
I2RS working group S. Hares
Internet-Draft Huawei
Intended status: Standards Track A. Beirman
Expires: November 6, 2016 YumaWorks
 A. Dass
 Ericsson
 May 5, 2016

 I2RS protocol strawman
 draft-hares-i2rs-protocol-strawman-02.txt

Abstract

 This strawman proposal for the I2RS protocol supports I2RS
 requirements for ephemeral data store, management data flows, and
 protocol security. It proposes additions to the NETCONF, RESTCONF,
 and YANG for these requirements.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 6, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Hares, et al. Expires November 6, 2016 [Page 1]

Internet-Draft I2RS Protocol Strawman May 2016

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Definitions Related to Ephemeral Configuration 5
 2.1. I2RS Definitions . 5
 2.2. Operational State definitions 6
 2.3. Requirements language 7
 3. Summary of Protocol Changes 7
 3.1. Ephemeral Data . 8
 3.1.1. Overview of Ephemeral Data Store 8
 3.1.2. I2RS Agent Caching of Ephemeral Data 9
 3.1.3. Ephemeral Requirements for NETCONF/RESTCONF 9
 3.2. Protocol Security . 14
 3.2.1. Summary of Protocol Security Changes 14
 3.2.2. I2RS Protocol Security Requirements 16
 3.3. Data Flow . 19
 3.3.1. Data Flows From the I2RS Agent 19
 3.3.2. Data Flows to I2RS agent 20
 3.3.3. OAM Constraints 20
 3.3.4. IPFIX as Transport for traffic monitoring 20
 3.3.5. Data Flow Requirements 21
 3.4. Error handling . 22
 3.4.1. Normal validation checks 22
 3.4.2. No Validation for rpcs 25
 4. Yang Changes . 25
 5. Transport Protocol Changes 26
 5.1. Secure Protocols . 26
 5.2. Insecure Protocol . 26
 6. NETCONF protocol extensions for the ephemeral datastore . . . 27
 6.1. Overview . 27
 6.2. Dependencies . 28
 6.3. Capability identifier 28
 6.4. New Operations . 28
 6.5. Modification to existing operations 29
 6.5.1. <get-config> . 29
 6.5.2. <edit-config> . 29
 6.5.3. <copy-config> . 30
 6.5.4. <delete-config> 31
 6.5.5. <lock> and <unlock> 31
 6.5.6. <get> . 31
 6.5.7. <close-session> and <kill-session> 31
 6.6. Interactions with Capabilities 31
 6.6.1. writable-running and candidate datastore 31
 6.6.2. confirmed commmit 31
 6.6.3. rollback-on-error 32

Hares, et al. Expires November 6, 2016 [Page 2]

Internet-Draft I2RS Protocol Strawman May 2016

 6.6.4. validate . 32
 6.6.5. Distinct Startup Capability 33
 6.6.6. URL capability and XPATH capability 33
 7. RESTCONF protocol extensions for the ephemeral datastore . . 33
 7.1. Overview . 33
 7.2. Dependencies . 33
 7.3. Capability identifier 34
 7.4. New Operations . 34
 7.5. modification to data resources 34
 7.6. Modification to existing operations 34
 7.6.1. OPTIONS changes 34
 7.6.2. HEAD changes . 34
 7.6.3. GET changes . 34
 7.6.4. POST changes . 35
 7.6.5. PUT changes . 35
 7.6.6. PATCH changes . 35
 7.6.7. DELETE changes 35
 7.6.8. Query Parameters 35
 7.7. Interactions with Notifications 35
 7.8. Interactions with Error Reporting 35
 8. Simple Thermostat Model 36
 8.1. YANG data model . 37
 8.2. NETCONF Changes . 42
 8.3. RESTCONF Initial Write 42
 9. Simple Route Add . 42
 9.1. Portions of I2RS YANG data model 45
 9.2. NETCONF Changes . 47
 9.3. RESTCONF Changes . 47
 10. IANA Considerations . 47
 11. Security Considerations 47
 12. Acknowledgements . 47
 13. Major Contributors . 48
 14. References . 48
 14.1. Normative References: 48
 14.2. Informative References 51
 Authors’ Addresses . 52

1. Introduction

 This is a strawman proposal for the first version of the I2RS
 protocol. This draft is input to a NETCONF Working Group which
 standardizes extensions to the NETCONF and RESTCONF protocol, and to
 the NETMOD Working Group which standardizes extensions to YANG.

