Internet-Draft | EVPN Virtual Ethernet Segment | August 2023 |
Sajassi, et al. | Expires 23 February 2024 | [Page] |
EVPN and PBB-EVPN introduce a family of solutions for Ethernet services over MPLS/IP network with many advanced features among which their multi‑homing capabilities. These solutions introduce Single-Active and All-Active redundancy modes for an Ethernet Segment (ES), itself defined as a set of physical links between the multi‑homed device/network and a set of PE devices that they are connected to. This document extends the Ethernet Segment concept so that an ES can be associated to a set of Ethernet Virtual Circuits (EVCs e.g., VLANs) or other objects such as MPLS Label Switch Paths (LSPs) or Pseudowires (PWs). Such an ES is referred to as Virtual Ethernet Segments (vES). This draft describes the requirements and the extensions needed to support vES in EVPN and PBB-EVPN.¶
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119] and [RFC8174].¶
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.¶
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.¶
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."¶
This Internet-Draft will expire on 23 February 2024.¶
Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights reserved.¶
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License.¶
[RFC7432] and [RFC7623] introduce a family of solutions for Ethernet services over MPLS/IP network with many advanced features among which their multi‑homing capabilities. These solutions introduce Single-Active and All-Active redundancy modes for an Ethernet Segment (ES), itself defined as a set of links between the multi‑homed device/network and a set of PE devices that they are connected to.¶
An Ethernet Segment, as defined in [RFC7432], represents a set of Ethernet links connecting customer site to one or more PE. This document extends the Ethernet Segment concept so that an ES can be associated to a set of Ethernet Virtual Circuits (EVCs e.g., VLANs) or other objects such as MPLS Label Switch Paths (LSPs) or Pseudowires (PWs). Such an ES is referred to as Virtual Ethernet Segments (vES). This draft describes the requirements and the extensions needed to support vES in EVPN and PBB-EVPN.¶
Some Service Providers (SPs) want to extend the concept of the physical links in an ES to Ethernet Virtual Circuits (EVCs) where many of such EVCs (e.g., VLANs) can be aggregated on a single physical External Network-to-Network Interface (ENNI). An ES that consists of a set of EVCs instead of physical links is referred to as a virtual ES (vES). Figure-1 depicts two PE devices (PE1 and PE2) each with an ENNI that aggregates a number of EVCs. Some of the EVCs on a given ENNI can be associated with vESes. For example, the multi-homed vES in Figure-1 consists of EVC4 on ENNI1 and EVC5 on ENNI2.¶
3rd Party +-----+ EAP | CE11|EVC1 +---------+ +-----+ \ | | +---+ Cust. A \-0=========0--ENNI1| | +-----+ | | ENNI1| | +-------+ +---+ | CE12|EVC2--0=========0--ENNI1|PE1|---| | | | +-----+ | | ENNI1| | |SP |---|PE3|- | ==0--ENNI1| | |IP/MPLS| | | \ +---+ +-----+ | / | +---+ |Core | +---+ \-| | | CE22|EVC3--0==== / | |Network| |CE4| +-----+ | X | | | +---+ | | Cust. B | / \ | +---+ | | | | /-| | +-----+ -0=== ===0--ENNI2| | | |---|PE4|-/ +---+ | CE3 |EVC4/ | | ENNI2|PE2|---| | | | | |EVC5--0=========0--ENNI2| | +-------+ +---+ +-----+ | | +---+ Cust. C +---------+ /\ /\ || || ENNI EVCs Interface <--------802.1Q----------> <---- EVPN Network -----> <-802.1Q-> Figure 1: Dual-homed Device/Network (both SA/AA) and SH on same ENNI¶
ENNIs are commonly used to reach out-of-franchise customer sites via independent Ethernet access networks or third- party Ethernet Access Providers (EAP). ENNIs can aggregate traffic from a large number of vESes (e.g., hundreds to thousands), where each vES is represented by its associated EVC on that ENNI. As a result, ENNIs and their associated EVCs are a key element of SP external boundaries that are carefully designed and closely monitored. As a reminder, the ENNI is the demarcation between the SP (IP/MPLS Core Network) and the third party Ethernet Access Provider.¶
