validation rules are specified in DHCPv6 Leasequery [RFC5007] and DHCPv6 Bulk Leasequery [RFC5460]. reply contains an DHCPv6 status code (carried in an OPTION_STATUS_CODE option), the requestor should follow the recommendations in [RFC5007].

Note that an Active Leasequery request specifically requests the DHCPv6 server to create a long-lived connection which may not have data transferring continuously during its lifetime. Therefore the DHCPv6 server SHOULD send a LEASEQUERY-DATA message without binding data (OPTION_CLIENT_DATA) every ACTIVE_LQ_IDLE_TIMEOUT seconds (default 60) in order for the requestor to know that the connection remains alive. This approach is followed only when connection is idle (i.e. server has no binding data to send). During normal binding data exchange, receiving of LEASEQUERY-DATA message by requestor itself signifies that connection is active. Note that the default for ACTIVE_LQ_RCV_TIMEOUT is 120 seconds, twice the value of the ACTIVE_LQ_IDLE_TIMEOUT's default of 60 seconds which drives the DHCPv6 server to send messages. Thus ACTIVE_LQ_RCV_TIMEOUT controls how sensitive the requestor is to be to delays by the DHCPv6 server in sending updates or LEASEQUERY-DATA messages.

A single Active Leasequery can and usually will result in a large number of replies. The Requestor MUST be prepared to receive more than one reply with transaction-ids matching a single ACTIVELEASEQUERY message from a single DHCPv6 server.

An Active Leasequery has two regimes -- during the catch-up phase, if any, and after any catch-up phase. If the Active Leasequery was requested with an OPTION_LQ_START_TIME option, the Active Leasequery starts out in the catch-up phase. See Section 8.4.1 for information on processing during the catch-up phase, as well as how to determine when the catch-up phase is complete.

The updates sent by the DHCPv6 server during the catch-up phase are not in the order that the lease state data was updated. Therefore, the OPTION LO BASE TIME option from messages during this phase MUST NOT be saved and used to compute the subsequent ACTIVELEASEQUERY message's OPTION_LQ_START_TIME option.

After the catch-up phase, or during the entire series of messages received as the response to an Active Leasequery request with no OPTION_LQ_START_TIME (and therefore no catch-up phase), the OPTION_LQ_BASE_TIME option of the most recent message SHOULD be saved as a record of the most recent time that data was received. base-time (in the context of the DHCPv6 server) can be used in a

subsequent Active Leasequery message's OPTION_LQ_START_TIME after a loss of the Active Leasequery connection.

The LEASEQUERY-DONE message MAY unilaterally terminate a successful Active Leasequery request which is currently in progress in the event that the DHCPv6 server determines that it cannot continue processing an ACTIVELEASEQUERY request. For example, when a server is requested to shut down it SHOULD send a LEASEQUERY-DONE message with a DHCPv6 status code of QueryTerminated and include OPTION_LQ_BASE_TIME option in the message. This SHOULD be the last message on that connection, and once the message has been transmitted, the server should close the connection.

After receiving LEASEQUERY-DONE with a QueryTerminated status from a server, the Requestor MAY close the TCP connection to that server.

8.4.1. Processing Replies from a Request Containing a OPTION_LQ_START_TIME

If the Active Leasequery was requested with an OPTION_LQ_START_TIME option, the DHCPv6 server will attempt to send information about all bindings that changed since the time specified in the OPTION_LQ_START_TIME. This is the catch-up phase of the Active Leasequery processing. The DHCPv6 server MAY also begin immediate updates over the same connection of real-time binding information changes. Thus, the catch-up phase may run in parallel with the normal updates generated by the Active Leasequery request.

A DHCPv6 server MAY keep only a limited amount of time ordered information available to respond to an Active Leasequery request containing an OPTION_LQ_START_TIME option. Thus, it is possible that the time specified in the OPTION LO START TIME option represents a time not covered by the time ordered information kept by the DHCPv6 If this should occur, and there is not enough data saved in the DHCPv6 server to satisfy the request specified by the OPTION_LQ_START_TIME option, the DHCPv6 server will reply immediately with a LEASEQUERY-REPLY message with a DHCPv6 status code of DataMissing with a base-time option equal to the server's current time. This will signal the end of the catch-up phase, and the only updates that will subsequently be received on this connection are the real-time updates from the Active Leasequery request.