 The I2RS protocol is a higher level protocol comprised of a set of
 existing protocols which have been extended to work together to
 support a new interface to the routing system. The I2RS protocol is
 a "reuse" management protocol which creates new management protocols

Hares, et al. Expires November 6, 2016 [Page 3]

Internet-Draft I2RS Protocol Strawman May 2016

 by reusing existing protocols and extending these protocols for new
 uses. The first version of the I2RS protocols is comprised of
 extensions of the NETCONF [RFC6241] and RESTCONF
 [I-D.ietf-netconf-restconf].

 This strawman proposal supports I2RS requirements for ephemeral data
 store, management data flows, and protocol security. It proposes
 extensions to the following:

 o YANG 1.1 [I-D.ietf-netmod-rfc6020bis],

 o NETCONF [RFC6241],

 o RESTCONF [I-D.ietf-netconf-restconf]

 o Network Access Control Model [RFC6536]

 This protocol strawman utilizes the following existing proposed
 features for NETCONF and RESTCONF

 o Call Home [I-D.ietf-netconf-call-home],

 o Server Configuratino Module [I-D.ietf-netconf-server-model],

 o Module library [I-D.ietf-netconf-yang-library],

 o Publication/Subscription via Push [I-D.ietf-netconf-yang-push],

 o Patch [I-D.ietf-netconf-yang-patch],

 o syslog yang module (both [RFC5424] and
 [I-D.ietf-netmod-syslog-model]

 Section 2 provides definitions for terms in this document. Section 3
 summarizes the changes to configuration data store, NETCONF,
 RESTCONF, and YANG. Section 4 details the changes to Yang.
 Section 5 summarizes the changes to transport support for RESTCONF
 and NETCONF. Section 6 details the changes to NETCONF. Section 7
 details the changes to RESTCONF. Section 8 provides a simple example
 of I2RS protocol support for the ephemeral data store using a simple
 temperature model. Section 9 provides a simple example of the I2RS
 protocol with an ephemeral route updating an existing route.
 Section 10 provides information on the security considerations for
 the I2RS protocol.

Hares, et al. Expires November 6, 2016 [Page 4]

Internet-Draft I2RS Protocol Strawman May 2016

2. Definitions Related to Ephemeral Configuration

 This section reviews definitions from I2RS architecture
 [I-D.ietf-i2rs-architecture] and NETCONF operational state
 [I-D.ietf-netmod-opstate-reqs] before using these to construct a
 definition of the ephemeral data store.

2.1. I2RS Definitions

 The I2RS architecture [I-D.ietf-i2rs-architecture] defines the
 following terms:

 ephemeral data: is data which does not persist across a reboot
 (software or hardware) or a power on/off condition. Ephemeral
 data can be configured data or data recorded from operations of
 the router. Ephemeral configuration data also has the property
 that a system cannot roll back to a previous ephemeral
 configuration state.

 local configuration: is the data on a routing system which does
 persist across a reboot (software or hardware) and a power on/off
 condition. Local configuration has the ability to roll back to a
 pervious configuration state.

 operator-applied policy: is a policy that an operator sets that
 determines how ephemeral configuration interacts with local
 configuration. One could consider these policy knobs that the
 operator sets to determine how the I2RS agent will act. Two
 policy knobs are necessary:

 * policy knob 1: Ephemeral configuration overwrites local
 configuration,

 * policy knob 2: Updated configuration overwrites ephemeral
 configuration

 Three possible setting for the above knobs are:

 Policy knob 1=false and policy knob 2=true: I2RS software is
 installed, but the operator does not want it to overwrite write
 any configuration variables. This might be valid if I2RS is only
 suppose to monitor data on this node.

