
Security Automation and Continuous Monitoring M. Cokus
Internet-Draft D. Haynes
Intended status: Informational D. Rothenberg
Expires: March 11, 2017 The MITRE Corporation
 J. Gonzalez
 Department of Homeland Security
 September 7, 2016

 OVAL(R) Processing Model
 draft-haynes-sacm-oval-processing-model-01

Abstract

 This document defines Version 5.11.1 of the OVAL processing model
 which describes, in detail, how the major components of the OVAL
 Language Data Model are used to produce OVAL Definitions, OVAL System
 Characteristics, and OVAL Results.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 11, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Cokus, et al. Expires March 11, 2017 [Page 1]
�
Internet-Draft OVAL Processing Model September 2016

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 4
 1.1. Requirements Language 4
 2. Producing OVAL Definitions 4
 2.1. Reuse of Definition, Test, Object, State, and Variable . 5
 2.1.1. Tracking Change 5
 2.1.2. Metadata . 5
 2.1.2.1. Authoritative References 5
 2.1.2.2. Platforms and Products 5
 2.1.3. Content Integrity and Authenticity 5
 3. Producing OVAL System Characteristics 6
 3.1. System Information 6
 3.2. Collected Objects . 6
 3.2.1. flag Usage . 6
 3.2.2. variable_instance property 7
 3.2.3. Item References 8
 3.2.4. Variable Values 8
 3.3. Conveying System Data without Objects 8
 3.4. Recording System Data and OVAL Items 8
 3.4.1. Item IDs . 8
 3.4.2. Unique Items . 8
 3.4.3. Partial Matches 9

 3.4.4. Item Status . 9
 3.4.5. Item Entities . 10
 3.4.5.1. Determining which Entities to Include 10
 3.4.5.2. Status . 10
 3.4.5.3. Datatype . 11
 3.4.5.4. Value . 11
 3.4.6. Content Integrity and Authenticity 12
 4. Producing OVAL Results 12
 4.1. Definition Evaluation 12
 4.1.1. Evaluating a Deprecated OVAL Definition 12
 4.1.2. Criteria Evaluation 12
 4.1.2.1. applicablity_check 13
 4.1.3. Criterion Evaluation 13
 4.1.3.1. applicability_check 13
 4.1.4. Extend Definition Evaluation 13
 4.1.4.1. applicability_check 13
 4.1.5. Negate Evaluation 14
 4.1.6. Variable Instance 14
 4.2. Test Evaluation . 14
 4.2.1. Existence Check Evaluation 15
 4.2.2. Check Evaluation 17
 4.2.3. State Operator Evaluation 17

Cokus, et al. Expires March 11, 2017 [Page 2]
�
Internet-Draft OVAL Processing Model September 2016

 4.2.4. Determining the Final OVAL Test Evaluation Result . . 17
 4.2.4.1. Final OVAL Test Evaluation Result without a
 Collected Objects Section 18
 4.2.4.2. Final OVAL Test Evaluation Result with a
 Collected Objects Section 18
 4.2.5. Variable Instance 19
 4.3. OVAL Object Evaluation 20
 4.3.1. Matching an OVAL Object to an OVAL Item 20
 4.3.2. Matching an OVAL Object Entity to an OVAL Item Entity 20
 4.3.3. OVAL Object Entity Evaluation 20
 4.3.3.1. Datatype and Operation Evaluation 20
 4.3.3.2. nil Object Entities 21
 4.3.3.3. Referencing an OVAL Variable 21
 4.3.3.4. Collected Object Flag Evaluation 22
 4.3.4. Set Evaluation 23
 4.3.4.1. Set Operator 23
 4.3.4.2. Filter . 25
 4.3.4.3. object_reference 25
 4.3.5. OVAL Filter Evaluation 25
 4.3.5.1. Applying Multiple Filters 26
 4.3.6. OVAL Object Filter 26
 4.4. OVAL State Evaluation 26
 4.4.1. OVAL State Entity Evaluation 26
 4.4.1.1. Datatype and Operation Evaluation 26
 4.4.1.2. var_check Evaluation 27
 4.4.1.3. entity_check Evaluation 27
 4.4.1.4. Determining the Final Result of an OVAL State
 Entity Evaluation 27
 4.4.2. Operator Evaluation 27
 4.5. OVAL Variable Evaluation 28
 4.5.1. Constant Variable 28
 4.5.1.1. Determining the Flag Value 28
 4.5.2. External Variable 29
 4.5.2.1. Validating External Variable Values 29
 4.5.2.2. Determining the Flag Value 30
 4.5.3. Local Variable 31
 4.5.3.1. OVAL Function Evaluation 32
 4.5.3.2. OVAL Components 34
 4.5.3.3. Masking Data 56
 4.5.3.4. Entity Casting 56
 5. Intellectual Property Considerations 57
 6. Acknowledgements . 57
 7. IANA Considerations . 58
 8. Security Considerations 58
 9. Change Log . 58
 9.1. -00 to -01 . 58
 10. References . 58
 10.1. Normative References 58

Cokus, et al. Expires March 11, 2017 [Page 3]
�
Internet-Draft OVAL Processing Model September 2016

 10.2. Informative References 59
 Authors' Addresses . 59

1. Introduction

 The Open Vulnerability and Assessment Language (OVAL) [OVAL-WEBSITE]
 is an international, information security community effort to
 standardize how to assess and report upon the machine state of
 systems. For over ten years, OVAL has been developed in
 collaboration with any and all interested parties to promote open and
 publicly available security content and to standardize the
 representation of this information across the entire spectrum of
 security tools and services.

 OVAL provides an established framework for making assertions about an
 system's state by standardizing the three main steps of the
 assessment process: representing the current machine state; analyzing
 the system for the presence of the specified machine state; and
 representing the results of the assessment which facilitates
 collaboration and information sharing among the information security
 community and interoperability among tools.

 This draft is part of the OVAL contribution to the IETF SACM WG that
 standardizes how to produce OVAL Definitions, OVAL System
 Characteristics, and OVAL Results. It is intended to serve as a
 starting point for how SACM can carry out the assessment of a system
 in a standardized way.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Producing OVAL Definitions

 Producing OVAL Definitions is the process by which information from
 some source external to OVAL is consumed by a person, tool, or
 service and then transformed into an OVAL Definition. Often this
 information comes from a security advisory, configuration checklist,
 or other data feed. Other times this information must be created
 through detailed system investigation and research of known issues.
 In either case, low level system state information is encoded in the
 form of an assertion about a system state.

Cokus, et al. Expires March 11, 2017 [Page 4]
�
Internet-Draft OVAL Processing Model September 2016

2.1. Reuse of Definition, Test, Object, State, and Variable

 The OVAL Language enables content reuse through the use of globally
 unique IDs. When producing OVAL Definitions, OVAL Tests, OVAL
 Objects, OVAL States, and OVAL Variables, existing content SHOULD be
 reused when possible.

2.1.1. Tracking Change

 The version property provides the ability to track changes to OVAL
 Definitions, OVAL Tests, OVAL Objects, OVAL States, and OVAL
 Variables. Proper usage of the version property is critical for
 content sharing and reuse. When updating an OVAL Definition, OVAL
 Test, OVAL Object, OVAL State, or OVAL Variable the version property
 MUST be incremented for each revision.

2.1.2. Metadata

 Each OVAL Definition, as defined by the oval-def:DefinitionType,
 includes a metadata property. The contents of the metadata property
 MUST NOT impact OVAL Definition evaluation. All information that is
 encoded in the metadata property SHOULD also be encoded in the OVAL
 Definition's criteria.

2.1.2.1. Authoritative References

 The reference property of an OVAL Definition's metadata property
 SHOULD provide an authoritative citation for the specific system
 state being described by the OVAL Definition. OVAL Definitions with
 a class property value of 'vulnerability' SHOULD include a reference

 to the CVE Name for the vulnerability when one exists. OVAL
 Definitions with a class property value of 'compliance' SHOULD
 include a reference to the CCE Name for the configuration item when
 one exists. OVAL Definitions with a class property value of
 'inventory' SHOULD include a reference to the CPE for the relevant
 operating system or application when a CPE Name exists.

2.1.2.2. Platforms and Products

 The platform and product properties of an OVAL Definition's metadata
 property SHOULD provide a listing of platforms and products to which
 the OVAL Definition is known to apply.

2.1.3. Content Integrity and Authenticity

 Content expressed in the OVAL Definitions Model MAY be digitally
 signed in order to preserve content integrity and authenticity. The

Cokus, et al. Expires March 11, 2017 [Page 5]
�
Internet-Draft OVAL Processing Model September 2016

 OVAL Definitions Model defines six locations for including a digital
 signature. Any of these locations MAY be used.

3. Producing OVAL System Characteristics

 Producing OVAL System Characteristics is the process by which
 detailed system state information is collected and represented in a
 standard format. This information may be collected through direct
 interaction with an end system by using system APIs to query the
 state of the system, or by gathering information from some other
 source of system state information, like a configuration management
 database.

3.1. System Information

 The oval-sc:system_info property of the OVAL System Characteristics
 model MUST accurately represent the system from which the data was
 collected. When the system data was collected from a source other
 than directly from the system being described, the oval-
 sc:system_info type MUST represent the original system from which the
 data was collected.

3.2. Collected Objects

 When a set of OVAL Objects is used to guide the collection of system
 data, the OVAL Objects that were used MUST be recorded as objects in
 the oval-sc:collected_objects property of the OVAL System
 Characteristics model. This section describes the process of
 creating an oval-sc:object in the collection of oval-
 sc:collected_objects.

3.2.1. flag Usage

 Each object listed in the oval-sc:collected_objects MUST specify the
 outcome of the data collection effort by setting the flag property to
 the appropriate value. The valid flag values are defined in the
 oval-sc:FlagEnumeration. The correct usage of the flag enumeration
 values in the context of the flag property is specified in the
 following table.

Cokus, et al. Expires March 11, 2017 [Page 6]
�
Internet-Draft OVAL Processing Model September 2016

 +------------+--+
 | Value | Result |
 +------------+--+
 | error | This value MUST be used when an error that prevents |

	the collection of the OVAL Items for the OVAL
	Object. The object property SHOULD include one or
	more messages describing the error condition.
complete	This value MUST be used when the collection process
	for the OVAL Object was successful and accurately
	captured the complete set of matching OVAL Items.
incomplete	This value MUST be used when the collection process
	for the OVAL Object was successful but the complete
	set of matching OVAL Items is not represented by the
	set of references. The object property SHOULD
	include one or more messages explaining the
	incomplete flag value.
does not	This value MUST be used when no matching OVAL Items
exist	were found.
not	This value MUST be used when no attempt was made to
collected	collect the OVAL Object. The object property MAY
	include one or more messages explaining the not
	collected flag value.
not	This value MUST be used the specified OVAL Object is
applicable	not applicable to the system under test. The object
	property MAY include one or more messages explaining
	the not applicable flag value.
 +------------+--+

 Table 1: flag Usage for Collected Objects

3.2.2. variable_instance property

 When an OVAL Object makes use of an OVAL Variable, either directly or
 indirectly, each collection of values assigned to the OVAL Variable
 MUST be differentiated by incrementing the variable_instance property
 once for each assigned collection of values for the OVAL Variable.
 When more than one collection of values is assigned to an OVAL
 Variable, a given OVAL Object will appear as a oval-
 sc:collected_object once for each assigned value.

Cokus, et al. Expires March 11, 2017 [Page 7]
�
Internet-Draft OVAL Processing Model September 2016

3.2.3. Item References

 Each OVAL Item that is collected as a result of collecting a given
 OVAL Object MUST be referenced by the reference property of the
 object. A given OVAL Item MAY be referenced by one or more objects.
 This situation will occur when two distinct OVAL Objects identify
 overlapping sets of OVAL Items.

 When the flag property has a value of 'not collected' or 'not
 applicable' the object MUST NOT include any OVAL Item references.

3.2.4. Variable Values

 Each OVAL Variable and its value used when collecting OVAL Items for
 an OVAL Object MUST be recorded in the variable_value property of the
 object.

3.3. Conveying System Data without Objects

 OVAL Objects are commonly used to guide the collection of OVAL Items.
 However, system state information may be collected without the use of
 OVAL Objects. OVAL Items MAY be collected by searching system data
 stores, API calls, algorithms, or other proprietary processes. When
 this is done, the OVAL System Characteristics will not contain a
 collected_objects section, however, it will contain a system_data
 section with all of the OVAL Items collected.