If there is enough data saved to satisfy the request, then LEASEQUERY-REPLY (with OPTION_STATUS_CODE of Success or reply without OPTION_STATUS_CODE option) and LEASEQUERY-DATA messages will begin arrive from the DHCPv6 server. Some of these messages will be related to the OPTION_LQ_START_TIME request and be part of the catchup phase. Some of these messages will be real-time updates of

binding changes taking place in the DHCPv6 server. In general, there is no way to determine the source of each message.

The updates sent by the DHCPv6 server during the catch-up phase are not in the order that the binding data was updated. Therefore, until the catch-up phase is complete, the latest base-time value received from a DHCPv6 server processing an Active Leasequery request cannot be reset from the incoming messages (and used in a subsequent Active Leasequery's query-start-time option), because to do so would compromise the ability to recover lost information if the Active Leasequery were to terminate prior to the completion of the catch-up phase.

The requestor will know that the catch-up phase is complete when the DHCPv6 server will transmit a LEASEQUERY-DATA message with the DHCPv6 status code of CatchUpComplete (or LEASEQUERY-REPLY message with a DHCPv6 status code of DataMissing, as discussed above). Once this message is transmitted, all additional LEASEQUERY-DATA messages will relate to real-time ("new") binding changes in the DHCPv6 server.

As discussed in Section 8.4, the requestor SHOULD keep track of the latest base-time option value received over a particular connection, to be used in a subsequent Active Leasequery request -- but only if the catch-up phase is complete. Prior to the completion of the catch-up phase, if the connection should go away or if the requestor receives a LEASEQUERY-DONE message, then when it reconnects it MUST use the base-time value from the previous connection and not any base-time value received from the recently closed connection.

In the event that there was enough data available to the DHCPv6 server to begin to satisfy the request implied by the OPTION_LQ_START_TIME option, but during the processing of that data the server found that it was unable to continue (perhaps there was barely enough, the connection is very slow, and the aging algorithm causes the saved data to become unavailable) the DHCPv6 server will terminate the catch-up phase of processing immediately by sending a LEASEQUERY-DATA message with a DHCPv6 status code of DataMissing and with a base-time option of the current time.

The requestor MUST NOT assume that every individual state change of every binding during the period from the time specified in the OPTION_LQ_START_TIME and the present is replicated in an Active Leasequery reply message. The requestor MAY assume that at least one Active Leasequery reply message will exist for every binding which had one or more changes of state during the period specified by the OPTION_LQ_START_TIME and the current time. The last message for each binding will contain the state at the current time, and there may be

one or more messages concerning a single binding during the catch-up phase of processing.

Bindings can change multiple times while the requester was not connected (that is, during the time from the OPTION_LQ_START_TIME and the present). The requestor will only receive information about the current state of the binding, not information about each state change that occurred during the period from the OPTION_LQ_START_TIME to the present.

If the LEASEQUERY-REPLY or LEASEQUERY-DATA message containing a DHCPv6 status code of DataMissing is received and the requestor is interested in keeping its database up to date with respect to the current state of bindings in the DHCPv6 server, then the requestor SHOULD issue a Bulk Leasequery request to recover the information missing from its database. This Bulk Leasequery request should include a OPTION_LQ_START_TIME option with the same value as the OPTION_LQ_START_TIME option previously included in the ACTIVELEASEQUERY responses from the DHCPv6 server, and an OPTION LQ END TIME option equal to the OPTION LQ BASE TIME option returned by the DHCPv6 server in the LEASEQUERY-REPLY or LEASEQUERY-DATA message with the DHCPv6 status code of DataMissing.