 Policy knob 1=true and policy Knob 2=false: This is the normal
 case for the I2RS Agent where the ephemeral configuration data
 overwrites the local configuration data, and the ephemeral data
 stays even when the local configuration value changes. When the

Hares, et al. Expires November 6, 2016 [Page 5]

Internet-Draft I2RS Protocol Strawman May 2016

 ephemeral data is removed by the I2RS agent, the most recent local
 configuration value is set.

 Policy knob 1=true and Policy Knob 2=true: This case can occur if
 the ephemeral write is only suppose to take place until the next
 configuration cycle from a centralized system. Suppose the local
 configuration is get by the centralized system at 11:00pm each
 night. The I2RS Client writes temporary changes to the routing
 system via the I2RS agent ephemeral write. At 11:00pm, the local
 configuration update overwrite the ephemeral. The I2RS Agent
 notifies the I2RS Client which is tracking which of the ephemeral
 changes are being overwritten.

2.2. Operational State definitions

 The [I-D.ietf-netmod-opstate-reqs] defines the following to augment
 [RFC6244] to define how configuration state and operational state are
 different.

 Applied Configuration: This data represents the configuration
 state that the server is actually in.

 Derived State: This data represents information which is
 generated as part of the server’s own interactions.

 Intended Configuration: This data is the configuration state that
 the network operator intends the server to be in, and that has
 been accepted by the server as valid configuration.

 Operational State: is the current state of the system as known to
 the various components of the system (e.g., control plane daemons,
 operating system kernels, line cards). The operational state
 includes both applied configuration and derived state.

 In each of these definitions, the "server" is the routing system.

 The [I-D.ietf-netmod-opstate-reqs] defines two actions that update
 the intended and the applied configuration:

 Asynchronous Configuration Operation: the server MUST update its
 intended configuration before replying to the client indicating
 whether the request will be processed. The server’s applied
 configuration state is updated after the configuration change has
 been fully effected to all impacted components in the server.

 Synchronous Configuration Operation: the server MUST fully attempt
 to apply the configuration change to all impacted components in

Hares, et al. Expires November 6, 2016 [Page 6]

Internet-Draft I2RS Protocol Strawman May 2016

 the server, updating both its intended configuration and the
 applied configuration, before replying to the client.

 In a system without ephemeral data, the structure of the routing
 systems local intended configuration, applied configuration, and
 derived state is shown in figure 1.

 | Synchronous
 | or Asychronous updsate
 |
 ===========================
 | local |
 | intended configuration |
 ===========================
 || read/write
 -----------------||-------------------
 || read only
 +-------------||------+
 | operational || |
 | state || |
 | =========||== |
 | | Applied | |
 config | | config | |
 true | ============= |

 config | _____________ |
 false | | derived | |
 | | state | |
 | |___________| |
 +---------------------+

 Figure 1

2.3. Requirements language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. Summary of Protocol Changes

 This section provides a summary of requirements for changes to
 support the I2RS protocol features of ephemeral data, a secure
 protocol, management data flows, and I2RS error handling. Management
 data flows may be large data flows for notifications, events, and
 protocol events. Management flows could also be tracing the routing
 system’s operation or OAM operations.

Hares, et al. Expires November 6, 2016 [Page 7]

Internet-Draft I2RS Protocol Strawman May 2016

3.1. Ephemeral Data

 This section provides an overview of the ephemeral data store, I2RS
 agent caching support, and ephemeral requirements (from
 [I-D.ietf-i2rs-ephemeral-state]).