3.4. Recording System Data and OVAL Items

 The system_data property holds a collection of OVAL Items. This
 section describes the process of building an OVAL Item and the
 constraints that apply to OVAL Items.

3.4.1. Item IDs

 Each OVAL Item contains a unique identifier which distinguishes it
 from other OVAL Items that are represented in the collection of
 system_data. Item IDs MUST be unique within an OVAL System
 Characteristics Model.

3.4.2. Unique Items

 OVAL Items are differentiated by examining each OVAL Item's name and
 each of the OVAL Item's entity names and values. Each OVAL Item MUST
 represent a unique system data artifact. No two OVAL Items within an
 OVAL System Characteristics Model can be the same.

Cokus, et al. Expires March 11, 2017 [Page 8]
�
Internet-Draft OVAL Processing Model September 2016

3.4.3. Partial Matches

 A partial match is when an OVAL Item, containing some information, is
 reported in the OVAL System Characteristics rather than simply not
 reporting the OVAL Item. Partial matches are useful for debugging
 purposes when an OVAL Item does not exist on the system or is not
 collected due to limitations in the OVAL Capable Product. Please
 note that the use of partial matches is optional.

3.4.4. Item Status

 The valid status values, for an OVAL Item, are defined in the oval-
 sc:StatusEnumeration. The correct usage of the status enumeration
 values in the context of the status property is specified in the
 following table.

 +-----------+---+
 | Value | Result |
 +-----------+---+
error	This value MUST be used when there is an error that
	prevents the collection of an OVAL Item or any of its
	entities. The OVAL Item SHOULD include one or more
	messages describing the error condition.
exists	This value MUST be used when an OVAL Item is
	successfully collected.
does not	This value MUST be used when the OVAL Item is not
exist	found on the system being examined. The use of this
	value is optional and is only used to report a
	partial match. If a partial match is not being
	reported, the OVAL Item MUST NOT be reported in the
	OVAL System Characteristics. The OVAL Item MAY
	include one or more messages describing this status
	value.
not	This value MUST be used when no attempt is made
collected	collect the OVAL Item. The use of this value is
	optional and is only used to report a partial match.
	If a partial match is not being reported, the OVAL
	Item MUST NOT be reported in the OVAL System
	Characteristics. The OVAL Item SHOULD include one or
	more messages describing this status value.
 +-----------+---+

 Table 2: Item Status

Cokus, et al. Expires March 11, 2017 [Page 9]
�
Internet-Draft OVAL Processing Model September 2016

3.4.5. Item Entities

 OVAL Item Entities must be added to the OVAL Item such that it aligns
 with the constraints specified in the appropriate OVAL Component
 Model and the requirements in this section.

3.4.5.1. Determining which Entities to Include

 OVAL Component Models define concrete OVAL Items and their entities.
 All entities within an OVAL Item are optional. When creating an OVAL
 Item any number of item entities MAY be included. However,
 sufficient OVAL Item entities MUST be included to ensure that the
 OVAL Item describes only a single system configuration item.

 Many OVAL Items include entities that have dependencies upon other
 entities within the same OVAL Item. When dependencies exist between
 OVAL Item entities, if an entity is included then all entities that
 it depends upon MUST also be included in the OVAL Item. When using
 OVAL Objects to guide the collection of system data, the entities
 included in the OVAL Object SHOULD be included in the OVAL Items that
 it identifies.

 When collecting system data an OVAL State MAY be used to determine
 which entities to include within and OVAL Item. This sort of
 processing can be an optimization made when collecting data. For
 example, if the OVAL State makes an assertion about a single entity
 it may not be necessary to include all other OVAL Item entities.

3.4.5.2. Status

 The OVAL Item Entity status conveys the outcome of attempting to
 collect one property of a piece of system state information. The
 valid OVAL Item Entity status values are defined in the oval-
 sc:StatusEnumeration. The status of an OVAL Item Entity can be
 independent of other OVAL Item Entities and SHOULD NOT be propagated
 up to the containing OVAL Item. The following table indicates when
 to use each status value.

Cokus, et al. Expires March 11, 2017 [Page 10]
�
Internet-Draft OVAL Processing Model September 2016

 +-----------+---+
 | Value | Result |
 +-----------+---+
error	This value MUST be used when there is an error that
	prevents the collection of the OVAL Item Entity.
exists	This value MUST be used when the OVAL Item Entity
	exists on the system and is collected.
does not	This value MUST be used when the OVAL Item Entity
exist	does not exist on the system.
not	This value MUST be used when no attempt is made to
collected	collect the OVAL Item Entity.
 +-----------+---+

 Table 3: Item Entity Status

3.4.5.3. Datatype

 The datatype of the OVAL Item Entity describes how the value of the
 OVAL Item Entity should be interpreted. The valid datatype values
 for an OVAL Item Entity are listed in the oval:DatatypeEnumeration
 and restricted as needed in OVAL Component Models. When assigning a
 datatype to an OVAL Item Entity, there are two cases to consider:

 1. The datatype is fixed to a specific datatype value. In this
 case, the OVAL Item Entity MUST always use the specified datatype
 value.

 2. The datatype can be one of several datatype values. In this
 case, the datatype value that most appropriately describes the
 value of the OVAL Item Entity SHOULD be used. If an OVAL Item
 Entity value is not present, the datatype value must be set to
 the default datatype value specified in corresponding OVAL
 Component Model.

3.4.5.4. Value

 The final aspect of an OVAL Item Entity is its value. An OVAL Item
 Entity may contain simple character data or complex structured data
 as specified in the corresponding OVAL Component Model. All OVAL
 Item Entity values must conform to the constraints defined in the
 oval-sc:DatatypeEnumeration.

Cokus, et al. Expires March 11, 2017 [Page 11]
�
Internet-Draft OVAL Processing Model September 2016

3.4.6. Content Integrity and Authenticity

 Content expressed in the OVAL System Characteristics Model MAY be
 digitally signed in order to preserve content integrity and
 authenticity.

4. Producing OVAL Results

 Producing OVAL Results is the process by which detailed system state
 information is evaluated against the expected state of a system and
 represented in a standardized format. This standardized format
 conveys the results of the evaluation which can indicate the presence
 of a vulnerability, compliance to a policy, installation of software,
 or even the presence of malware artifacts. Additionally, the results
 can be consumed by other tools where they can be interpreted and used
 to inform remediation of discovered issues.

4.1. Definition Evaluation

 OVAL Definition Evaluation is the process examining the
 characteristics of a system and applying one or more logical
 statements about those characteristics to determine an overall result
 for the system state that the OVAL Definition describes. Each OVAL
 Definition has zero or one logical criteria components, which are
 combined using logical operators, such as 'AND' and 'OR'. The
 overall result of evaluating an OVAL Definition is determined by
 evaluating its criteria component. This process is described in
 detail in the following section.

4.1.1. Evaluating a Deprecated OVAL Definition

 When evaluating a deprecated OVAL Definition, that does not have a
 criteria construct, the OVAL Definition MUST evaluate to 'not
 evaluated'. If a deprecated OVAL Definition contains a criteria
 construct, the OVAL Definition SHOULD evaluate as if it were not
 deprecated. However, the OVAL Definition MAY evaluate to 'not
 evaluted'.

4.1.2. Criteria Evaluation

 A criteria component of an OVAL Definition combines one or more
 logical statements in order to determine a result value. A criteria
 can be made up of other criteria, criterion, or extend_definitions,
 along with an operator property that specifies how to logically
 combine the specified logical statements. For more information on
 how to combine the individual results of the logical statements
 specified within a criteria, see Section 4.5.3.2.4.2. The result
 value of the criteria is determined by first evaluating the operator

Cokus, et al. Expires March 11, 2017 [Page 12]
�
Internet-Draft OVAL Processing Model September 2016

 property to combine the logical statements and then evaluating the
 negate property. See Section 4.1.5 for additional information on how
 to negate the result of the criteria.

4.1.2.1. applicablity_check

 If a value for the applicability_check property is specified on the
 criteria construct, in an OVAL Definition, the applicability_check
 property and value MUST be replicated on the criteria construct in
 the OVAL Results.

4.1.3. Criterion Evaluation

 The result of a criterion construct is the result of the OVAL Test
 that it references, after the negate property has been applied. See
 Section 4.1.5 for additional information on how to negate the result
 of an OVAL Test.

 The variable_instance property of the criterion is carried over from
 the variable_instance value of the referenced OVAL Test.

4.1.3.1. applicability_check

 If a value for the applicability_check property is specified on the
 criterion construct, in an OVAL Definition, the applicability_check
 property and value MUST be replicated on the criterion construct in
 the OVAL Results.

4.1.4. Extend Definition Evaluation

 The result of an extend_definition construct is the result of the
 OVAL Definition, that it references, after the negate property has
 been applied. See Section 4.1.5 for additional information on how to
 negate the result of an OVAL Definition.

 The variable_instance property of the extend_definition is carried
 over from the variable_instance value of the referenced OVAL
 Definition.

4.1.4.1. applicability_check

 If a value for the applicability_check property is specified on the
 extend_definition construct, in an OVAL Definition, the
 applicability_check property and value MUST be replicated on the
 extend_definition construct in the OVAL Results.

Cokus, et al. Expires March 11, 2017 [Page 13]
�
Internet-Draft OVAL Processing Model September 2016

4.1.5. Negate Evaluation

 When the negate property is 'true', the final result of a construct
 MUST be the logical complement of its result value. That is, for any
 construct that evaluates to 'true', the final result would become
 'false', and vice versa. The negate property does not apply to non-
 Boolean result values. If a non-Boolean result value is encountered,
 the final result MUST be the non-Boolean result value. If the negate
 property is set to 'false', the final result of a construct will be
 its original result value.

4.1.6. Variable Instance

 The value of the variable_instance property is derived from the
 variable_instance values of the OVAL Definitions and OVAL Tests that
 are referenced within the OVAL Definition's criteria. When an OVAL
 Definition references another OVAL Definition or an OVAL Test that
 makes use of an OVAL Variable, each collection of values assigned to
 the OVAL Variable MUST be differentiated by incrementing the
 variable_instance property. The variable_instance value is
 incremented once for each assigned collection of values for the OVAL
 Variable. When more than one collection of values is assigned to an
 OVAL Variable, an OVAL Definition will appear in the definitions
 section once for each assigned collection of values.

4.2. Test Evaluation

 An OVAL Test is the standardized representation of an assertion about
 the state of a system. An OVAL Test contains references to an OVAL
 Object that specifies which system data to collect and zero or more
 OVAL States that specify the expected state of the collected system
 data. OVAL Test Evaluation is the process of comparing the collected
 set of system data, as OVAL Items, to zero or more OVAL States.

 The result of the OVAL Test Evaluation is then determined by
 combining the results of the following three test evaluation
 parameters:

 1. Existence Check Evaluation - The process of determining whether
 or not the number of OVAL Items, that match the specified OVAL
 Object, satisfy the requirements specified by the check_existence
 property.

 2. Check Evaluation - The process of determining whether or not the
 number of collected OVAL Items, specified by the check property,
 match the specified OVAL States.

Cokus, et al. Expires March 11, 2017 [Page 14]
�
Internet-Draft OVAL Processing Model September 2016

 3. State Operator Evaluation - The process of combining the
 individual results, from the comparison of an OVAL Item to the
 specified OVAL States, according to the state_operator property.

4.2.1. Existence Check Evaluation

 Existence Check Evaluation is the process of determining whether or
 not the number of OVAL Items, that match the specified OVAL Object,
 satisfy the requirements specified by the check_existence property.
 The check_existence property specifies how many OVAL Items that match
 the specified OVAL Object must exist on the system in order for the
 OVAL Test to evaluate to 'true'. To determine if the check_existence
 property is satisfied, the status of each OVAL Item collected by the
 OVAL Object must be examined.