Typically, the requestor would have one connection open to a DHCPv6 server for an Active Leasequery request and possibly one additional connection open for a Bulk Leasequery request to the same DHCPv6 server to fill in the data that might have been missed prior to the initiation of the Active Leasequery. The Bulk Leasequery connection would typically run to completion and be closed, leaving one Active Leasequery connection open to a single DHCPv6 server. Alternatively, both requests could be issued over a single connection.

8.5. Processing Time Values in Leasequery messages

Active or Bulk Leasequery requests may be made to a DHCPv6 server whose absolute time may not be synchronized with the local time of the requestor. Thus, there are at least two time contexts in even the simplest Active or Bulk Leasequery response.

If the requestor of an Active or Bulk Leasequery is saving the data returned in some form, it has a requirement to store a variety of time values, and some of these will be time in the context of the requestor and some will be time in the context of the DHCPv6 server.

When receiving an Active or Bulk Leasequery reply message from the DHCPv6 server, the message will contain an OPTION_LQ_BASE_TIME option. The time contained in this OPTION_LQ_BASE_TIME option is in the context of the DHCPv6 server. As such, it is an ideal time to

save and use as input to an Active or Bulk Leasequery message in the OPTION_LQ_START_TIME or OPTION_LQ_END_TIME option, should the requestor need to ever issue an Active or Bulk Leasequery message using these option as part of a later query, since these option requires a time in the context of the DHCPv6 server.

In addition to saving the OPTION_LQ_BASE_TIME for possible future use in OPTION_LQ_START_TIME or OPTION_LQ_END_TIME option, the OPTION_LQ_BASE_TIME is used as part of the conversion of the other times in the Leasequery message to values which are meaningful in the context of the requestor.

In systems whose clocks are synchronized, perhaps using NTP, the clock skew will usually be zero, which is not only acceptable, but desired.

8.6. Examples

These examples illustrate what a series of queries and responses might look like. These are only examples -- there are no requirement that these sequence must be followed.

8.6.1. Query Failure

This example illustrates the message flows in case DHCPv6 server identifies that it cannot accept and/or process Active Leasequery request from the requestor. This could be because of various reasons (i.e. UnknownQueryType, MalformedQuery, NotConfigured, NotAllowed, NotSupported).

Client Server ACTIVELEASEQUERY xid 1 ----> <---- LEASEQUERY-REPLY xid 1 (w/error)</pre>

8.6.2. Data Missing on Server

This example illustrates the message flows in case DHCPv6 server identifies that it does not have enough data saved to satisfy the request specified by the OPTION_LQ_START_TIME option.

In this case the DHCPv6 server will reply immediately with a LEASEQUERY-REPLY message with a DHCPv6 status code of DataMissing with a base-time option equal to the server's current time. This will signal the end of the catch-up phase, and the only updates that will subsequently be received on this connection are the real-time updates from the Active Leasequery request.

Client		Server
ACTIVELEASEQUERY xid 2	>	
	<	LEASEQUERY-REPLY xid 2 (w/error)
	<	LEASEQUERY-DATA xid 2
	<	LEASEQUERY-DATA xid 2
	<	LEASEQUERY-DATA xid 2

8.6.3. Successful Query

This example illustrates the message flows in case of successful query processing by DHCPv6 server.

In this case the DHCPv6 server will reply immediately with a LEASEQUERY-REPLY message (with OPTION_STATUS_CODE of Success or reply without OPTION_STATUS_CODE option), followed by binding data in LEASEQUERY-DATA messages. In case, DHCPv6 server wants to abort inprocess request and terminate the connection due to some reason, it sends LEASEQUERY-DONE with error code present in OPTION_STATUS_CODE option.

Client		Server
ACTIVELEASEQUERY xid 3	>	
	<	LEASEQUERY-REPLY xid 3
		LEASEQUERY-DATA xid 3
	<	LEASEQUERY-DONE xid 3 (w/error)

8.7. Closing Connections

The Requestor or DHCPv6 Leasequery server MAY close its end of the TCP connection at any time. The Requestor MAY choose to retain the connection if it intends to issue additional queries. Note that this requestor behavior does not guarantee that the connection will be available for additional queries: the server might decide to close the connection based on its own configuration.