In order to meet customers' Service Level Agreements (SLA), SPs build redundancy via multiple EVPN PEs and across multiple ENNIs (as shown in Figure 1) where a given vES can be multi‑homed to two or more EVPN PE devices (on two or more ENNIs) via their associated EVCs. Just like physical ESs in [RFC7432] and [RFC7623] solutions, these vESes can be single‑homed or multi‑homed ESs and when multi‑homed, then can operate in either Single-Active or All-Active redundancy modes. In a typical SP external-boundary scenario (e.g., with an EAP), an ENNI can be associated with several thousands of single‑homed vESes, several hundreds of Single- Active vESes and it may also be associated with tens or hundreds of All-Active vESes. Specific numbers (hundreds, thoushands, etc.) being used through this document are used to describe the relation of various elements between them at time of writing.¶
Other Service Providers (SPs) want to extend the concept of the physical links in an ES to individual Pseudowires (PWs) or to MPLS Label Switched Paths (LSPs) in Access MPLS networks - i.e., a vES consisting of a set of PWs or a set of LSPs. Figure 2 illustrates this concept.¶
MPLS Aggregation Network +-----+ +-----------------+ | CE11|EVC1 | | +-----+ \ +AG1-+ PW1 +-+---+ Cust. A -0----|===========| | +-----+ | ---+===========| | +-------+ +---+ | CE12|EVC2-0/ | PW2 /\ | PE1 +---+ | | | +-----+ ++---+ /=||=| | | +---+PE3+- | //=||=| | |IP/MPLS| | | \ +---+ | // \/ +-+---+ |Core | +---+ \-+ | +-----+EVC3 | PW3// LSP1 | |Network| |CE4| | CE13| \+AG2-+==// | | | +---+ | | +-----+ 0 |==/PW4 /\ +-+---+ | | | | /-+ | 0 |==PW5===||=| | | +---+PE4+-/ +---+ +-----+ /++---+==PW6===||=| PE2 +---+ | | | | CE14|EVC4 | \/ | | +-------+ +---+ +-----+ | LSP2+-+---+ Cust. C +-----------------+ /\ || EVCs <--802.1Q--> <-----MPLS Agg----> <--- EVPN Network ---> <-802.1Q-> Figure 2: Dual-Homed and Single-homed Network on MPLS Aggregation networks¶
In some cases, Service Providers use MPLS Aggregation Networks that belong to separate administrative entities or third parties as a way to get access to their own IP/MPLS Core network infrastructure. This is the case illustrated in Figure 2.¶
In such scenarios, a virtual ES (vES) is defined as a set of individual PWs if they cannot be aggregated. If the aggregation of PWs is possible, the vES can be associated to a group of PWs that share the same unidirectional LSP pair (by LSP pair we mean the ingress and egress LSPs between the same endpoints).¶
In the example of Figure 2, EVC3 is connected to a VPWS instance in AG2 that is connected to PE1 and PE2 via PW3 and PW5 respectively. EVC4 is connected to another VPWS instance on AG2 that is connected to PE1 and PE2 via PW4 and PW6, respectively. Since the PWs for the two VPWS instances can be aggregated into the same LSP pair going to and coming from the MPLS network, a common virtual ES (vES) can be defined for the four mentioned PWs. In Figure 2, LSP1 and LSP2 represent the two LSP pairs between PE1 and AG2, and between PE2 and AG2, respectively. The vES consists of these two LSP pairs (LSP1 and LSP2) and each LSP pair has two PWs. This vES will be shared by two separate EVPN instances (e.g., EVI-1 and EVI-2) in the EVPN network. PW3 and PW4 are associated with EVI-1 and EVI-2 respectively on PE1, and PW5 and PW6 are associated with EVI-1 and EVI-2 respectively on PE2.¶
In some cases, the aggregation of PWs that share the same LSP pair may not be possible. For instance, if PW3 were terminated into a third PE, e.g. PE3, instead of PE1, the vES would need to be defined on a per individual PW on each PE.¶
For MPLS/IP access networks where a vES represents a set of LSP pairs or a set of PWs, this document extends Single-Active multi‑homing procedures of [RFC7432] and [RFC7623] to vES. The vES extension to All-Active multi‑homing is outside of the scope of this document for MPLS/IP access networks.¶
This draft describes requirements and the extensions needed to support a vES in [RFC7432] and [RFC7623]. Section 3 lists the set of requirements for a vES. Section 4 describes extensions for a vES that are applicable to EVPN solutions including [RFC7432] and [RFC7209]. Furthermore, these extensions meet the requirements described in Section 3. Section 4 gives solution overview and Section 5 describes failure handling, recovery, scalability, and fast convergence of [RFC7432] and [RFC7623] for vESes.¶