3.1.1. Overview of Ephemeral Data Store

 This section augments the [I-D.ietf-netmod-opstate-reqs] with
 definitions for ephemeral state. NETCONF provides the concept of a
 data store, but RESTCONF only defines the concept of a "context".
 The logical description of ephemeral additions to the NETCONF data
 store below still fits the general concepts of the RESTCONF context.

 This approach to the ephemeral datastore is two panes-of-glass model
 one pane of glass is the "local configuration" within the Intended
 configuration and the other pane of glass is the "ephemeral data".
 The two panes of glass are pressed together to create the intended
 configuration which then applied to the routing node and generates
 derived state as shown in figure 2.

 The applied configuration is the result of the the intent
 configuration (normal and ephemeral). Similarly, the derived data is
 a result of the applied configuration (normal and ephemeral).
 Therefore derived state may be defined in local configuration or
 ephemeral portions of a data model (or data models).

 The ephemeral data store has the following general qualities:

 1. Ephemeral state is not unique to I2RS work.

 2. The ephemeral datastore is never locked.

 3. The ephemeral portion of the intended configuration, applied
 state, and derived state does not persist over a reboot,

 4. an ephemeral node cannot roll-back to its previous value,

 5. Since ephemeral data store is just data that does not presist
 over a reboot, then in theory any node or group of nodes in a
 YANG data model could be ephemeral. The YANG data module must
 indicate what portion of the data model (if any) is ephemeral.

 * A YANG data module could be all ephemeral (e.g.
 [I-D.ietf-i2rs-rib-data-model]) with no directly associated
 configuration models,

Hares, et al. Expires November 6, 2016 [Page 8]

Internet-Draft I2RS Protocol Strawman May 2016

 * A YANG model could be all ephemeral but associated with a
 configuration model (E.g. [I-D.hares-i2rs-bgp-dm],

 * or a single data node or data tree could be made ephemeral.

 6. The management protocol (NETCONF/RESTCONF) needs to signal which
 poritons of a data model(node, tree, or data model) are ephemeral
 in the module library [I-D.ietf-netconf-yang-library].

 | Synchronous
 | or Asychronous updsate
 |
 ================================
 | Local | Ephemeral |=====I2RS Agent
 | configuration | Confguration |
 |’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’|
 | Intended configuration |
 =============||=================
 || read/write
 -||-------------------
 || read only
 +-------------||-------------+
 | operational || |
 | state || |
 | =========||========== |
 | | Local * ephemeral| |
 | | config * config | |
 config | | Applied config | |
 true | ===================== |
 **
 config | ______________________ |
 false | | local * ephemeral | |
 | | state * state | |
 | | derived state | |
 | |_____________________ |
 +----------------------------+
 Figure 2

3.1.2. I2RS Agent Caching of Ephemeral Data

 I2RS does not support caching of ephemeral data the I2RS Agents.
 Future I2RS work may support caching of data in the I2RS Agents.

3.1.3. Ephemeral Requirements for NETCONF/RESTCONF

 [I-D.ietf-i2rs-ephemeral-state] defines the following requirements
 for ephemeral datastore:

Hares, et al. Expires November 6, 2016 [Page 9]

Internet-Draft I2RS Protocol Strawman May 2016

 o Ephemeral-REQ-01: I2RS requires ephemeral state which does not
 persist across a reboot,

 o Ephemeral-REQ-02: Non-ephemeral state MUST NOT refer to ephemeral
 state for constraint purposes; it SHALL be considered a validation
 error if it does.

 o Ephemeral-REQ-03: Ephemeral state must be able to uitlize
 temporary operational state (eg. MPLS LSP-ID) as a constraint.

 o Ephemeral-REQ-04: Ephemeral state MAY refer to non-ephemeral state
 for purpose of implementing constraints. The designer of
 ephemeral state modules are advised that such constraints may
 impact the speed of processing ephemeral state commits and should
 avoid them when speed is essential.