 The following tables describe how each ExistenceEnumeration value
 affects the result of the Existence Check Evaluation. The far left
 column identifies the ExistenceEnumeration value in question, and the
 middle column specifies the different combinations of individual OVAL
 Item status values that may be found (EX = exist; DE = does not
 exist; ER = error; NC = not collected). The last column specifies
 the final result of the Existence Check Evaluation according to the
 combination of individual OVAL Item status values.

 || item status value count ||
 || || existence piece is
 || EX | DE | ER | NC ||
 ||---------------------------||------------------
 || 1+ | 0 | 0 | 0 || True
 || 0 | 0 | 0 | 0 || False
 || 0+ | 1+ | 0+ | 0+ || False
 || 0+ | 0 | 1+ | 0+ || Error
 || 0+ | 0 | 0 | 1+ || Unknown
 || -- | -- | -- | -- || Not Evaluated
 || -- | -- | -- | -- || Not Applicable
 ||---------------------------||------------------

 Figure 1: Existence Check Evaluation for 'all exist'

Cokus, et al. Expires March 11, 2017 [Page 15]
�
Internet-Draft OVAL Processing Model September 2016

 || item status value count ||
 || || existence piece is
 || EX | DE | ER | NC ||
 ||---------------------------||------------------
 || 0+ | 0+ | 0 | 0+ || True
 || 1+ | 0+ | 1+ | 0+ || True
 || -- | -- | -- | -- || False
 || 0 | 0+ | 1+ | 0+ || Error
 || -- | -- | -- | -- || Unknown
 || -- | -- | -- | -- || Not Evaluated
 || -- | -- | -- | -- || Not Applicable
 ||---------------------------||------------------

 Figure 2: Existence Check Evaluation for 'any exist'

 || item status value count ||

 || || existence piece is
 || EX | DE | ER | NC ||
 ||---------------------------||------------------
 || 1+ | 0+ | 0+ | 0+ || True
 || 0 | 1+ | 0 | 0 || False
 || 0 | 0+ | 1+ | 0+ || Error
 || 0 | 0+ | 0 | 1+ || Unknown
 || -- | -- | -- | -- || Not Evaluated
 || -- | -- | -- | -- || Not Applicable
 ||---------------------------||------------------

 Figure 3: Existence Check Evaluation for 'at least one exists'

 || item status value count ||
 || existence piece is
 || EX | DE | ER | NC ||
 ||---------------------------||------------------
 || 0 | 0+ | 0 | 0 || True
 || 1+ | 0+ | 0+ | 0+ || False
 || 0 | 0+ | 1+ | 0+ || Error
 || 0 | 0+ | 0 | 1+ || Unknown
 || -- | -- | -- | -- || Not Evaluated
 || -- | -- | -- | -- || Not Applicable
 ||---------------------------||------------------

 Figure 4: Existence Check Evaluation for 'none exist'

Cokus, et al. Expires March 11, 2017 [Page 16]
�
Internet-Draft OVAL Processing Model September 2016

 || item status value count ||
 || || existence piece is
 || EX | DE | ER | NC ||
 ||---------------------------||------------------
 || 1 | 0+ | 0 | 0 || True
 || 2+ | 0+ | 0+ | 0+ || False
 || 0 | 0+ | 0 | 0 || False
 || 0,1 | 0+ | 1+ | 0+ || Error
 || 0,1 | 0+ | 0 | 1+ || Unknown
 || -- | -- | -- | -- || Not Evaluated
 || -- | -- | -- | -- || Not Applicable
 ||---------------------------||------------------

 Figure 5: Existence Check Evaluation for 'only one exists'

4.2.2. Check Evaluation

 Check Evaluation is the process of determining whether or not the
 number of collected OVAL Items, specified by the check property,
 match the specified OVAL States. The check property specifies how
 many of the collected OVAL Items must match the specified OVAL States
 in order for the OVAL Test to evaluate to 'true'. For additional
 information on how to determine if the check property is satisfied,
 see Section 4.5.3.2.4.1.

4.2.3. State Operator Evaluation

 State Operator Evaluation is the process of combining the individual
 results, from the comparison of an OVAL Item to the specified OVAL
 States, according to the state_operator property, to produce a result
 for the OVAL Test. For additional information on how to determine
 the final result using the state_operator property, see
 Section 4.5.3.2.4.2.

4.2.4. Determining the Final OVAL Test Evaluation Result

 While the final result of the OVAL Test Evaluation is the combination
 of the results from the three evaluations (Existence Check
 Evaluation, Check Evaluation, and State Operator Evaluation), how the
 result is calculated will vary depending upon if the optional
 collected object section is present in the OVAL System
 Characteristics. However, in either case, if the result of the
 Existence Check Evaluation is 'false', the Check and State Operator
 Evaluations can be ignored and the final result of the OVAL Test will
 be 'false'.

Cokus, et al. Expires March 11, 2017 [Page 17]
�
Internet-Draft OVAL Processing Model September 2016

4.2.4.1. Final OVAL Test Evaluation Result without a Collected Objects
 Section

 When the Collected Objects section is not present in the OVAL System
 Characteristics, all OVAL Items present in the OVAL System
 Characteristics must be examined. Each OVAL Item MUST be examined to
 determine which match the OVAL Object according to Section 4.3.1 and
 Section 4.3.2. Once the set of matching OVAL Items is determined,
 they can undergo the three different evaluations that make up OVAL
 Test Evaluation.

4.2.4.2. Final OVAL Test Evaluation Result with a Collected Objects
 Section

 When the Collected Objects section is present in the OVAL System
 Characteristics the flag value of an OVAL Object, in the Collected
 Objects section, must be examined before the Existence Check
 Evaluation is performed.

 If the OVAL Object, referenced by an OVAL Test, cannot be found in
 the Collected Objects section, the final result of the OVAL Test MUST
 be 'unknown'.

 Otherwise, if the OVAL Object, referenced by an OVAL Test, is found,
 the following guidelines must be followed when determining the final
 result of an OVAL Test.

 o If the flag value is 'error', the final result of the OVAL Test
 MUST be 'error'.

 o If the flag value is 'not collected', the final result of the OVAL
 Test MUST be 'unknown'.

 o If the flag value is 'not applicable', the final result of the
 OVAL Test MUST be 'not applicable'.

 o If the flag value is 'does not exist', the final result is
 determined solely by performing the Check Existence Evaluation.

 o If the flag value is 'complete', the final result is determined by
 first performing the Check Existence Evaluation followed by the
 Check Evaluation and State Operator Evaluation.

 o If the flag value is 'incomplete', the final result is determined
 as follows:

 * If the check_existence property has a value of 'none_exist' and
 one or more OVAL Items, referenced by the OVAL Object, have a

Cokus, et al. Expires March 11, 2017 [Page 18]
�
Internet-Draft OVAL Processing Model September 2016

 status of 'exists', the final result of the OVAL Test MUST be
 'false'.

 * If the check_existence property has a value of 'only one
 exists' and more than one OVAL Item, referenced by the OVAL
 Object, has a status of 'exists', the final result of the OVAL
 Test MUST be 'false'.

 * If the result of the Existence Check Evaluation is true, the
 following special cases during the Check Evaluation MUST be
 considered:

 + If the Check Evaluation evaluates to 'false', the final
 result of the OVAL Test MUST be 'false'.

 + If the check property has a value of 'at least one
 satisfies' and the check evaluation evaluates to 'true', the
 final result of the OVAL Test MUST be 'true'.

 * Otherwise, the final result of the OVAL Test MUST be 'unknown'.

 +----------------+---+
 | Value | Result |
 +----------------+---+
error	error
complete	Depends on check_existence and check attributes
incomplete	Depends on check_existence and check attributes
does not exist	depends on check_existence and check attributes
not collected	unknown
not applicable	not applicable
 +----------------+---+

 Table 4: Mapping between oval-sc:FlagEnumeration Value and Test
 Result

4.2.5. Variable Instance

 When an OVAL Test makes use of an OVAL Variable, either directly or
 indirectly, OVAL Test is evaluated once for each collection of values
 assigned to the OVAL Variable. Each evaluation result for the OVAL
 Tests MUST be differentiated by incrementing the variable_instance
 property once for each assigned collection of values for the OVAL
 Variable. When more than one collection of values is assigned to an

Cokus, et al. Expires March 11, 2017 [Page 19]
�
Internet-Draft OVAL Processing Model September 2016

 OVAL Variable, an OVAL Test will appear in the tests section once for
 each assigned collection of values.

4.3. OVAL Object Evaluation

 At the highest level, OVAL Object Evaluation is the process of
 collecting OVAL Items based on the constraints specified by the OVAL
 Object Entities and OVAL Behaviors, if present, in an OVAL Object.
 An OVAL Object contains the minimal number of OVAL Object Entities
 needed to uniquely identify the system state information that makes
 up the corresponding OVAL Item. The methodology used to collect the
 system state information for the OVAL Items is strictly an
 implementation detail. Regardless of the chosen methodology, the
 same OVAL Items MUST be collected on a system for a given OVAL Object
 except when the flag for the collected OVAL Object has a value of
 'incomplete'.

4.3.1. Matching an OVAL Object to an OVAL Item

 An OVAL Item matches an OVAL Object only if every OVAL Object Entity,
 as guided by any OVAL Behaviors, matches the corresponding OVAL Item
 Entity in the OVAL Item under consideration.

4.3.2. Matching an OVAL Object Entity to an OVAL Item Entity

 An OVAL Object Entity matches an OVAL Item Entity only if the value
 of the OVAL Item Entity matches the value of the OVAL Object Entity
 in the context of the specified datatype and operation. See
 Section Section 4.5.3.2.4.3 for additional information regarding the
 allowable datatypes, operations, and how they should be interpreted.

4.3.3. OVAL Object Entity Evaluation

 OVAL Object Entity Evaluation is the process of searching for system
 state information that matches the values of an OVAL Object Entity in
 the context of the specified datatype and operation. This process is
 further defined below.

4.3.3.1. Datatype and Operation Evaluation

 The datatype and operation property associated with an OVAL Object
 Entity specifies what system state information should be collected
 from the system in the form of an OVAL Item. When comparing a value
 specified in the OVAL Object Entity against system state information,
 the operation must be performed in the context of the specified
 datatype; the same operation for two different datatypes could yield
 different results. See Section 4.5.3.2.4.3 for additional

Cokus, et al. Expires March 11, 2017 [Page 20]
�
Internet-Draft OVAL Processing Model September 2016

 information on how to apply an operation in the context of a
 particular datatype.

4.3.3.2. nil Object Entities

 For many OVAL Object Entities, there are situations in which the OVAL
 Object Entity does not need to be considered in the evaluation of the
 OVAL Object. When the nil property is set to 'true', it indicates
 that the OVAL Object Entity must not be considered during OVAL Object
 Evaluation and must not be collected. For more information about a
 particular OVAL Object Entity and how the nil property affects it,
 see the appropriate OVAL Component Model.

4.3.3.3. Referencing an OVAL Variable

 An OVAL Variable may be referenced from an Object Entity in order to
 specify multiple values or to use a value that was collected from
 some other source. When the var_ref property is specified, the
 var_check property SHOULD also be specified. See
 Section 4.5.3.2.4.3.1.1 for more information on how to evaluate an
 OVAL Object Entity that references a variable.

 In addition to the OVAL Item Entity value matching the values
 specified in the OVAL Variable according to the var_check property,
 the flag associated with the OVAL Variable must also be considered.
 The OVAL Variable flag indicates the outcome of the collection of
 values for the OVAL Variable. It is important to consider this
 outcome because it may affect the ability of an OVAL Object Entity to
 successfully match the corresponding OVAL Item Entity. Additionally,
 this flag will also impact the collected object flag.

 The following table describes what flags are valid given the flag
 value of the OVAL Variable referenced by an OVAL Object Entity.

Cokus, et al. Expires March 11, 2017 [Page 21]
�
Internet-Draft OVAL Processing Model September 2016

 +---------------+---+
 | OVAL Variable | Valid OVAL Object Flags |
 | Flag | |
 +---------------+---+
error	error
complete	error, complete, incomplete, does not exist, not
	collected, not applicable
incomplete	error, incomplete, does not exist, not collected,
	not applicable
does not	does not exist
exist	
not collected	does not exist
not	does not exist
applicable	
 +---------------+---+

 Table 5: Valid Flag Values Given the Referenced OVAL Variable Flag

 For additional information on when each flag value MUST be used, see

 Section 3.2.1.

4.3.3.4. Collected Object Flag Evaluation

 However, when there are multiple OVAL Object Entities in an OVAL
 Object the flag values for each OVAL Object Entity must be considered
 when determining which flag values are appropriate. The following
 table describes how multiple flag values influence the collected
 object flag of the OVAL Object referencing the variable (ER = error;
 CO = complete; IN = incomplete; DE = does not exist; NC = not
 collected; NA = not applicable;).