This section describes the requirements specific to virtual Ethernet Segment (vES) for (PBB-)EVPN solutions. These requirements are in addition to the ones described in [RFC8214], [RFC7432], and [RFC7623].¶
A PE needs to support the following types of vESes:¶
(R1a) A PE MUST handle single‑homed vESes on a single physical port (e.g., single ENNI)¶
(R1b) A PE MUST handle a mix of Single-Homed vESes and Single-Active multi‑homed vESes simultaneously on a single physical port (e.g., single ENNI). Single-Active multi‑homed vESes will be simply referred to as Single-Active vESes through the rest of this document.¶
(R1c) A PE MAY handle All-Active multi‑homed vESes on a single physical port. All-Active multi‑homed vESes will be simply referred to as All-Active vESes through the rest of this document.¶
(R1d) A PE MAY handle a mix of All-Active vESes along with other types of vESes on a single physical port.¶
(R1e) A Multi-Homed vES (Single-Active or All-Active) can be spread across two or more ENNIs, on any two or more PEs.¶
Many vESes of different types can be aggregated on a single physical port on a PE device and some of these vESes can belong to the same service instance (e.g., EVI). This translates into the need for supporting local switching among the vESes for the same service instance on the same physical port (e.g., ENNI) of the PE.¶
(R3a) A PE that supports vES function, MUST support local switching among different vESes belonging to the same service instance (or customer) on a single physical port. For example, in Figure 1, PE1 has to support local switching between CE11 and CE12 (both belonging to customer A) that are mapped to two Single-homed vESes on ENNI1. In case of Single-Active vESes, the local switching is performed among active EVCs belonging to the same service instance on the same ENNI.¶
A physical port (e.g., ENNI) of a PE can aggregate many EVCs each of which is associated with a vES. Furthermore, an EVC may carry one or more VLANs. Typically, an EVC carries a single VLAN and thus it is associated with a single broadcast domain. However, there is no restriction preventing an EVC from carrying more than one VLAN.¶
(R4a) An EVC can be associated with a single broadcast domain - e.g., VLAN-based service or VLAN bundle service.¶
(R4b) An EVC MAY be associated with several broadcast domains - e.g., VLAN-aware bundle service.¶
In the same way, a PE can aggregate many LSPs and PWs. In the case of individual PWs per vES, typically a PW is associated with a single broadcast domain, but there is no restriction preventing the PW from carrying more than one VLAN if the PW is of type Raw mode.¶
(R4c) A PW can be associated with a single broadcast domain - e.g., VLAN-based service or VLAN bundle service.¶
(R4d) An PW MAY be associated with several broadcast domains - e.g., VLAN-aware bundle service.¶
Section 8.5 of [RFC7432] describes the default procedure for DF election in EVPN which is also used in [RFC7623] and [RFC8214]. [RFC8584] describes the additional procedures for DF election in EVPN. These DF election procedures is performed at the granularity of (ESI, Ethernet Tag). In case of a vES, the same EVPN default procedure for DF election also applies; however, at the granularity of (vESI, Ethernet Tag); where vESI is the virtual Ethernet Segment Identifier and the Ethernet Tag field is represented by and I-SID in PBB-EVPN and by a VLAN ID (VID) in EVPN. As in [RFC7432], this default procedure for DF election at the granularity of (vESI, Ethernet Tag) is also referred to as "service carving". With service carving, it is desirable to evenly partition the DFs for different vESs among different PEs, thus evenly distributing the traffic among different PEs. The following list the requirements apply to DF election of vESs for (PBB-)EVPN.¶
(R5a) A PE that supports vES function, MUST support a vES with m EVCs among n ENNIs belonging to p PEs in any arbitrary order; where n >= p >= m >=2. For example, if there is a vES with 2 EVCs and there are 5 ENNIs on 5 PEs (PE1 through PE5), then vES can be dual-homed to PE2 and PE4 and the DF election must be performed between PE2 and PE4.¶