9. Server Behavior

A DHCPv6 server which supports Active Leasequery MUST support DHCPv6 Bulk Leasequery [RFC5460] and as extended herein.

9.1. Accepting Connections

DHCPv6 servers that implement DHCPv6 Active Leasequery listen for incoming TCP connections. Approach used in accepting the requestor connection is same as specified in DHCPv6 Bulk Leasequery [RFC5460].

DHCPv6 servers SHOULD be able to operate in either insecure or secure mode. This MAY be a mode that is administratively controlled, where the server will require a TLS connection to operate or will only operate without a TLS connection.

When operating in insecure mode, DHCPv6 server simply waits for the requestor to send the Active Leasequery request after the establishment of TCP connection. If it receives a STARTTLS message, it MUST respond with REPLY [RFC3315] message with DHCPv6 status code of TLSConnectionRefused.

When operating in secure mode, DHCPv6 servers MUST support TLS [RFC5246] to protect the integrity and privacy of the data transmitted over the TCP connection. DHCPv6 servers SHOULD negotiate a TLS connection with the requestor who asks for one, and MUST drop the TCP connections which are not secured with TLS.

A requestor will request a TLS connection by sending a STARTTLS as the first message over a newly created TCP connection. If the DHCPv6 server supports TLS connections and has not been configured to not allow them on this link, the DHCPv6 server SHOULD respond to this STARTTLS message by sending a REPLY [RFC3315] message without DHCPv6 $\,$ status code back to the requestor. This indicates to the requestor that the DHCPv6 server will support the negotiation of a TLS connection over this existing TCP connection.

If for some reason the DHCPv6 server cannot or has been configured to not support a TLS connection, then it SHOULD send a REPLY message with DHCPv6 status code of TLSConnectionRefused back to the requestor.

In the event that the DHCPv6 server sends a REPLY message without DHCPv6 status code option included (which indicates success), the requestor is supposed to initiate a TLS handshake [RFC5246] (see Section 8.2). During the TLS handshake, the DHCPv6 server MUST verify the requestor's digital certificate.

If the TLS handshake is not successful in creating a TLS connection, the server MUST drop the TCP connection.

9.2. Rejecting Connections

Servers that do not implement DHCPv6 Active and Bulk Leasequery SHOULD NOT listen for incoming TCP connections for these requests.

If the DHCPv6 server supporting Bulk Leasequery and not Active Leasequery receives an Active Leasequery request, it SHOULD send a LEASEQUERY-REPLY with DHCPv6 status code as NotSupported. It SHOULD close the TCP connection after this error is signaled.

9.3. Replying to an Active Leasequery

The DHCPv6 Leasequery [RFC5007] specification describes the initial construction of LEASEQUERY-REPLY messages. Use of the LEASEQUERY-REPLY and LEASEQUERY-DATA messages to carry multiple bindings is described in DHCPv6 Bulk Leasequery [RFC5460]. Message transmission and framing for TCP is described in Section 6.1.

If the connection becomes blocked while the server is attempting to send reply messages, the server SHOULD terminate the TCP connection after ACTIVE_LQ_SEND_TIMEOUT. This timeout governs for how long the DHCPv6 server is prepared to wait for the requestor to read and process enough information to unblock the TCP connection. The default is two minutes, which means that if more than two minutes goes by without the requestor reading enough information to unblock the TCP connection, the DHCPv6 server SHOULD drop the TCP connection.

If the DHCPv6 server encounters an error during initial processing of the ACTIVELEASEQUERY message, it SHOULD send a LEASEQUERY-REPLY message containing an error code of some kind in a DHCPv6 status code option. It SHOULD close the connection after this error is signaled.

If the DHCPv6 server encounters an error during later processing of the ACTIVELEASEQUERY message, it SHOULD send a LEASEQUERY-DONE containing an error code of some kind in a DHCPv6 status code option. It SHOULD close the connection after this error is signaled.