Cokus, et al. Expires March 11, 2017 [Page 22]
�
Internet-Draft OVAL Processing Model September 2016

 || OVAL Component Flag Count ||
 Resulting || ||
 Flag || ER | CO | IN | DE | NC | NA ||
 ---------------||--
 error || 1+ | 0+ | 0+ | 0+ | 0+ | 0+ ||
 complete || 0 | 1+ | 0 | 0 | 0 | 0 ||
 incomplete || 0 | 0+ | 1+ | 0 | 0 | 0 ||
 does not exist || 0 | 0+ | 0+ | 1+ | 0 | 0 ||
 not collected || 0 | 0+ | 0+ | 0+ | 1+ | 0 ||
 not applicable || 0 | 0+ | 0+ | 0+ | 0+ | 1+ ||
 ---------------||---||

 Figure 6: Collected Object Flag Evaluation

4.3.4. Set Evaluation

 The set construct provides the ability to combine the collected OVAL
 Items of one or two OVAL Objects using the set operators defined in
 the SetOperatorEnumeration. See Section 4.3.4.1 for more information
 about the allowed set operators.

 The processing of a set MUST be done in the following manner:

 1. Identify the OVAL Objects that are part of the set by examining
 the object_references associated with the set. Each
 object_reference will refer to an OVAL Object that describes a
 unique set of collected OVAL Items.

 2. For every defined filter Section 4.3.4.2, apply the associated
 filter to each OVAL Item.

 3. Apply the set operator to all OVAL Items remaining in the set.

 4. The resulting OVAL Items will be the unique set of OVAL Items
 referenced by the OVAL Object that contains the set.

4.3.4.1. Set Operator

 Set operations are used to combine multiple sets of different OVAL
 Items, as identified by the object_reference and limited by any
 filter, into a single unique set of OVAL Items. The different
 operators that guide process are in the SetOperatorEnumeration. For
 each operator, if only a single object_reference has been supplied
 then the resulting set is simply the complete set of OVAL Items
 identified by the referenced OVAL Object after any included filters
 have been applied.

Cokus, et al. Expires March 11, 2017 [Page 23]
�
Internet-Draft OVAL Processing Model September 2016

 The tables below explain how different flags are combined for each
 set_operator to return a new flag. These tables are needed when
 computing the flag for collected objects that represent object sets
 in an OVAL Definition. The top row identifies the flag associated
 with the first set or object reference. The left column identifies
 the flag associated with the second set or object reference. The
 matrix inside the table represents the resulting flag when the given
 set_operator is applied. (E=error, C=complete, I=incomplete,
 DNE=does not exist, NC=not collected, NA=not applicable)

 || ||
 set_operator is || Object 1 Flag ||
 COMPLEMENT || ||
 || E | C | I | DNE | NC | NA ||
 -----------------||-----------------------------------||
 E || E | E | E | DNE | E | E ||
 Object C || E | C | I | DNE | NC | E ||
 2 I || E | E | E | DNE | NC | E ||
 Flag DNE || E | C | I | DNE | NC | E ||
 NC || E | NC | NC | DNE | NC | E ||
 NA || E | E | E | E | E | E ||
 -----------------||-----------------------------------||

 Figure 7: set_operator = COMPLEMENT

 || ||
 set_operator is || Object 1 Flag ||
 INTERSECTION || ||
 || E | C | I | DNE | NC | NA ||
 ----------------||-----------------------------------||
 E || E | E | E | DNE | E | E ||
 Object C || E | C | I | DNE | NC | C ||
 2 I || E | I | I | DNE | NC | I ||
 Flag DNE || DNE | DNE | DNE | DNE | DNE | DNE ||
 NC || E | NC | NC | DNE | NC | NC ||
 NA || E | C | I | DNE | NC | NA ||
 ----------------||-----------------------------------||

 Figure 8: set_operator = INTERSECTION

Cokus, et al. Expires March 11, 2017 [Page 24]
�
Internet-Draft OVAL Processing Model September 2016

 || ||
 set_operator is || Object 1 Flag ||
 UNION || ||
 || E | C | I | DNE | NC | NA ||
 ----------------||-----------------------------------||
 E || E | E | E | E | E | E ||
 Object C || E | C | I | C | I | C ||
 2 I || E | I | I | I | I | I ||
 Flag DNE || E | C | I | DNE | I | DNE ||
 NC || E | I | I | I | NC | NC ||
 NA || E | C | I | DNE | NC | NA ||
 ----------------||-----------------------------------||

 Figure 9: set_operator = UNION

4.3.4.2. Filter

 The filter construct provides a way to control the OVAL Items that
 are included a set. See Section 4.3.5 for additional information.

4.3.4.3. object_reference

 When evaluating an object_reference, an error MUST be reported it the
 OVAL Object identifier is invalid, the referenced OVAL Object does
 not exist, or the referenced OVAL Object does not align with the OVAL
 Object that is referring to it.

4.3.5. OVAL Filter Evaluation

 An OVAL Filter is a mechanism that provides the capability to either
 include or exclude OVAL Items based on their system state
 information. This is done through the referencing of an OVAL State
 that specifies the requirements for a matching OVAL Item and the
 action property that states whether or not the matching OVAL Items
 will be included or excluded.

 When evaluating an OVAL Filter, an error MUST be reported if the OVAL
 State identifier is not legal, the referenced OVAL State does not
 exist, or the referenced OVAL State does not align with the OVAL
 Object where it is used.

 The action property specifies whether or not the matching OVAL Items
 will be included or excluded. The action property enumeration values
 are defined in Section the ArithmeticEnumeration in [I-D.draft-
 haynes-sacm-oval-definitions-model].

Cokus, et al. Expires March 11, 2017 [Page 25]
�
Internet-Draft OVAL Processing Model September 2016

4.3.5.1. Applying Multiple Filters

 When multiple OVAL Filters are specified, they MUST be evaluated
 sequentially from first to last to the collection of OVAL Items under
 consideration.

4.3.6. OVAL Object Filter

 When applying a filter to OVAL Objects, every collected OVAL Item is
 compared to the OVAL State referenced by the OVAL Filter. If the
 collected OVAL Items match the OVAL State they are included or
 excluded based on the action property. The final set of collected
 OVAL Items is the set of collected OVAL Items after each OVAL Filter
 is evaluated. See Section 4.3.5.

4.4. OVAL State Evaluation

 The OVAL State is the standardized representation for expressing an
 expected machine state. In the OVAL State each OVAL State Entity
 expresses the expected value(s) for a single piece of configuration
 information. OVAL State Evaluation is the process of comparing a
 specified OVAL State against a collected OVAL Item on the system.
 OVAL State Evaluation can be broken up into two distinct parts:

 1. State Entity Evaluation - The process of determining whether or
 not an OVAL Item Entity, in a collected OVAL Item, matches the
 corresponding OVAL State Entity specified in an OVAL State.

 2. State Operator Evaluation - The process of combining the
 individual results, from the comparison of an OVAL Item Entity
 against the specified OVAL State Entity, according to the
 operator property.

4.4.1. OVAL State Entity Evaluation

 OVAL State Entity Evaluation is the process of comparing a specified
 OVAL State Entity against the corresponding collected OVAL Item
 Entities. This comparison must be done in the context of the
 datatype and operation, whether or not an OVAL Variable is
 referenced, and whether or not there are multiple occurrences of the
 corresponding OVAL Item Entity in the collected OVAL Item.

4.4.1.1. Datatype and Operation Evaluation

 The datatype and operation property associated with an OVAL State
 Entity specifies how the collected OVAL Item Entity compares to the
 value(s) specified in the OVAL State Entity. When comparing a value
 specified in the OVAL State Entity against a collected OVAL Item

Cokus, et al. Expires March 11, 2017 [Page 26]
�
Internet-Draft OVAL Processing Model September 2016

 Entity, the operation must be performed in the context of the
 specified datatype. See Section 4.5.3.2.4.3.1 for additional

 information on how an operation is applied in the context of a
 particular datatype.

4.4.1.2. var_check Evaluation

 An OVAL Variable can be referenced from an OVAL State Entity to
 specify multiple values that the corresponding OVAL Item Entities
 will be compared against or to utilize a value that was collected
 from some other source. For information on how to evaluate an OVAL
 State Entity that references an OVAL Variable, see
 Section 4.5.3.2.4.3.1.1.

4.4.1.3. entity_check Evaluation

 An OVAL Item may contain multiple occurrences of an OVAL Item Entity
 to represent that the OVAL Item has multiple values for that
 particular OVAL Item Entity. The entity_check property specifies how
 many occurrences of an OVAL Item Entity MUST match the OVAL State
 Entity, as defined in Section 4.4.1, in order to evaluate to 'true'.
 The valid values for the entity_check property are defined by the
 CheckEnumeration. See Section 4.5.3.2.4.1 for more information about
 how to apply the property.

4.4.1.4. Determining the Final Result of an OVAL State Entity
 Evaluation

 The final result of an OVAL State Entity Evaluation is determined by
 first comparing the value specified in the OVAL State Entity with
 each occurrence of a corresponding OVAL Item Entity, in an OVAL Item,
 in the context of the specified datatype and operation as defined in
 Section 4.4.1.1. The results of the comparisons are evaluated
 against the specified entity_check property according to
 Section 4.5.3.2.4.1. This will be the final result of the OVAL State
 Entity Evaluation unless an OVAL Variable was also referenced.

 If an OVAL Variable was referenced, the above procedure must be
 performed for each value in the OVAL Variable. The final result must
 then be computed by examining the var_check property and the
 individual results for each OVAL Variable value comparison. See
 Section 4.5.3.2.4.3.1.1.

4.4.2. Operator Evaluation

 Once the OVAL State Entity Evaluation is complete for every OVAL
 State Entity, the individual results from each evaluation MUST be
 combined according to the operator property specified on the OVAL

Cokus, et al. Expires March 11, 2017 [Page 27]
�
Internet-Draft OVAL Processing Model September 2016

 State. The combined result will be the final result of the OVAL
 State Evaluation. See Section 4.5.3.2.4.2 for more information on
 applying the operator to the individual results of the evaluations.

4.5. OVAL Variable Evaluation

 OVAL Variable Evaluation is the process of retrieving a collection of
 values from sources both local and external to OVAL Definitions as
 well as manipulating those values through the evaluation of OVAL
 Functions. OVAL Variables can be used in OVAL Definitions to specify
 multiple values, manipulate values, retrieve values at execution
 time, and create generic and reusable content.

4.5.1. Constant Variable

 A constant_variable is a locally defined collection of one or more
 values that are specified prior to evaluation time.

4.5.1.1. Determining the Flag Value

 A constant_variable is only capable of having a flag value of
 'error', 'complete', or 'not collected'. The flag values of 'does
 not exist' and 'incomplete' are not used for the evaluation of a
 constant_variable because a constant variable is required to contain
 at least one value. The flag value of 'not applicable' is not used
 because the constant_variable construct is platform independent. The
 following table outlines when a constant variable will evaluate to
 each of the flag values.

Cokus, et al. Expires March 11, 2017 [Page 28]
�
Internet-Draft OVAL Processing Model September 2016

 +------------+--+
 | Value | Description |
 +------------+--+
error	This flag value must be used when one or more values
	do not conform to the specified datatype as defined
	in the oval:DatatypeEnumeration.
complete	This flag value must be used when all values conform
	to the specified datatype and the collection of
	constant variables is supported in the OVAL-capable
	product.
incomplete	-
does not	-
exist	
not	This flag value must be used when the tool does not
collected	support the collection of constant_variables.
not	-
applicable	
 +------------+--+

 Table 6: When a constant_variable Evaluates to a Specific oval-
 sc:FlagEnumeration Value

4.5.2. External Variable

 An external_variable is a locally declared, externally defined,
 collection of one or more values. The values referenced by an
 external_variable are collected from the external source at run-time.

4.5.2.1. Validating External Variable Values

 The OVAL Language provides the PossibleValueType and
 PossibleRestriction constructs as a mechanism to validate input
 coming from sources external to the OVAL Definitions.