(Rbc) Each vES MUST be identified by its own virtual ESI (vESI).¶
In order to detect the failure of an individual EVC and perform DF election for its associated vES as the result of this failure, each EVC should be monitored independently.¶
(R6a) Each EVC SHOULD be monitored for its health independently.¶
(R6b) A single EVC failure (among many aggregated on a single physical port/ENNI) MUST trigger DF election for its associated vES.¶
(R7a) Failure and failure recovery of an EVC for a Single-homed vES SHALL NOT impact any other EVCs within its service instance or any other service instances. In other words, for PBB-EVPN, it SHALL NOT trigger any MAC flushing both within its own I-SID as well as other I-SIDs.¶
(R7b) In case of All-Active vES, failure and failure recovery of an EVC for that vES SHALL NOT impact any other EVCs within its service instance or any other service instances. In other words, for PBB-EVPN, it SHALL NOT trigger any MAC flushing both within its own I-SID as well as other I-SIDs.¶
(R7c) Failure and failure recovery of an EVC for a Single-Active vES SHALL impact only its own service instance. In other words, for PBB- EVPN, MAC flushing SHALL be limited to the associated I-SID only and SHALL NOT impact any other I-SIDs.¶
(R7d) Failure and failure recovery of an EVC for a Single-Active vES MUST only impact C-MACs associated with multi-homed device/network for that service instance. In other words, MAC flushing MUST be limited to single service instance (I-SID in the case of PBB-EVPN) and only C-MACs for Single-Active multi-homed device/network.¶
Since a large number of EVCs (and their associated vESes) are aggregated via a single physical port (e.g., ENNI), then the failure of that physical port impacts a large number of vESes and triggers equally many ES route withdrawals. Formulating, sending, receiving, and processing such large number of BGP messages can introduce delay in DF election and convergence time. As such, it is highly desirable to have a mass‑withdraw mechanism similar to the one in [RFC7432] for withdrawing many Ethernet A-D per ES routes.¶
(R8a) There SHOULD be a mechanism equivalent to EVPN mass‑withdraw such that upon an ENNI failure, only a single BGP message is needed to indicate to the remote PEs to trigger DF election for all impacted vES associated with that ENNI.¶
The solutions described in [RFC7432] and [RFC7623] are leveraged as‑is with the modification that the ESI assignment is performed for an EVC or a group of EVCs or LSPs/PWs instead of a link or a group of physical links. In other words, the ESI is associated with a virtual ES (vES), hereby referred to as vESI.¶
For the EVPN solution, everything basically remains the same except for the handling of physical port failure where many vESes can be impacted. Sections 5.1 and 5.3 below describe the handling of physical port/link failure for EVPN. In a typical multi‑homed operation, MAC addresses are learned behind a vES and are advertised with the ESI corresponding to the vES (i.e., vESI). EVPN aliasing and mass‑withdraw operations are performed with respect to vES identifier: the Ethernet A-D routes for these operations are advertised with vESI instead of ESI.¶
For PBB-EVPN solution, the main change is with respect to the B-MAC address assignment which is performed similar to what is described in section 7.2.1.1 of [RFC7623] with the following refinements:¶
The procedure for service carving for virtual Ethernet Segments is almost the same as the ones outlined in section 8.5 of [RFC7432] and [RFC8584] except for the fact that ES is replaced with vES.¶
For the sake of clarity and completeness, the default DF election procedure of [RFC7432] is repeated below with the necessary changes:¶
In case of an EVC failure, the affected PE withdraws its Virtual Ethernet Segment route if there are no more EVCs associated to the vES in the PE. This will re-trigger the DF Election procedure on all the PEs in the Redundancy Group. For PE node failure, or upon PE commissioning or decommissioning, the PEs re-trigger the DF Election procedure across all affected vESes. In case of a Single-Active, when a service moves from one PE in the Redundancy Group to another PE as a result of DF re-election, the PE, which ends up being the elected DF for the service, MUST trigger a MAC address flush notification towards the associated vES if the multi-homing device is a bridge or the multi-homing network is an Ethernet bridged network.¶
