Definitions of Textual Conventions (TCs) for Bidirectional Forwarding Detection (BFD) Management
draft-ietf-bfd-tc-mib-05

Abstract

This draft defines two Management Information Base (MIB) modules that contain Textual Conventions to represent commonly used Bidirectional Forwarding Detection (BFD) management information. The intent is that these TEXTUAL CONVENTIONS (TCs) will be imported and used in BFD related MIB modules that would otherwise define their own representations.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14, RFC 2119 [RFC2119].

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on October 16, 2014.
1. Introduction

This document defines two MIB modules that contain Textual Conventions for Bidirectional Forwarding Detection (BFD) protocols. These Textual Conventions should be imported by MIB modules which manage BFD protocols.

Note that names of Textual Conventions defined in this document are prefixed with either "Bfd" or "IANA" to make it obvious to readers that some are specific to BFD modules, while others are IANA maintained.

For an introduction to the concepts of BFD, see [RFC5880], [RFC5881], [RFC5883], [RFC6428] and [RFC7130].

2. The Internet-Standard Management Framework

For a detailed overview of the documents that describe the current Internet-Standard Management Framework, please refer to section 7 of RFC 3410 [RFC3410].
Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. MIB objects are generally accessed through the Simple Network Management Protocol (SNMP). Objects in the MIB are defined using the mechanisms defined in the Structure of Management Information (SMI). This memo specifies a MIB module that is compliant to the SMIv2, which is described in STD 58, RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580 [RFC2580].

3. BFD Textual Conventions MIB Definitions

This MIB module makes references to the following documents: [RFC2578], [RFC2579], [RFC5880], [RFC5881], [RFC5883], [RFC6428] and [RFC7130].

BFD-TC-STD-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE-IDENTITY, mib-2, Unsigned32
 FROM SNMPv2-SMI -- [RFC2578]

 TEXTUAL-CONVENTION
 FROM SNMPv2-TC; -- [RFC2579]

bfdTCStdMib MODULE-IDENTITY
LAST-UPDATED
 "201404131200Z" -- 13 April 2014 12:00:00 EST

ORGANIZATION "IETF Bidirectional Forwarding Detection Working Group"

CONTACT-INFO
 "Thomas D. Nadeau
 Brocade
 Email: tnadeau@lucidvision.com

 Zafar Ali
 Cisco Systems, Inc.
 Email: zali@cisco.com

 Nobo Akiya
 Cisco Systems, Inc.
 Email: nobo@cisco.com

 Comments about this document should be emailed directly to the BFD working group mailing list at rtg-bfd@ietf.org"

DESCRIPTION
"Copyright (C) The IETF Trust (2014). The initial version of this MIB module was published in RFC xxxx. For full legal notices see the RFC itself. Supplementary information may be available on: http://www.ietf.org/copyrights/ianamib.html"

-- RFC Ed.: RFC-editor pls fill in xxxx

REVISION "201404131200Z" -- 13 April 2014 12:00:00 EST
DESCRIPTION
"Initial version. Published as RFC xxxx."

-- RFC Ed.: RFC-editor pls fill in xxxx

::= { mib-2 XXX }

-- RFC Ed.: RFC-editor pls fill in XXX, see section 5 for details

BfdSessIndexTC ::= TEXTUAL-CONVENTION
DISPLAY-HINT "d"
STATUS current
DESCRIPTION
"An index used to uniquely identify BFD sessions."
SYNTAX Unsigned32 (1..4294967295)

BfdIntervalTC ::= TEXTUAL-CONVENTION
DISPLAY-HINT "d"
STATUS current
DESCRIPTION
"The BFD interval in microseconds."
SYNTAX Unsigned32 (0..4294967295)

BfdMultiplierTC ::= TEXTUAL-CONVENTION
DISPLAY-HINT "d"
STATUS current
DESCRIPTION
"The BFD failure detection multiplier."
SYNTAX Unsigned32 (1..255)

BfdCtrlDestPortNumberTC ::= TEXTUAL-CONVENTION
DISPLAY-HINT "d"
STATUS current
DESCRIPTION
"UDP destination port number of BFD control packets.
3784 represents single hop BFD session.
4784 represents multi hop BFD session.
6784 represents BFD on LAG session."
However, syntax is left open to wider range of values purposely for two reasons:
1. Implementation uses non-compliant port number for valid proprietary reason.
2. Potential future extension drafts.