4.5.2.1.1. Possible Restriction

 The possible_restriction construct specifies one or more restrictions
 on the values of an external variable. When more than one
 restriction is used the individual results of each comparison between
 the restriction and the external variable value must be combined
 using the selected operator attribute. The default operation
 performed is 'AND'. See Section 4.5.3.2.4.2 for more information on
 how to combine the individual results. The final result, after

Cokus, et al. Expires March 11, 2017 [Page 29]
�
Internet-Draft OVAL Processing Model September 2016

 combining the individual results, will be the result of the
 possible_restriction construct.

4.5.2.1.1.1. Restriction

 Each restriction allows for the specification of an operation and a

 value that will be compared to a supplied value for the
 external_variable. The result of this comparison will be used in the
 computation of the final result of the possible_restriction
 construct. See Section 4.5.2.1.3 for additional information on how
 to determine the result of the comparison between the specified value
 and the external variable value using the specified operation in the
 context of the datatype specified on the external_variable.

4.5.2.1.2. Possible Value

 The possible_value construct specifies a permitted external variable
 value. The specified value and the external variable value must be
 compared as string values using the equals operation. See
 Section 4.5.2.1.3 for additional information on how to determine the
 result of the comparison. The result of this comparison will be used
 in determining the final result of validating an external variable
 value.

4.5.2.1.3. Determining the Final Result of Validating an External
 Variable Value

 The final result of validating an external_variable value is
 determined by combining every possible_restriction and possible_value
 constructs using the logical 'OR' operator. That is, each value in
 the external_variable will be evaluated against the combination of
 possible_restriction and possible_value constructs and the results of
 this evaluation will be combined using the 'OR' operator. See
 Section 4.5.3.2.4.2 for more information on how to combine the
 individual results using the 'OR' operator.

4.5.2.2. Determining the Flag Value

 An external variable is only capable of returning a flag value of
 'error', 'complete', or 'not collected'. The following table
 outlines when an external variable will evaluate to each of the flag
 values. The flag values 'does not exist' and 'incomplete' are not
 used because an external_variable is required to contain at least one
 value. The flag value of 'not applicable' is not used because the
 external_variable construct is platform independent.

Cokus, et al. Expires March 11, 2017 [Page 30]
�
Internet-Draft OVAL Processing Model September 2016

 +------------+--+
 | Value | Description |
 +------------+--+
error	This flag value must be used when one or more values
	do not conform to the specified datatype as defined
	in the oval:DatatypeEnumeration. This flag value
	must be used when there was an error collecting the
	values from the external source. This flag value
	must be used when there is a value, collected from
	the external source, that does not conform to the
	restrictions specified by the possible_value and
	possible_restriction constructs or if there is an
	error processing the possible_value and
	possible_restriction constructs. This flag value
	must be used when the final result of validating the
	external variable values is not 'true'. This flag
	must be used when the external source for the
	variable cannot be found.
complete	This flag value must be used when the final result
	of validating every external variable value is
	'true' and conforms to the specified datatype.
incomplete	-
does not	-
exist	
not	This flag value must be used when the tool does not
collected	support the collection of constant_variables.
not	-
applicable	
 +------------+--+

 Table 7: When a external_variable Evaluates to a Specific oval-

 sc:FlagEnumeration Value

4.5.3. Local Variable

 A local_variable is a locally defined collection of one or more
 values that may be composed of values from other sources collected at
 evaluation time.

Cokus, et al. Expires March 11, 2017 [Page 31]
�
Internet-Draft OVAL Processing Model September 2016

4.5.3.1. OVAL Function Evaluation

 An OVAL Function is a construct, in the OVAL Language, that takes one
 or more collections of values and manipulates them in some defined
 way. The result of evaluating an OVAL Function will be zero or more
 values.

4.5.3.1.1. Nested Functions

 Due to the recursive nature of the ComponentGroup construct, OVAL
 Functions can be nested within one another. In this case, a depth-
 first approach is taken to processing OVAL Functions. As a result,
 the inner most OVAL Functions are evaluated first, and then the
 resulting values are used as input to the outer OVAL Function and so
 on.

4.5.3.1.2. Evaluating OVAL Functions with Sub-components with Multiple
 Values

 When one or more of the specified sub-components resolve to multiple
 values, the function will be applied to the Cartesian product of the
 values, in the sub-components, and will result in a collection of
 values.

4.5.3.1.3. Casting the Input of OVAL Functions

 OVAL Functions are designed to work on values with specific
 datatypes. If an input value is encountered that does not align with
 required datatypes an attempt must be made to cast the input value(s)
 to the required datatype before evaluating the OVAL Function. If the
 input value cannot be cast to the required datatype the flag value,
 of the OVAL Function, MUST be set to 'error'.

4.5.3.1.4. Determining the Flag Value

 When determining the flag value of an OVAL Function, the combined
 flag value of the sub-components must be computed in order to
 determine if the evaluation of the OVAL Function should continue.
 The following tables outline how to combine the sub-component flag
 values.

Cokus, et al. Expires March 11, 2017 [Page 32]
�
Internet-Draft OVAL Processing Model September 2016

 +----------+---+
 | Notation | Description |
 +----------+---+
 | x | x individual OVAL Component flag values are... |
 | | |
 | x,y | x or y individual OVAL Component flag values are... |
 +----------+---+

 Table 8: Flag Value Table Notation

 || num of components with flag ||
 || || resulting flag is
 || E | C | I | DNE | NC | NA ||
 ||-----------------------------------||------------------
 || 1+ | 0+ | 0+ | 0+ | 0+ | 0+ || Error
 || 0 | 1+ | 0 | 0 | 0 | 0 || Complete
 || 0 | 0+ | 1+ | 0 | 0 | 0 || Incomplete
 || 0 | 0+ | 0+ | 1+ | 0 | 0 || Does Not Exist
 || 0 | 0+ | 0+ | 0+ | 1+ | 0 || Not Collected
 || 0 | 0+ | 0+ | 0+ | 0+ | 1+ || Not Applicable
 ||-----------------------------------||------------------

 Figure 10: Determining the Flag Value for an OVAL Function

 Once the flag values of the sub-components have been combined the
 evaluation of an OVAL Function must only continue if the flag value
 is 'complete'. All other flag values mean that the evaluation of the
 OVAL Function stops and the flag of the OVAL Function MUST be
 'error'. The following table outlines how to determine the flag
 value of an OVAL Function.

Cokus, et al. Expires March 11, 2017 [Page 33]
�
Internet-Draft OVAL Processing Model September 2016

 +------------+--+
 | Value | Description |
 +------------+--+
error	This flag value must be used if the combined sub-
	component flag is a value other than 'complete'.This
	flag value must be used if an error occurred during
	the computation of an OVAL Function. This flag value
	must be used if an attempt to cast an input value to
	a required datatype failed.
complete	This flag value must be used if the combined sub-
	component flag is complete and the evaluation of the
	OVAL Function completes successfully.
incomplete	-
does not	-
exist	
not	-
collected	
not	-
applicable	
 +------------+--+

 Table 9: When a OVAL Function Evaluates to a Specific oval-
 sc:FlagEnumeration Value

4.5.3.2. OVAL Components

 A component is a reference to another part of the content that allows
 further evaluation or manipulation of the value or values specified
 by the referral.

4.5.3.2.1. Literal Component

 A literal_component is a component that allows the specification of a
 literal value. The value can be of any supported datatype as
 specified in the oval:DatatypeEnumeration. The default datatype is

 'string'.

4.5.3.2.1.1. Determining the Flag Value

 A literal_component is only capable of evaluating to a flag value of
 'error' or 'complete'. The flag values 'does not exist' and
 'incomplete' are not used because an external_variable is required to
 contain at least one value. The flag value of 'not applicable' is

Cokus, et al. Expires March 11, 2017 [Page 34]
�
Internet-Draft OVAL Processing Model September 2016

 not used because the literal_component construct is platform
 independent. The following table outlines when a literal_component
 will evaluate to each of the flag values.

 +------------+--+
 | Value | Description |
 +------------+--+
error	This flag value must be used when the value does not
	conform to the specified datatype as defined in the
	oval:DatatypeEnumeration.
complete	This flag value must be used when the value conforms
	to the specified datatype as defined in the
	oval:DatatypeEnumeration.
incomplete	-
does not	-
exist	
not	-
collected	
not	-
applicable	
 +------------+--+

 Table 10: When a Literal Component Evaluates to a Specific oval-
 sc:FlagEnumeration Value

4.5.3.2.2. Object Component

 An object component is a component that resolves to the value(s) of
 OVAL Item Entities or OVAL Fields, in OVAL Items, that were collected
 by an OVAL Object. The property, object_ref, must reference an
 existing OVAL Object.

 The value that is used by the object component must be specified
 using the item_field property of the object component. This
 indicates which entity should be used as the value for the component.
 In the case that the OVAL Object collects multiple OVAL Items as part
 of its evaluation, this can resolve to a collection of values. In
 the case that an OVAL Item Entity has a datatype of 'record', the
 record_field property can be used to indicate which field to use for
 the component.

Cokus, et al. Expires March 11, 2017 [Page 35]
�
Internet-Draft OVAL Processing Model September 2016

4.5.3.2.2.1. Determining the Flag Value

 An object_component is only capable of evaluating to a flag value of
 'error', 'complete', 'incomplete', or 'not collected'. The flag
 values 'does not exist' and 'incomplete' are not used because an
 object_component is required to contain at least one value. The
 following table outlines when an object_component will evaluate to
 each of the flag values.

 +------------+--+
 | Value | Description |
 +------------+--+
 | error | This flag value must be used when the value does not |
 | | conform to the specified datatype as defined in the |

	oval:DatatypeEnumeration. This flag value must be
	used if the OVAL Object does not return any OVAL
	Items. This flag value must be used if an entity is
	not found with a name that matches the value of the
	item_field property. This flag value must be used if
	a field is not found with a name that matches the
	value of the record_field property.
complete	This flag value must be used when every value
	conforms to the specified datatype as defined in the
	oval:DatatypeEnumeration and when the flag of the
	referenced OVAL Object is 'complete'.
incomplete	This flag value must be used when every value
	conforms to the specified datatype as defined in the
	oval:DatatypeEnumeration and when the flag of the
	referenced OVAL Object is 'incomplete'.
does not	-
exist	
not	This flag value must be used when the OVAL-capable
collected	product does not support the collection of
	object_components.
not	-
applicable	
 +------------+--+

 Table 11: When a Object Component Evaluates to a Specific oval-
 sc:FlagEnumeration Value

Cokus, et al. Expires March 11, 2017 [Page 36]
�
Internet-Draft OVAL Processing Model September 2016

4.5.3.2.3. Variable Component

 An variable component is a component that resolves to the value(s) of
 the referenced OVAL Variable. The property, var_ref, must reference
 an existing OVAL Variable.

4.5.3.2.3.1. Variable Component Flag Value

 A variable_component is only capable of evaluating to a flag value of
 'error', 'complete', 'incomplete', or 'not collected'. The following
 table outlines when a variable_component will evaluate to each of the
 flag values.

 +------------+--+
 | Value | Description |
 +------------+--+
error	This flag value must be used when the flag value of
	the referenced OVAL Variable is 'error'. This flag
	value must be used when the referenced OVAL Variable
	cannot be found.
complete	This flag value must be used when the flag value of
	the referenced OVAL Variable is 'complete'.
incomplete	This flag value must be used when the flag value of
	the referenced OVAL Variable is 'incomplete'.
does not	This flag value must be used when the flag value of
exist	the referenced OVAL Variable is 'does not exist'.
not	This flag value must be used when the OVAL-capable
collected	product does not support the collection of
	variable_components.
not	-
applicable	
 +------------+--+

 Table 12: Determining the Flag Value

4.5.3.2.3.1.1. Determining the Flag Value

 A local_variable can contain an OVAL Function or an OVAL Component.
 As a result, the flag value must consider both the flag of the OVAL

 Function or OVAL Component along with the additional conditions from
 being an OVAL Variable. The following table describes when each flag
 value must be used.