For LSP-based and PW-based vES, the non-DF PE SHOULD signal PW-status 'standby' to the Aggregation PE (e.g., AG1 and AG2 in Figure 2), and a new DF PE MAY send an LDP MAC withdraw message as a MAC address flush notification. It should be noted that the PW-status is signaled for the scenarios where there is a one-to-one mapping between EVI (EVPN instance) and the PW.¶
Physical ports (e.g. ENNI) which aggregate a large number of EVCs are 'colored' to enable the grouping schemes described below.¶
By default, the MAC address of the corresponding port (e.g. ENNI) is used to represent the 'color' of the port, and the EVPN Router's MAC Extended Community defined in [RFC9135] is used to signal this color.¶
The difference between coloring mechanism for EVPN and PBB-EVPN is that for EVPN, the extended community is advertised with the Ethernet A-D per ES route whereas for PBB-EVPN, the extended community may be advertised with the B-MAC route.¶
The following sections describe Grouping Ethernet A-D per ES and Grouping B-MAC, will become crucial for port failure handling as seen in Section 5.3, Section 5.4 and Section 5.5 below.¶
When a PE discovers the vESI or is configured with the vESI associated with its attached vES, an Ethernet-Segment route and Ethernet A-D per ES route are generated using the vESI identifier.¶
These Ethernet-Segment and Ethernet A-D per ES routes specific to each vES are colored with an attribute representing their association to a physical port (e.g. ENNI).¶
The corresponding port 'color' is encoded in the EVPN Router's MAC Extended Community defined in [RFC9135] and advertised along with the Ethernet Segment and Ethernet A-D per ES routes for this vES.¶
The PE also constructs a special Grouping Ethernet A-D per ES route which represents all the vES associated with the port (e.g. ENNI). The corresponding port 'color' is encoded in the ESI field. For this encoding, Type 3 ESI (Section 5 of [RFC7432]) is used with the MAC field set to the color (MAC address) of the port and the 3-octet local discriminator field set to 0xFFFFFF.¶
The ESI label extended community (Section 7.5 of [RFC7432]) is not relevant to Grouping Ethernet A-D per ES route. The label value is not used for encapsulating BUM (Broadcast, Unknown-unicast, Multicast) packets for any split-horizon function. The ESI label extended community SHOULD NOT be added to Grouping Ethernet A-D per ES route and SHOULD be ignored on receiving PE.¶
This Grouping Ethernet A-D per ES route is advertised with a list of Route Targets corresponding to the impacted service instances. If the number of attached Route Targets exceeds the limit than can fit into a single route, then a set of Grouping Ethernet A-D per ES routes are advertised.¶
For PBB-EVPN, especially where there are large number of service instances (i.e., I-SIDs) associated with each EVC the PE MAY color each vES B-MAC route with an attribute representing their association to a physical port (e.g. ENNI).¶
The corresponding port 'color' is encoded in the EVPN Router's MAC Extended Community defined in [RFC9135] and advertised along with the B-MAC for this vES in PBB-EVPN.¶
The PE MAY then also construct a special Grouping B-MAC route which represents all the vES associated with the port (e.g. ENNI). The corresponding port 'color' is encoded directly into this special Grouping B-MAC route.¶
There are a number of failure scenarios to consider such as:¶
[RFC7432], [RFC7623], and [RFC8214] solutions provide protection against such failures as described in the corresponding references. In the presence of virtual Ethernet Segments (vESes) in these solutions, besides the above failure scenarios, individual EVC failure is an additional scenario to consider. Handling vES failure scenarios implies that individual EVCs or PWs need to be monitored and upon detection of failure or restoration of services, appropriate DF election and failure recovery mechanisms are executed.¶