The value of 0 is a special, reserved value used to indicate special conditions and should not be considered a valid port number."

REFERENCE
"Use of port 3784 from Katz, D. and D. Ward, Bidirectional Forwarding Detection (BFD) for IPv4 and IPv6 (Single Hop), RFC 5881, June 2010.

Use of port 6784 from Bhatia, M., Chen, M., Boutros, S., Binderberger, M., and J. Haas, Bidirectional Forwarding Detection (BFD) on Link Aggregation Group (LAG) Interfaces, RFC 7130, February 2014."

SYNTAX Unsigned32 (0..65535)

BfdCtrlSourcePortNumberTC ::= TEXTUAL-CONVENTION
DISPLAY-HINT "d"
STATUS current
DESCRIPTION "UDP source port number of BFD control packets. However, syntax is left open to wider range of values purposely for two reasons:
1. Implementation uses non-compliant port number for valid proprietary reason.
2. Potential future extension drafts.

The value of 0 is a special, reserved value used to indicate special conditions and should not be considered a valid port number."

REFERENCE
"Port 49152..65535 from RFC5881"

SYNTAX Unsigned32 (0..65535)

END
IMPORTS
 MODULE-IDENTITY, mib-2
 FROM SNMPv2-SMI -- [RFC2578]

TEXTUAL-CONVENTION
 FROM SNMPv2-TC; -- [RFC2579]

ianaBfdTCStdMib MODULE-IDENTITY
LAST-UPDATED
"201404131200Z" -- 13 April 2014 12:00:00 EST
ORGANIZATION
"IANA"
CONTACT-INFO
"Internet Assigned Numbers Authority
Postal: 4676 Admiralty Way, Suite 330
Marina del Rey, CA 90292
Tel: +1 310 823 9358
E-Mail: iana@iana.org"

DESCRIPTION
"Copyright (C) The IETF Trust (2014). The initial version
of this MIB module was published in RFC xxxx. For full legal
notices see the RFC itself. Supplementary information
may be available on:
http://www.ietf.org/copyrights/ianamib.html"

-- RFC Ed.: RFC-editor pls fill in xxxx

REVISION
"201404131200Z" -- 13 April 2014 12:00:00 EST
DESCRIPTION
"Initial version. Published as RFC xxxx."

-- RFC Ed.: RFC-editor pls fill in xxxx

::= { mib-2 XXX }

-- RFC Ed.: RFC-editor pls fill in XXX, see section 5 for details

IANAbfdDiagTC ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"A common BFD diagnostic code."
REFERENCE
"Katz, D. and D. Ward, Bidirectional Forwarding
Detection (BFD), RFC 5880, June 2010.

Allan, D., Swallow, G., and Drake, J., Proactive Connectivity
SYNTAX INTEGER {
 noDiagnostic(0),
 controlDetectionTimeExpired(1),
 echoFunctionFailed(2),
 neighborSignaledSessionDown(3),
 forwardingPlaneReset(4),
 pathDown(5),
 concatenatedPathDown(6),
 administrativelyDown(7),
 reverseConcatenatedPathDown(8),
 misConnectivityDefect(9)
}

IANAbfdSessTypeTC ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION "BFD session type"

Katz, D. and D. Ward, Bidirectional Forwarding Detection (BFD) for Multihop Paths, RFC 5883, June 2010."

SYNTAX INTEGER {
 singleHop(1),
 multiHopTotallyArbitraryPaths(2),
 multiHopOutOfBandSignaling(3),
 multiHopUnidirectionalLinks(4)
}

IANAbfdSessOperModeTC ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION "BFD session operating mode"
REFERENCE "Katz, D. and D. Ward, Bidirectional Forwarding Detection (BFD), RFC 5880, June 2010."

SYNTAX INTEGER {
 asyncModeWEchoFunction(1),
 asyncModeWOEchoFunction(2),
IANAbfdSessStateTC ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION "BFD session state. State failing(5) is only applicable if corresponding session is running in BFD version 0."
REFERENCE "RFC 5880 - Bidirectional Forwarding Detection (BFD), Katz, D., Ward, D., June 2010."
SYNTAX INTEGER {
 adminDown(1),
 down(2),
 init(3),
 up(4),
 failing(5)
}

IANAbfdSessAuthenticationTypeTC ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION "BFD authentication type"
REFERENCE "Sections 4.2 - 4.4 from Katz, D. and D. Ward, Bidirectional Forwarding Detection (BFD), RFC 5880, June 2010."
SYNTAX INTEGER {
 noAuthentication(-1),
 reserved(0),
 simplePassword(1),
 keyedMD5(2),
 meticulousKeyedMD5(3),
 keyedSHA1(4),
 meticulousKeyedSHA1(5)
}

IANAbfdSessAuthenticationKeyTC ::= TEXTUAL-CONVENTION
DISPLAY-HINT "1x "
STATUS current
DESCRIPTION "BFD authentication key type.