Cokus, et al. Expires March 11, 2017 [Page 37]
�
Internet-Draft OVAL Processing Model September 2016

 +------------+--+
 | Value | Description |
 +------------+--+
error	This flag value must be used when one or more values
	do not conform to the specified datatype as defined
	in the oval:DatatypeEnumeration. This flag value
	must be used when there was an error collecting the
	values from the external source. This flag value
	must be used when the specified datatype is
	'record'. This flag value must be used when the flag
	value of the specified OVAL Function or OVAL
	Component is 'error'.
complete	This flag value must be used when the flag value of
	the specified OVAL Function or OVAL Component is
	'complete' and every value conforms to the specified
	datatype.
incomplete	-
does not	This flag value must be used when the flag value of
exist	the referenced OVAL Variable is 'does not exist'.
not	This flag value must be used when there are no
collected	values.
not	-
applicable	
 +------------+--+

 Table 13: When a Local Variable Component Evaluates to a Specific
 oval-sc:FlagEnumeration Value

4.5.3.2.4. Common Evaluation Concepts

 This section describes a set of evaluation concepts that apply to
 several aspects of producing OVAL Content.

4.5.3.2.4.1. Check Enumeration Evaluation

 Check Enumeration Evaluation is the process of determining whether or
 not the number of individual results, produced from the comparison of
 some set of values, satisfies the specified CheckEnumeration value.

 The following tables describe how each CheckEnumeration value affects
 the final result of an evaluation. The far left column identifies
 the CheckEnumeration value in question. The middle column specifies
 the different combinations of individual results that the

Cokus, et al. Expires March 11, 2017 [Page 38]
�
Internet-Draft OVAL Processing Model September 2016

 CheckEnumeration value may bind together. The last column specifies
 the final result according to each combination of individual results.
 It is important to note that if an individual result is negated, then
 a 'true' result is 'false' and a 'false' result is 'true', and all
 other results stay as is.

 || num of individual results ||
 check attr || || final result is
 || T | F | E | U | NE | NA ||
 -------------||-----------------------------||------------------
 || 1+ | 0 | 0 | 0 | 0 | 0+ || True
 || 0+ | 1+ | 0+ | 0+ | 0+ | 0+ || False
 ALL || 0+ | 0 | 1+ | 0+ | 0+ | 0+ || Error
 || 0+ | 0 | 0 | 1+ | 0+ | 0+ || Unknown
 || 0+ | 0 | 0 | 0 | 1+ | 0+ || Not Evaluated
 || 0 | 0 | 0 | 0 | 0 | 1+ || Not Applicable
 -------------||-----------------------------||------------------

 Figure 11: Check Enumeration Evaluation for 'all'

 || num of individual results ||
 check attr || || final result is
 || T | F | E | U | NE | NA ||
 -------------||-----------------------------||------------------
 || 1+ | 0+ | 0+ | 0+ | 0+ | 0+ || True
 || 0 | 1+ | 0 | 0 | 0 | 0+ || False
 AT || 0 | 0+ | 1+ | 0+ | 0+ | 0+ || Error
 LEAST || 0 | 0+ | 0 | 1+ | 0+ | 0+ || Unknown
 ONE || 0 | 0+ | 0 | 0 | 1+ | 0+ || Not Evaluated
 || 0 | 0 | 0 | 0 | 0 | 1+ || Not Applicable
 -------------||-----------------------------||------------------

 Figure 12: Check Enumeration Evaluation for 'at least one'

 || num of individual results ||
 check attr || || final result is
 || T | F | E | U | NE | NA ||
 -------------||-----------------------------||------------------
 || 1 | 0+ | 0 | 0 | 0 | 0+ || True
 || 2+ | 0+ | 0+ | 0+ | 0+ | 0+ || ** False **
 || 0 | 1+ | 0 | 0 | 0 | 0+ || ** False **
 ONLY ||0,1 | 0+ | 1+ | 0+ | 0+ | 0+ || Error
 ONE ||0,1 | 0+ | 0 | 1+ | 0+ | 0+ || Unknown
 ||0,1 | 0+ | 0 | 0 | 1+ | 0+ || Not Evaluated
 || 0 | 0 | 0 | 0 | 0 | 1+ || Not Applicable
 -------------||-----------------------------||------------------

 Figure 13: Check Enumeration Evaluation for 'only one'

Cokus, et al. Expires March 11, 2017 [Page 39]
�
Internet-Draft OVAL Processing Model September 2016

 || num of individual results ||
 check attr || || final result is
 || T | F | E | U | NE | NA ||
 -------------||-----------------------------||------------------
 || 0 | 1+ | 0 | 0 | 0 | 0+ || True
 || 1+ | 0+ | 0+ | 0+ | 0+ | 0+ || False
 NONE || 0 | 0+ | 1+ | 0+ | 0+ | 0+ || Error
 SATISFY || 0 | 0+ | 0 | 1+ | 0+ | 0+ || Unknown
 || 0 | 0+ | 0 | 0 | 1+ | 0+ || Not Evaluated
 || 0 | 0 | 0 | 0 | 0 | 1+ || Not Applicable
 -------------||-----------------------------||------------------

 Figure 14: Check Enumeration Evaluation for 'none satisfy'

4.5.3.2.4.2. Operator Enumeration Evaluation

 Operator Enumeration Evaluation is the process of combining the
 individual results of evaluations using logical operations. The
 following table shows the notation used when describing the number of
 individual results that evaluate to a particular result.

 +----------+---+
 | Notation | Description |
 +----------+---+
 | x | x individual results are... |
 | | |
 | x,y | x or y individual results are... |
 | | |
 | x+ | x or more individual results are... |
 | | |
 | Odd | an odd number of individual results are... |
 | | |
 | Even | an even number of individual results are... |
 +----------+---+

 Table 14: Operator Value Table Notation

 The following tables describe how each OperatorEnumeration value
 affects the final result of an evaluation. The far left column
 identifies the OperatorEnumeration value in question. The middle
 column specifies the different combinations of individual results
 that the OperatorEnumeration value may bind together. The last
 column specifies the final result according to each combination of
 individual results. It is important to note that if an individual
 result is negated, then a 'true' result is 'false' and a 'false'
 result is 'true', and all other results stay as is.

Cokus, et al. Expires March 11, 2017 [Page 40]
�
Internet-Draft OVAL Processing Model September 2016

 || num of individual results ||
 operator is || || final result is
 || T | F | E | U | NE | NA ||
 -------------||-----------------------------||------------------
 || 1+ | 0 | 0 | 0 | 0 | 0+ || True
 || 0+ | 1+ | 0+ | 0+ | 0+ | 0+ || False
 AND || 0+ | 0 | 1+ | 0+ | 0+ | 0+ || Error
 || 0+ | 0 | 0 | 1+ | 0+ | 0+ || Unknown
 || 0+ | 0 | 0 | 0 | 1+ | 0+ || Not Evaluated
 || 0 | 0 | 0 | 0 | 0 | 1+ || Not Applicable
 -------------||-----------------------------||------------------

 Figure 15: Operator Enumeration Evaluation for 'AND'

 || num of individual results ||
 operator is || || final result is
 || T | F | E | U | NE | NA ||
 -------------||-----------------------------||------------------
 || 1 | 0+ | 0 | 0 | 0 | 0+ || True
 || 2+ | 0+ | 0+ | 0+ | 0+ | 0+ || ** False **
 || 0 | 1+ | 0 | 0 | 0 | 0+ || ** False **
 ONE ||0,1 | 0+ | 1+ | 0+ | 0+ | 0+ || Error
 ||0,1 | 0+ | 0 | 1+ | 0+ | 0+ || Unknown
 ||0,1 | 0+ | 0 | 0 | 1+ | 0+ || Not Evaluated
 || 0 | 0 | 0 | 0 | 0 | 1+ || Not Applicable
 -------------||-----------------------------||------------------

 Figure 16: Operator Enumeration Evaluation for 'ONE'

 || num of individual results ||
 operator is || || final result is
 || T | F | E | U | NE | NA ||
 -------------||-----------------------------||------------------
 || 1+ | 0+ | 0+ | 0+ | 0+ | 0+ || True
 || 0 | 1+ | 0 | 0 | 0 | 0+ || False
 OR || 0 | 0+ | 1+ | 0+ | 0+ | 0+ || Error
 || 0 | 0+ | 0 | 1+ | 0+ | 0+ || Unknown
 || 0 | 0+ | 0 | 0 | 1+ | 0+ || Not Evaluated
 || 0 | 0 | 0 | 0 | 0 | 1+ || Not Applicable
 -------------||-----------------------------||------------------

 Figure 17: Operator Enumeration Evaluation for 'OR'

Cokus, et al. Expires March 11, 2017 [Page 41]
�
Internet-Draft OVAL Processing Model September 2016

 || num of individual results ||
 operator is || || final result is
 || T | F | E | U | NE | NA ||
 -------------||-----------------------------||------------------
 ||odd | 0+ | 0 | 0 | 0 | 0+ || True
 ||even| 0+ | 0 | 0 | 0 | 0+ || False
 XOR || 0+ | 0+ | 1+ | 0+ | 0+ | 0+ || Error
 || 0+ | 0+ | 0 | 1+ | 0+ | 0+ || Unknown
 || 0+ | 0+ | 0 | 0 | 1+ | 0+ || Not Evaluated
 || 0 | 0 | 0 | 0 | 0 | 1+ || Not Applicable
 -------------||-----------------------------||------------------

 Figure 18: Operator Enumeration Evaluation for 'XOR'

4.5.3.2.4.3. OVAL Entity Evaluation

 OVAL Entity Evaluation is the process of comparing the specified
 value(s), from an OVAL Object or State Entity, against the
 corresponding system state information in the context of the selected
 datatype and operation.

4.5.3.2.4.3.1. Datatype and Operation Evaluation

 The result of applying an operation in the context of a specified
 datatype MUST evaluate to 'true' only if the values being compared
 satisfy the conditions of the operation for the specified datatype.
 If the values being compared do not satisfy the conditions of the
 operation, the final result MUST be 'false'.

 To ensure consistency in the comparison of the value(s) specified in
 the OVAL Object and State Entities with the system state information,
 the operations for each datatype must be defined. The following
 table describes how each operation must be performed in the context
 of a specific datatype.

 +----------+---+
 | Value | Description |
 +----------+---+
binary	Data of this type conforms to the W3C
	Recommendation for hex-encoded binary
	data [W3C-HEX-BIN].
	equals: The collected binary value is
	equal to the specified binary value only
	if the collected binary value and the
	specified binary value are the same length
	and the collected binary value and the
	specified binary value contain the same

Cokus, et al. Expires March 11, 2017 [Page 42]
�
Internet-Draft OVAL Processing Model September 2016

	characters in the same positions.
	not equal: The collected binary value is
	not equal to the specified binary value
	only if the collected binary value is not
	the same length as the specified binary
	value or the collected binary value and
	specified binary value do not contain the
	same characters in the same positions.
+----------+---+	
boolean	Data of this type conforms to the W3C
	Recommendation for boolean data [W3C-BOOLEAN]
	(f = false; t = true;).
	equals:
	+-------------------+-----------------+
	+-----------+-------+-------+---------+
	+-----------+-------+-------+---------+
	not equal:
	+-------------------+-----------------+
	+-----------+-------+-------+---------+
	+-----------+-------+-------+---------+
+----------+---+	
debian_	Data of this type conforms to the format
evr_	EPOCH:UPSTREAM_VERSION-DEBIAN_REVISION and
string	comparisons involving this type MUST follow
	the algorithm described in Chapter 5
	(Section 5.6.12) "Debian Policy Manual"
	[DEBIAN-POLICY-MANUAL]. One implementation of
	this is the cmpversions function which is
	located in dpkg's enquiry.c.
	equals: The collected debian_evr_string value
	c is equal to the specified debian_evr_string

Cokus, et al. Expires March 11, 2017 [Page 43]

�
Internet-Draft OVAL Processing Model September 2016

	value s only if the result of the algorithm
	described in the cmpversions function is 0.
	not equal: The collected debian_evr_string
	value c is not equal to the specified
	debian_evr_string value s only if the result
	of the algorithm described in the cmpversions
	function is -1 or 1.
	greater than: The collected debian_evr_string
	value c is greater than the specified
	debian_evr_string value s only if the result
	of the algorithm described in the cmpversions
	function is 1.
	greater than or equal: The collected
	debian_evr_string value c is greater than or
	equal to the specified debian_evr_string
	value s only if the result of the algorithm
	described in the cmpversions function is 1
	or 0.
	less than: The collected debian_evr_string
	value c is less than the specified
	debian_evr_string value s only if the result
	of the algorithm described in the cmpversions
	function is -1.
	less than or equal: The collected
	debian_evr_string value c is less than or
	equal to the specified debian_evr_string
	value s only if the result of the algorithm
	described in the cmpversions function is -1
	or 0.
+----------+---+	
evr_	Data of this type conforms to the format
string	EPOCH:VERSION-RELEASE and comparisons
	involving this type MUST follow the algorithm
	described in the rpmVersionCompare() function
	which is located in lib/psm.c of the RPM
	source code.
	equals: The collected evr_string value c is
	equal to the specified evr_string value s
	only if the result of the algorithm described
	in the rpmVersionCompare(c,s) function is 0.
	not equal: The collected evr_string value c