If the server finds any bindings satisfying a query, it SHOULD send each binding's data in a reply message. The first reply message is a LEASEQUERY-REPLY. The binding data is carried in an OPTION_CLIENT_DATA option, as specified in [RFC5007]. The server SHOULD send subsequent bindings in LEASEQUERY-DATA messages, which can avoid redundant data (such as the requestor's Client-ID).

Every reply to an Active Leasequery request MUST contain the information specified in replies to a DHCPv6 Bulk Leasequery request [RFC5460].

Some servers can be configured to respond to a DHCPv6 Leasequery [RFC5007] and DHCPv6 Bulk Leasequery [RFC5460] for an IPv6 binding which is reserved in such a way that it appears that the IPv6 binding is leased to the DHCP client for which it is reserved. These servers SHOULD also respond to an Active Leasequery request with the same information as they would to a Bulk Leasequery request when they first determine that the IPv6 binding is reserved to a DHCP client.

If an Active Leasequery or Bulk Leasequery request contains OPTION LO BASE TIME option code present in OPTION ORO, the DHCPv6 server MUST include OPTION_LQ_BASE_TIME option in every reply for this request. The value for base-time option is current absolute time in the DHCPv6 server's context.

If an Active Leasequery request contains an OPTION_LQ_START_TIME option, it indicates that the requestor would like the DHCPv6 server to send it not only messages that correspond to DHCPv6 binding activity that occurs subsequent to the receipt of the Active Leasequery request, but also messages that correspond to DHCPv6 binding activity that occurred prior to the Active Leasequery request.

If OPTION_LQ_END_TIME option appears in an Active Leasequery request, the DHCPv6 server SHOULD send a LEASEQUERY-REPLY message with a DHCPv6 status code of MalformedQuery and terminate the connection.

In order to implement a meaningful response to this query, the DHCPv6 server MAY keep track of the binding activity and associate changes with particular base-time values from the messages. Then, when requested to do so by an Active Leasequery request containing a OPTION_LQ_START_TIME option, the DHCPv6 server can respond with replies for all binding activity occurring on that OPTION_LQ_START_TIME or later times.

These replies based on the OPTION_LQ_START_TIME MAY be interleaved with the messages generated due to current binding activity.

Once the transmission of the DHCPv6 Leasequery messages associated with the OPTION_LQ_START_TIME option are complete, a LEASEQUERY-DATA message MUST be sent with a DHCPv6 status code value of CatchUpComplete.

The DHCPv6 server SHOULD, but is not required to, keep track of a limited amount of previous binding activity. The DHCPv6 server MAY choose to only do this in the event that it has received at least one Active Leasequery request in the past, as to do so will almost certainly entail some utilization of resources which would be wasted if there are no Active Leasequery requestors for this DHCPv6 server. The DHCPv6 server SHOULD make the amount of previous binding activity it retains configurable. There is no requirement on the DHCPv6 server to retain this information over a server restart (or even to retain such information at all).

Unless there is an error or some requirement to cease processing a Active Leasequery request yielding a LEASEQUERY-DONE message, such as a server shutdown, there will be no LEASEQUERY-DONE message at the conclusion of the Active Leasequery processing because that processing will not conclude but will continue until either the requestor or the server drops the connection.

9.4. Multiple or Parallel Queries

Every Active Leasequery request MUST be made on a single TCP connection where there is no other request active at the time the request is made.

Typically, a requestor of an Active Leasequery would not need to send a second Active Leasequery while the first is still active. However, sending an Active Leasequery and a Bulk Leasequery in parallel would be possible and reasonable. In case of parallel Active and Bulk Leasequeries, requestor MUST use different TCP connections.

This MAY be a feature that is administratively controlled. that are able to process queries in parallel SHOULD offer configuration that limits the number of simultaneous queries permitted from any one requestor, in order to control resource use if there are multiple requesters seeking service.

9.5. Closing Connections

The server MUST close its end of the TCP connection if it encounters an error sending data on the connection. The server MUST close its end of the TCP connection if it finds that it has to abort an inprocess request. A server aborting an in-process request SHOULD attempt to signal that to its requestors by using the QueryTerminated status code in the DHCPv6 status code option in a LEASEQUERY-DONE message. If the server detects that the requestor end has been closed, the server MUST close its end of the connection.