An IANAbfdSessAuthenticationKeyTC is always interpreted within the context of an IANAbfdSessAuthenticationTypeTC value. Every usage of the IANAbfdSessAuthenticationTypeTC textual convention is required to specify the
IANAbfdSessAuthenticationKeyTC object that provides the context. It is suggested that the IANAbfdSessAuthenticationKeyTC object be logically registered before the object(s) that use the IANAbfdSessAuthenticationKeyTC textual convention, if they appear in the same logical row.

The value of a IANAbfdSessAuthenticationKeyTC must always be consistent with the value of the associated IANAbfdSessAuthenticationTypeTC object. Attempts to set a IANAbfdSessAuthenticationKeyTC object to a value inconsistent with the associated IANAbfdSessAuthenticationTypeTC must fail with an inconsistentValue error.

The following size constraints for a IANAbfdSessAuthenticationKeyTC object are defined for the associated IANAbfdSessAuthenticationTypeTC values shown below:

- noAuthentication(-1): SIZE(0)
- reserved(0): SIZE(0)
- simplePassword(1): SIZE(1..16)
- keyedMD5(2): SIZE(16)
- meticulousKeyedMD5(3): SIZE(16)
- keyedSHA1(4): SIZE(20)
- meticulousKeyedSHA1(5): SIZE(20)

When this textual convention is used as the syntax of an index object, there may be issues with the limit of 128 sub-identifiers specified in SMIv2, STD 58. In this case, the object definition MUST include a 'SIZE' clause to limit the number of potential instance sub-identifiers; otherwise the applicable constraints MUST be stated in the appropriate conceptual row DESCRIPTION clauses, or in the surrounding documentation if there is no single DESCRIPTION clause that is appropriate.

REFERENCE
"RFC5880, Sections 4.2 - 4.4"
SYNTAX OCTET STRING(SIZE(0..252))
Meaningful security considerations can only be written in the MIB modules that define management objects. Therefore, this document has no impact on the security of the Internet.

5. IANA Considerations

This document provides the base definition of the IANA-BFD-TC-STD-MIB module. This MIB module is under the direct control of IANA. Please see the most updated version of this MIB at <http://www.iana.org/assignments/bfdtc-mib>. [RFC-Editor’s Note (to be removed prior to publication): the IANA is requested to create page pointed to by URL.]

This MIB makes reference to the following documents: [RFC2578], [RFC2579], [RFC5880], [RFC5881] and [RFC5883], [RFC6428] and [RFC7130].

IANA assigned an OID to the BFD-TC-STD-MIB module specified in this document as { mib-2 XXX }. [RFC-Editor’s Note (to be removed prior to publication): the IANA is requested to assign a value for "XXX" under the 'mib-2' subtree and to record the assignment in the SMI Numbers registry. When the assignment has been made, the RFC Editor is asked to replace "XXX" (here and in the MIB module) with the assigned value and to remove this note.]

IANA assigned an OID to the IANA-BFD-TC-STD-MIB module specified in this document as { mib-2 YYY }. [RFC-Editor’s Note (to be removed prior to publication): the IANA is requested to assign a value for "YYY" under the 'mib-2' subtree and to record the assignment in the SMI Numbers registry. When the assignment has been made, the RFC Editor is asked to replace "YYY" (here and in the MIB module) with the assigned value and to remove this note.]

6. Acknowledgments

Authors would like to thank Adrian Farrel and Jeffrey Haas for performing thorough reviews and providing number of suggestions. Authors would also like to thank David Ward for his comments and suggestions.

7. References

7.1. Normative References

7.2. Informative References

Authors’ Addresses

Thomas D. Nadeau
Brocade

EMail: tnadeau@lucidvision.com
Zafar Ali
Cisco Systems
EMail: zali@cisco.com

Nobo Akiya
Cisco Systems
EMail: nobo@cisco.com