Cokus, et al. Expires March 11, 2017 [Page 44]
�
Internet-Draft OVAL Processing Model September 2016

	is not equal to the specified evr_string
	value s only if the result of the algorithm
	described in the rpmVersionCompare(c,s)
	function is -1 or 1.
	greater than: The collected evr_string value
	c is greater than the specified evr_string s
	value only if the result of the algorithm
	described in the rpmVersionCompare(c,s)
	function is 1.
	greater than or equal: The collected
	evr_string value c is greater than or equal
	to the specified evr_string value s only if
	the result of the algorithm described in the
	rpmVersionCompare(c,s) function is 1 or 0.
	less than: The collected evr_string value c
	is less than the specified evr_string value
	s only if the result of the algorithm
	described in the rpmVersionCompare(c,s)
	function is -1.
	less than or equal: The collected evr_string
	value c is less than or equal to the
	specified evr_string value s only if the

 | | result of the algorithm described in the |
 | | rpmVersionCompare(c,s) function is -1 or 0. |
 +----------+---+
fileset_	Data of this type conforms to the version
revision	string related to filesets in HP-UX. An
	example would be 'A.03.61.00'. Please note
	that this needs further community review and
	discussion.
+----------+---+	
float	Data of this type conforms to the W3C
	Recommendation for float data [W3C-FLOAT].
	equals: The collected float value is equal to
	the specified float value only if the
	collected float value and the specified float
	value are numerically equal.
	not equal: The collected float value is not
	equal to the specified float value only if
	the collected float value and the specified
	float value are not numerically equal.

Cokus, et al. Expires March 11, 2017 [Page 45]
�
Internet-Draft OVAL Processing Model September 2016

	greater than: The collected float value is
	greater than the specified float value only
	if the collected float value is numerically
	greater than the specified float value.
	greater than or equal: The collected float
	value is greater than or equal to the
	specified float value only if the collected
	float value is numerically greater than or
	equal to the specified float value.
	less than: The collected float value is less
	than the specified float value only if the
	collected float value is numerically less
	than the specified float value.
	less than or equal: The collected float value
	is less than or equal to the specified float
	value only if the collected float value is
	numerically less than or equal to the
	specified float value.
+----------+---+	
ios_	Data of this type conforms to Cisco IOS Train
version	strings. These are in essence version strings
	for IOS. Please refer to Cisco's IOS
	Reference Guide for information on how to
	compare different Trains as they follow a
	very specific pattern [CISCO-IOS].
	Please note that this needs further community
	review and discussion.
+----------+---+	
int	Data of this type conforms to the W3C
	Recommendation for integer data [W3C-INT].
	equals: The collected integer value is equal
	to the specified integer value only if the
	collected integer value and the specified
	integer value are numerically equal.
	not equal: The collected integer value is
	not equal to the specified integer value only
	if the collected integer value and the
	specified integer value are not numerically
	equal.
	greater than: The collected integer value is
	greater than the specified integer value only

Cokus, et al. Expires March 11, 2017 [Page 46]
�
Internet-Draft OVAL Processing Model September 2016

	if the collected integer value is numerically
	greater than the specified integer value.
	greater than or equal: The collected integer
	value is greater than or equal to the
	specified integer value only if the collected
	integer value is numerically greater than or
	equal to the specified integer value.
	less than: The collected integer value is
	less than the specified integer value only if
	the collected integer value is numerically
	less than the specified integer value.
	less than or equal: The collected integer
	value is less than or equal to the specified
	integer value only if the collected integer
	value is numerically less than or equal to
	the specified integer value.
	bitwise and: The collected integer satisfies
	the bitwise and operation with the specified
	integer value only if the result of
	performing the bitwise and operation on the
	binary representation of the collected
	integer value and the binary representation
	of the specified integer value is the binary
	representation of the specified value.
	bitwise or: The collected integer satisfies
	the bitwise or operation with the specified
	integer value only if the result of
	performing the bitwise or operation on the
	binary representation of the collected
	integer value and the binary representation
	of the specified integer value is the binary
	representation of the specified value.
+----------+---+	
ipv4_	The ipv4_address [RFC791] datatype represents
address	IPv4 addresses and IPv4 address
	prefixes. Its value space consists of the set
	of ordered pairs of integers where the first
	element of each pair is in the range [0,2^32)
	(the representable range of a 32-bit unsigned
	int), and the second is in the range [0,32].
	The first element is an address, and the
	second is a prefix length.

Cokus, et al. Expires March 11, 2017 [Page 47]
�
Internet-Draft OVAL Processing Model September 2016

	The lexical space is dotted-quad CIDR-like
	notation ('a.b.c.d' where 'a', 'b', 'c', and
	'd' are integers from 0-255), optionally
	followed by a slash ('/') and either a prefix
	length (an integer from 0-32) or a netmask
	represented in the dotted-quad notation
	described previously. Examples of legal
	values are '192.0.2.0', '192.0.2.0/32', and
	'192.0.2.0/255.255.255.255'. Additionally,
	leading zeros are permitted such that
	'192.0.2.0' is equal to '192.000.002.000'. If
	a prefix length is not specified, it is
	implicitly equal to 32.
	All operations are defined in terms of the
	value space. Let A and B be ipv4_address
	values (i.e. ordered pairs from the value
	space). The following definitions assume that
	bits outside the prefix have been zeroed out.
	By zeroing the low order bits, they are
	effectively ignored for all operations.
	Implementations of the following operations
	MUST behave as if this has been done.
	Let P_addr mean the first element of ordered
	pair P and P_prefix mean the second element.
	equals: A equals B if and only if
	A_addr == B_addr and A_prefix == B_prefix.

	not equal: A is not equal to B if and only
	if they don't satisfy the criteria for
	operator "equals".
	greater than: A is greater than B if and
	only if A_prefix == B_prefix and
	A_addr > B_addr. If A_prefix != B_prefix,
	i.e. prefix lengths are not equal, an error
	MUST be reported.
	greater than or equal: A is greater than or
	equal to B if and only if
	A_prefix == B_prefix and they satisfy either
	the criteria for operators "equal" or
	"greater than". If A_prefix != B_prefix, i.e.
	prefix lengths are not equal, an error MUST
	be reported.

Cokus, et al. Expires March 11, 2017 [Page 48]
�
Internet-Draft OVAL Processing Model September 2016

	less than: A is less than B if and only if
	A_prefix == B_prefix and they don't satisfy
	the criteria for operator "greater than or
	equal". If A_prefix != B_prefix, i.e. prefix
	lengths are not equal, an error MUST be
	reported.
	less than or equal: A is less than or equal
	to B if and only if A_prefix == B_prefix and
	they don't satisfy the criteria for operator
	"greater than". If A_prefix != B_prefix, i.e.
	prefix lengths are not equal, an error MUST
	be reported.
	subset of: A is a subset of B if and only if
	every IPv4 address in subnet A is present in
	subnet B. In other words,
	A_prefix >= B_prefix and the high B_prefix
	bits of A_addr and B_addr are equal.
	superset of: A is a superset of B if and only
	if B is a subset of A.
+----------+---+	
ipv6_	The ipv6_address datatype represents IPv6
address	addresses and IPv6 address prefixes. Its
	value space consists of the set of ordered
	pairs of integers where the first element of
	each pair is in the range [0,2^128) (the
	representable range of a 128-bit unsigned
	int), and the second is in the range [0,128].
	The first element is an address, and the
	second is a prefix length.
	The lexical space is CIDR notation given in
	IETF specification [RFC4291] for textual
	representations of IPv6 addresses and IPv6
	address prefixes (see sections 2.2 and 2.3).
	If a prefix-length is not specified, it is
	implicitly equal to 128.
	All operations are defined in terms of the
	value space. Let A and B be ipv6_address
	values (i.e. ordered pairs from the value
	space). The following definitions assume
	that bits outside the prefix have been zeroed
	out. By zeroing the low order bits, they are
	effectively ignored for all operations.
	Implementations of the following operations

Cokus, et al. Expires March 11, 2017 [Page 49]
�
Internet-Draft OVAL Processing Model September 2016

	MUST behave as if this has been done. Let
	P_addr mean the first element of ordered
	pair P and P_prefix mean the second element.

	equals: A equals B if and only if
	A_addr == B_addr and A_prefix == B_prefix.
	not equal: A is not equal to B if and only if
	they don't satisfy the criteria for operator
	"equals".
	greater than: A is greater than B if and only
	if A_prefix == B_prefix and A_addr > B_addr.
	If A_prefix != B_prefix, an error MUST be
	reported.
	greater than or equal: A is greater than or
	equal to B if and only if
	A_prefix == B_prefix and they satisfy either
	the criteria for operators "equal" or
	"greater than". If A_prefix != B_prefix, an
	error MUST be reported.
	less than: A is less than B if and only if
	A_prefix == B_prefix and they don't satisfy
	the criteria for operator "greater than or
	equal". If A_prefix != B_prefix, an error
	MUST be reported.
	less than or equal: A is less than or equal
	to B if and only if A_prefix == B_prefix and
	they don't satisfy the criteria for operator
	"greater than". If A_prefix != B_prefix, an
	error MUST be reported.
	subset of: A is a subset of B if and only if
	every IPv6 address in subnet A is present in
	subnet B. In other words,
	A_prefix >= B_prefix and the high B_prefix
	bits of A_addr and B_addr are equal.
	superset of: A is a superset of B if and only
	if B is a subset of A.
+----------+---+	
string	Data of this type conforms to the W3C
	Recommendation for string data [W3C-STRING].
	equals: The collected string value is equal

Cokus, et al. Expires March 11, 2017 [Page 50]
�
Internet-Draft OVAL Processing Model September 2016

	to the specified string value only if the
	collected string value and the specified
	string value are the same length and the
	collected string value and the specified
	string value contain the same characters in
	the same positions.
	not equal: The collected string value is not
	equal to the specified string value only if
	the collected string value is not the same
	length as the specified string value or
	the collected string value and specified
	string value do not contain the same
	characters in the same positions.
	case insensitive equals: The collected
	string value is equal to the specified string
	value only if the collected string value and
	the specified string value are the same
	length and the collected string value and the
	specified string value contain the same
	characters, regardless of case, in the same
	positions.
	case insensitive not equal: The collected
	string value is not equal to the specified
	string value only if the collected string
	value and the specified string value are not
	the same length or the collected string value
	and the specified string value do not contain
	the same characters, regardless of case, in
	the same positions.
	pattern match: The collected string value

	will match the specified string value only if
	the collected string value matches the
	specified string value when the specified
	string is interpreted as a Perl 5 Compatible
	Regular Expression (PCRE)[PERL5]. The
	support for PCRE in OVAL is documented in the
	[I-D.draft-cokus-sacm-oval-common-model.xml].
+----------+---+	
version	Data of this type represents a value that is
	a hierarchical list of non-negative integers
	separated by a single character delimiter.
	Any single non-integer character may be used
	as a delimiter and the delimiter may vary
	between the non-negative integers of a given

Cokus, et al. Expires March 11, 2017 [Page 51]
�
Internet-Draft OVAL Processing Model September 2016

	version value. The hierarchical list of
	non-negative integers must be compared
	sequentially from left to right. When the
	version values, under comparison, have
	different-length lists of non-negative
	integers, zeros must be appended to the end
	of the values such that the lengths of the
	lists of non-negative integers are equal.
	equals: The collected version value is equal
	to the specified version value only if every
	non-negative integer in the collected version
	value is numerically equal to the
	corresponding non-negative integer in the
	specified version value.
	not equal: The collected version value is not
	equal to the specified version value if any
	non-negative integer in the collected version
	value is not numerically equal to the
	corresponding non-negative integer in the
	specified version value.
	greater than: The collected version value c
	is greater than the specified version value s
	only if the following algorithm returns true:
	c = c1,c2,...,cn where , is any non-integer
	character
	s = s1,s2,...,sn where , is any non-integer
	character
	for i = 1 to n
	if ci > si
	return true
	if ci < si
	return false
	if ci == si
	if i != n
	continue
	else
	return false
	greater than or equal: The collected version
	value c is greater than or equal to the
	specified version value s only if the
	following algorithm returns true:

Cokus, et al. Expires March 11, 2017 [Page 52]
�
Internet-Draft OVAL Processing Model September 2016

	c = c1,c2,...,cn where , is any non-integer
	character
	s = s1,s2,...,sn where , is any non-integer
	character
	for i = 1 to n

	if ci > si
	return true
	if ci < si
	return false
	if ci == si
	if i != n
	continue
	else
	return true
	less than: The collected version value c is
	less than the specified version value s only
	if the following algorithm returns true:
	c = c1,c2,...,cn where , is any non-integer
	character
	s = s1,s2,...,sn where , is any non-integer
	character
	for i = 1 to n
	if ci < si
	return true
	if ci > si
	return false
	if ci == si
	if i != n
	continue
	else
	return false
	less than or equal: The collected version
	value c is less than or equal to the
	specified version value s only if the
	following algorithm returns true:
	c = c1,c2,...,cn where , is any non-integer
	character
	s = s1,s2,...,sn where , is any non-integer

Cokus, et al. Expires March 11, 2017 [Page 53]
�
Internet-Draft OVAL Processing Model September 2016

	character
	for i = 1 to n
	if ci < si
	return true
	if ci > si
	return false
	if ci == si
	if i != n
	continue
	else
	return true
+----------+---+	
record	Data of this type describes an entity with
	structured set of named fields and values
	as its content. The record datatype is
	currently prohibited from being used on
	variables.
	equals: The collected record value is equal
	to the specified record value only if each
	specified OVAL Field has a corresponding
	collected OVAL Field with the same name
	property and that the collected OVAL Field
	value matches the specified OVAL Field
	value in the context of the datatype and
	operation as described above.
 +--+

 Figure 19: Evaluation with Respect to Datatype and Operation

4.5.3.2.4.3.1.1. Variable Check Evaluation

 It is often necessary to reference a variable from an OVAL Object or
 State Entity in order to specify multiple values or to use a value
 that was collected at runtime. When an OVAL Variable is referenced
 from an OVAL Object or State Entity using the var_ref property, the
 system state information will be compared to the every OVAL Variable

 value in the context of the specified datatype and operation. The
 final result of these comparisons are dependent on the value of the
 var_check property which specifies how many of the values, contained
 in OVAL Variable, must match the system state information to evaluate
 to a result of 'true'. The valid values for the var_check property
 are the defined in the CheckEnumeration.

Cokus, et al. Expires March 11, 2017 [Page 54]
�
Internet-Draft OVAL Processing Model September 2016

 +---------+---+
 | Value | Description |
 +---------+---+
all	The OVAL Object or State Entity matches the system
	state information only if the value of the OVAL Item
	Entity matches all of the values in the referenced the
	OVAL Variable in the context of the datatype and
	operation specified in the OVAL Object or State Entity.
at	The OVAL Object or State Entity matches the system
least	state information only if the value of the OVAL Item
one	Entity matches one or more of the values in the
	referenced OVAL Variable in the context of the datatype
	and operation specified in the OVAL Object or State
	Entity.
none	The OVAL Object or State Entity matches the system
satisfy	state information only if the OVAL Item Entity matches
	zero of the values in the referenced OVAL Variable in
	the context of the specified datatype and operation.
does	-
not	
exist	
only	The OVAL Object or State Entity matches the system
one	state information only if the OVAL Item Entity matches
	one of the values in the referenced OVAL Variable in
	the context of the specified datatype and operation.
 +---------+---+

 Table 15: Variable Check Evaluation

4.5.3.2.4.3.1.1.1. Determining the Final Result of the Variable Check
 Evaluation

 For more detailed information on how to combine the individual
 results of the comparisons between the OVAL object or State Entities
 and the system state information to determine the final result of
 applying the var_check property, see Section 4.5.3.2.4.1.

4.5.3.2.4.3.1.2. OVAL Entity Casting

 In certain situations, it is possible that the datatype specified on
 the OVAL Entity is different from the datatype of the system state
 information. When this happens, it is required that an attempt is
 made to cast the system state information to the datatype specified
 by the OVAL Entity before the operation is applied. If the cast is

Cokus, et al. Expires March 11, 2017 [Page 55]
�
Internet-Draft OVAL Processing Model September 2016

 unsuccessful, the final result of the OVAL Entity Evaluation MUST be
 'error'. Otherwise, the final result is dependent on the outcome of
 the Datatype and Operation Evaluation and the Variable Check
 Evaluation if an OVAL Variable is referenced. The process of casting
 a value of one datatype to a value of another datatype must conform
 to Section 4.5.3.4.

4.5.3.3. Masking Data

 When the mask property is set to 'true' on an OVAL Entity or an OVAL
 Field, the value of that OVAL Entity or OVAL Field MUST NOT be
 present in the OVAL Results. Additionally, the mask property MUST be

 set to 'true' for any OVAL Entity or OVAL Field or corresponding OVAL
 Item Entity or OVAL Field in the OVAL Results where the system state
 information was omitted.

 When the mask property is set to 'true' on an OVAL Entity with a
 datatype of 'record', each OVAL Field MUST have its operation and
 value or value omitted from the OVAL Results regardless of the OVAL
 Field's mask property value.

 It is possible for masking conflicts to occur where one entity has
 mask set to 'true' and another entity has mask set to 'false'. Such
 a conflict will occur when the mask attribute is set differently on
 an OVAL Object and OVAL State or when more than one OVAL Objects
 identify the same OVAL Item(s). When such a conflict occurs the
 value MUST always be masked.

 Values MUST NOT be masked in OVAL System Characteristics that are not
 contained within OVAL Results.

4.5.3.4. Entity Casting

 Casting is performed whenever the datatype of a value, used during
 evaluation, differs from the specified datatype whether it be on an
 OVAL Entity or an OVAL Function. In most scenarios, it will be
 possible to attempt the cast of a value from one datatype to another.

4.5.3.4.1. Attempting to Cast a Value

 When attempting to cast a value from one datatype to another, the
 value under consideration must be parsed according to the specified
 datatype. If the value is successfully parsed according to the
 definition of the specified datatype in the oval:DatatypeEnumeration,
 this constitutes a successful cast. If the value is not successfully
 parsed according to the definition of the specified datatype, this
 means that it is not possible to cast the value to the specified

Cokus, et al. Expires March 11, 2017 [Page 56]
�
Internet-Draft OVAL Processing Model September 2016

 datatype and an error MUST be reported for the construct attempting
 to perform the cast.

4.5.3.4.2. Prohibited Casting

 In some scenarios, it is not possible to perform a cast from one
 datatype to another due to the datatypes, under consideration, being
 incompatible. When an attempt is made to cast two incompatible
 datatypes, an error MUST be reported. The following outlines the
 casts where the datatypes are incompatible:

 o An attempt to cast a value of datatype 'record' to any datatype
 other than 'record'.

 o An attempt to cast a value of datatype 'ipv4_address' to any
 datatype other than 'ipv4_address' or 'string'.

 o An attempt to cast a value of datatype 'ipv6_address' to any
 datatype other than 'ipv6_address' or 'string'.

 o An attempt to cast a value with a datatype other than
 'ipv4_address' or 'string' to 'ipv4_address'.

 o An attempt to cast a value with a datatype other than
 'ipv6_address' or 'string' to 'ipv6_address'.

5. Intellectual Property Considerations

 Copyright (C) 2010 United States Government. All Rights Reserved.

 DHS, on behalf of the United States, owns the registered OVAL
 trademarks, identifying the OVAL STANDARDS SUITE and any component
 part, as that suite has been provided to the IETF Trust. A "(R)"
 will be used in conjunction with the first use of any OVAL trademark
 in any document or publication in recognition of DHS's trademark
 ownership.

6. Acknowledgements

 The authors wish to thank DHS for sponsoring the OVAL effort over the
 years which has made this work possible. The authors also wish to
 thank the original authors of this document Jonathan Baker, Matthew

 Hansbury, and Daniel Haynes of the MITRE Corporation as well as the
 OVAL Community for its assistance in contributing and reviewing the
 original document. The authors would also like to acknowledge Dave
 Waltermire of NIST for his contribution to the development of the
 original document.

Cokus, et al. Expires March 11, 2017 [Page 57]
�
Internet-Draft OVAL Processing Model September 2016

7. IANA Considerations

 This memo includes no request to IANA.

8. Security Considerations

 While OVAL is just a set of data models and does not directly
 introduce security concerns, it does provide a mechanism by which to
 represent endpoint posture assessment information. This information
 could be extremely valuable to an attacker allowing them to learn
 about very sensitive information including, but, not limited to:
 security policies, systems on the network, criticality of systems,
 software and hardware inventory, patch levels, user accounts and much
 more. To address this concern, all endpoint posture assessment
 information should be protected while in transit and at rest.
 Furthermore, it should only be shared with parties that are
 authorized to receive it.

 Another possible security concern is due to the fact that content
 expressed as OVAL has the ability to impact how a security tool
 operates. For example, content may instruct a tool to collect
 certain information off a system or may be used to drive follow-up
 actions like remediation. As a result, it is important for security
 tools to ensure that they are obtaining OVAL content from a trusted
 source, that it has not been modified in transit, and that proper
 validation is performed in order to ensure it does not contain
 malicious data.

9. Change Log

9.1. -00 to -01

 There are no textual changes associated with this revision. This
 revision simply reflects a resubmission of the document so that it
 remains in active status.

10. References

10.1. Normative References

 [CISCO-IOS]
 CISCO, "Cisco IOS Reference Manual", 2014,
 <http://www.cisco.com/web/about/security/intelligence/
 ios-ref.html>.

Cokus, et al. Expires March 11, 2017 [Page 58]
�
Internet-Draft OVAL Processing Model September 2016

 [DEBIAN-POLICY-MANUAL]
 Debian, "Debian Policy Manual", 2014,
 <https://www.debian.org/doc/debian-policy/ch-
 controlfields.html#s-f-Version>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, DOI 10.17487/RFC4291, February
 2006, <http://www.rfc-editor.org/info/rfc4291>.

 [RFC791] IETF, "Internet Protocol", 1981,
 <https://tools.ietf.org/html/rfc791>.

 [W3C-BOOLEAN]
 W3C, "W3C Recommendation for Integer Data", 2004,
 <http://www.w3.org/TR/xmlSchema-2/#boolean>.

 [W3C-FLOAT]
 W3C, "W3C Recommendation for Floating Point Data", 2004,
 <http://www.w3.org/TR/xmlSchema-2/#float>.

 [W3C-HEX-BIN]
 W3C, "W3C Recommendation for Hex Binary Data", 2004,
 <http://www.w3.org/TR/xmlschema-2/#hexBinary>.

 [W3C-INT] W3C, "W3C Recommendation for Integer Data", 2004,
 <http://www.w3.org/TR/xmlSchema-2/#integer>.

 [W3C-STRING]
 W3C, "W3C Recommendation for String Data", 2004,
 <http://www.w3.org/TR/xmlSchema-2/#string>.

10.2. Informative References

 [OVAL-WEBSITE]
 The MITRE Corporation, "The Open Vulnerability and
 Assessment Language", 2015,
 <http://ovalproject.github.io/>.

Authors' Addresses

Cokus, et al. Expires March 11, 2017 [Page 59]
�
Internet-Draft OVAL Processing Model September 2016

 Michael Cokus
 The MITRE Corporation
 903 Enterprise Parkway, Suite 200
 Hampton, VA 23666
 USA

 Email: msc@mitre.org

 Daniel Haynes
 The MITRE Corporation
 202 Burlington Road
 Bedford, MA 01730
 USA

 Email: dhaynes@mitre.org

 David Rothenberg
 The MITRE Corporation
 202 Burlington Road
 Bedford, MA 01730
 USA

 Email: drothenberg@mitre.org

 Juan Gonzalez
 Department of Homeland Security
 245 Murray Lane
 Washington, DC 20548
 USA

 Email: juan.gonzalez@dhs.gov

Cokus, et al. Expires March 11, 2017 [Page 60]