[RFC7023] is used for monitoring EVCs and upon failure detection of a given EVC, DF election procedure per Section 4.1 is executed. For PBB-EVPN, some extensions are needed to handle the failure and recovery procedures of [RFC7623] in order to meet the above requirements. These extensions are described in the next section.¶
[RFC4377] and [RFC6310] are used for monitoring the status of LSPs and/or PWs associated to vES.¶
B D || || \/ \/ +-----+ +-----+ | | +---+ | CE1 |EVC2--0=====0--ENNI1| | +-------+ +-----+ | =0--ENNI1|PE1|---| | +---+ +---+ Cust. A | / | | | |IP/MPLS|--|PE3|--|CE4| +-----+ | / | +---+ |Network| | | +---+ | |EVC2--0== | | | +---+ | CE2 | | | +---+ | | | |EVC3--0=====0--ENNI2|PE2|---| | +-----+ | | | | +-------+ +-----+ +---+ /\ /\ /\ || || || A C E Figure 4: Failure Scenarios A,B,C,D and E¶
In [RFC7432], when a DF PE connected to a Single-Active multi‑homed Ethernet Segment loses connectivity to the segment, due to link or port failure, it signals to the remote PEs to invalidate all MAC addresses associated with that Ethernet Segment. This is done by means of a mass‑withdraw message, by withdrawing the Ethernet A-D per ES route. It should be noted that for dual-homing use cases where there is only a single backup path, MAC invalidating can be avoided by the remote PEs as they can update their nexthop associated with the affected MAC entries to the backup path per procedure described in section 8.2 of [RFC7432].¶
In case of an EVC failure which impacts a single vES, this same EVPN procedure is used. In this case, the mass‑withdraw is conveyed by withdrawing the Ethernet A-D per vES route carrying the vESI representing the failed EVC. The remote PEs upon receiving this message perform the same procedures outlined in section 8.2 of [RFC7432].¶
In [RFC7432], when a PE connected to a Single-Active Ethernet Segment loses connectivity to the segment, due to link or port failure, it signals the remote PE to flush all C-MAC addresses associated with that Ethernet Segment. This is done by updating the advertised a B-MAC route's MAC Mobility Extended community.¶
In case of an EVC failure that impacts a single vES, if the above PBB-EVPN procedure is used, it results in excessive C-MAC flushing because a single physical port can support large number of EVCs (and their associated vESes) and thus updating the advertised B-MAC corresponding to the physical port, with MAC mobility Extended community, will result in flushing C-MAC addresses not just for the impacted EVC but for all other EVCs on that port.¶
In order to reduce the scope of C-MAC flushing to only the impacted service instances (the service instance(s) impacted by the EVC failure), the PBB-EVPN C-MAC flushing needs to be adapted on a per service instance basis (i.e., per I-SID). [I-D.ietf-bess-pbb-evpn-isid-cmacflush] introduces B-MAC/I-SID route where existing PBB-EVPN B-MAC route is modified to carry an I-SID in the "Ethernet Tag ID" field instead of NULL value. This field indicates to the receiving PE, to flush all C-MAC addresses associated with that I-SID for that B-MAC. This C-MAC flushing mechanism per I-SID SHOULD be used in case of EVC failure impacting a vES. Since typically an EVC maps to a single broadcast domain and thus a single service instance, the affected PE only needs to advertise a single B-MAC/I-SID route. However, if the failed EVC carries multiple VLANs each with its own broadcast domain, then the affected PE needs to advertise multiple B-MAC/I-SID routes - one for each VLAN (broadcast domain) - i.e., one for each I-SID. Each B-MAC/I-SID route basically instructs the remote PEs to perform flushing for C-MACs corresponding to the advertised B-MAC only for the advertised I-SID.¶
The C-MAC flushing based on B-MAC/I-SID route works fine when there are only a few VLANs (e.g., I-SIDs) per EVC. However if the number of I-SIDs associated with a failed EVC is large, then it is RECOMMENDED to assign a B-MAC per vES and upon EVC failure, the affected PE simply withdraws this B-MAC message to other PEs.¶