The server SHOULD limit the number of connections it maintains, and SHOULD close idle connections to enforce the limit.

10. Security Considerations

The "Security Considerations" section of [RFC3315] details the general threats to DHCPv6. The DHCPv6 Leasequery specification [RFC5007] describes recommendations for the Leasequery protocol, especially with regard to relayed Leasequery messages, mitigation of packet-flooding denial-of-service (DoS) attacks, restriction to trusted requestors, and use of IPsec [RFC4301].

The use of TCP introduces some additional concerns. Attacks that attempt to exhaust the DHCPv6 server's available TCP connection resources can compromise the ability of legitimate requestors to receive service. Malicious requestors who succeed in establishing connections, but who then send invalid queries, partial queries, or no queries at all also can exhaust a server's pool of available connections. We recommend that servers offer configuration to limit the sources of incoming connections, that they limit the number of accepted connections, and that they limit the period of time during which an idle connection will be left open.

Authentication for DHCP Messages [RFC3315] MUST NOT be used to attempt to secure transmission of the messages described in this document.

11. IANA Considerations

IANA is requested to assign new DHCPv6 Option Codes in the registry maintained in http://www.iana.org/assignments/dhcpv6-parameters:

OPTION LO BASE TIME

OPTION_LQ_START_TIME

OPTION_LQ_END_TIME

IANA is requested to assign new values in the registry of DHCPv6 Status Codes maintained in http://www.iana.org/assignments/ dhcpv6-parameters:

DataMissing

CatchUpComplete

NotSupported

TLSConnectionRefused

IANA is requested to assign values for the following new DHCPv6 Message types in the registry maintained in http://www.iana.org/assignments/dhcpv6-parameters:

ACTIVELEASEOUERY

STARTTLS

12. Acknowledgements

Some of the concept and content, present in this document, are based on DHCPv4 Active Leasequery which was originally proposed by Kim Kinnear, Bernie Volz, Mark Stapp and Neil Russell.

13. Modification History

14. References

14.1. Normative References

- [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.
- [RFC3315] Droms, R., Bound, J., Volz, B., Lemon, T., Perkins, C., and M. Carney, "Dynamic Host Configuration Protocol for IPv6 (DHCPv6)", RFC 3315, July 2003.
- [RFC3633] Troan, O. and R. Droms, "IPv6 Prefix Options for Dynamic Host Configuration Protocol (DHCP) version 6", RFC 3633, December 2003.
- [RFC5007] Brzozowski, J., Kinnear, K., Volz, B., and S. Zeng, "DHCPv6 Leasequery", RFC 5007, September 2007.
- [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.2", RFC 5246, August 2008.
- [RFC5460] Stapp, M., "DHCPv6 Bulk Leasequery", RFC 5460, February 2009.

14.2. Informative References

[RFC4301] Kent, S. and K. Seo, "Security Architecture for the Internet Protocol", RFC 4301, December 2005.

[RFC7414] Duke, M., Braden, R., Eddy, W., Blanton, E., and A. Zimmermann, "A Roadmap for Transmission Control Protocol (TCP) Specification Documents", RFC 7414, February 2015.

Authors' Addresses

Dushyant Raghuvanshi Cisco Systems, Inc. Cessna Business Park, Varthur Hobli, Outer Ring Road, Bangalore, Karnataka 560037 India

Phone: +91 (080) 4365-7476 Email: draghuva@cisco.com

Kim Kinnear Cisco Systems, Inc. 1414 Massachusetts Ave. Boxborough, Massachusetts 01719 USA

Phone: +1 (978) 936-0000 Email: kkinnear@cisco.com

Deepak Kukrety Cisco Systems, Inc. Cessna Business Park, Varthur Hobli, Outer Ring Road, Bangalore, Karnataka 560037 India

Phone: +91 (080) 4365-7474 Email: dkukrety@cisco.com