When a large number of EVCs are aggregated via a single physical port on a PE, where each EVC corresponds to a vES, then the port failure impacts all the associated EVCs and their corresponding vESes. If the number of EVCs corresponding to the Single-Active vESes for that physical port is in thousands, then thousands of service instances are impacted. Therefore, the propagation of failure in BGP needs to address all these impacted service instances. In order to achieve this, the following extensions are added to the baseline EVPN mechanism:¶
In scenarios where a logical ENNI is used the above procedure equally applies. The logical ENNI is represented by a Grouping Ethernet A-D per ES where the Type 3 ESI and the 6 bytes used in the ENNI's ESI MAC address field is used as a color for vESes as described above and in Section 4.2.1.¶
When a large number of EVCs are aggregated via a single physical port on a PE, where each EVC corresponds to a vES, then the port failure impacts all the associated EVCs and their corresponding vESes. If the number of EVCs corresponding to the Single-Active vESes for that physical port is in thousands, then thousands of service instances (I-SIDs) are impacted. In such failure scenarios, the following two MAC flushing mechanisms per [RFC7623] can be performed.¶
The first method is recommended because it reduces the scope of flushing the most.¶
As noted above, the advertisement of the extended community along with B-MAC route for coloring purposes is optional and only recommended when there are many vESes per physical port and each vES is associated with very large number of service instances (i.e., large number of I-SIDs).¶
If there are large number of service instances (i.e., I-SIDs) associated with each EVC, and if there is a B-MAC assigned per vES as recommended in the above section, then in order to handle port failure efficiently, the following extensions are added to the baseline PBB-EVPN mechanism:¶
As described above, when a large number of EVCs are aggregated via a physical port on a PE, and where each EVC corresponds to a vES, then the port failure impacts all the associated EVCs and their corresponding vESes. Two actions must be taken as the result of such port failure:¶
Section 5.3 already describes how to perform mass‑withdraw for all affected vESes and invalidating MACs using a single BGP withdrawal of the Grouping Ethernet A-D per ES route. Section 5.4 describes how to only flush C-MAC address associated with the failed physical port (e.g., optimum C-MAC flushing) as well as, optionally, the withdrawal of a Grouping B-MAC route.¶
This section describes how to perform DF election in the most optimal way - e.g., to trigger DF election for all impacted vESes (which can be very large) among the participating PEs via a single BGP message as opposed to sending large number of BGP messages (one per vES). This section assumes that the MAC flushing mechanism described in Section 5.4 is used and route coloring is used.¶
+-----+ +----+ | | +---+ | CE1|AC1--0=====0--ENNI1| | +-------+ | |AC2--0 | |PE1|--| | +----+ |\ ==0--ENNI2| | | | | \/ | +---+ | | | /\ | |IP/MPLS| +----+ |/ \ | +---+ |Network| +---+ +---+ | CE2|AC4--0 =0--ENNI3| | | |---|PE4|--|CE4| | |AC4--0=====0--ENNI3|PE2|--| | +---+ +---+ +----+ | ====0--ENNI3| | | | |/ | +---+ | | 0 | | | +----+ /| | +---+ | | | CE3|AC5- | | |PE3|--| | | |AC6--0=====0--ENNI4| | +-------+ +----+ | | +---+ +-----+ Figure 5: Fast Convergence Upon ENNI Failure¶
The procedure for coloring vES Ethernet Segment routes is described in Section 4.2. The following describes the procedure for fast convergence for DF election using these colored routes:¶
The authors would like to thank Mei Zhang, Jose Liste, and Luc Andre Burdet for their reviews of this document and feedback.¶
All the security considerations in [RFC7432] and [RFC7623] apply directly to this document because this document leverages the control and data plane procedures described in those documents.¶
This document does not introduce any new security considerations beyond that of [RFC7432] and [RFC7623] because advertisements and processing of Ethernet Segment route for vES in this document follows that of physical ES in those RFCs.¶
This document requests no actions from IANA.¶