 o Ephemeral-REQ-05: The ability to add on an object (or a hierarchy
 of objects) that have the propoerty of being ephemeral.

 o Ephemeral-REQ-06: YANG MUST have a way of indicating in a data
 model that nodes have the following properties: ephemera,
 writeable/nonwritable, status/configuration, and secure/non-secure
 transport. Proposed changes to Yang for I2RS protocol version 1
 are:

 * i2rs-version 1;

 * ephemeral true;

 * ephemeral-validation nocheck;

 * protocol [RESTCONF | NETCONF]

 * protocol-transport [ssh, tls, tcp]

 * i2rs-transport-nonsecure ok;

 o Ephemeral-REQ-07: The minimal changes to NETCONF for I2RS protocol
 version 1 are:

 * protocol version support - "i2rs-version 1;".

 * ephemeral model scope allowed - ephemeral modules, mixed config
 module (ephemeral and config), mixed derived state (ephemeral
 and config).

 * multiple message support - "all or nothing" (see Ephemeral-REQ-
 13). This mean ephemeral data stores only support "roll-back-

Hares, et al. Expires November 6, 2016 [Page 10]

Internet-Draft I2RS Protocol Strawman May 2016

 on-error" for messages, URL capability, and XPATH cpability in
 source or target.

 * pane of glass support - "single ephemeral only".

 * protocol support - "NETCONF" [RFC6241], "RESTCONF
 [I-D.ietf-netconf-restconf], yang pub-sub push
 [I-D.ietf-netconf-yang-push], yang module library
 [I-D.ietf-netconf-yang-library], call-home
 [I-D.ietf-netconf-call-home], and server modules
 [I-D.ietf-netconf-server-model] (server module must be
 augmented to support mutual authentication).

 * encoding support - XML or JSON,

 * transports protocols supported: "SSH","TLS","TCP" (non-secure)

 * mandatory transports supported: "TLS", "TCP" (non-secure)

 * ability to select insecure transport for portion of data model.

 * dependencies include:

 1. Yang data models, sub-modules, or modules must be flagged
 with ephemeral data store flag,

 2. Yang modules must support notification of write conflicts.

 3. yang modules syntax changes described in section 3.4.

 4. Yang modules must support the following NETCONF/RESTCONF
 features:

 1. The yang module library feature
 [I-D.ietf-netconf-yang-library],

 2. Publication-Subscription model found in
 [I-D.ietf-netconf-yang-push]

 3. Server initiated connection to a client
 [I-D.ietf-netconf-call-home]

 4. data models to configure RESTCONF/NETCONF servers
 [I-D.ietf-netconf-server-model],

 * modified NETCONF operations for ephemeral are <get-config>,
 <edit-config>, <copy-config>, <delete-config>, <get>, <close-
 session>, <kill-session>

Hares, et al. Expires November 6, 2016 [Page 11]

Internet-Draft I2RS Protocol Strawman May 2016

 * unsupported NETCONF operation for ephemeral are: <lock> and
 <unlock> plus interactions with writable-running, candidate
 data store, confirmed commit, and distinct start-up.

 o Ephemeral-REQ-08: The minimal changes to RESTCONF for the I2RS
 protocol version 1 are:

 * I2rs protocol version support - "i2rs-version 1"

 * ephemeral model scope allowed - ephemeral modules, mixed config
 module (ephemeral and config), mixed derived state (ephemeral
 and config)

 * multiple message support - "all or nothing". This mean
 ephemeral data stores only support "roll-back-on-error" for
 messages, URL capability, and XPATH cpability in source or
 target.

 * pane of glass support - "single ephemeral only",

 * RESTCONF protocol features support required - "RESTCONF
 [I-D.ietf-netconf-restconf], yang pub-sub push
 [I-D.ietf-netconf-yang-push], yang module library
 [I-D.ietf-netconf-yang-library], call-home
 [I-D.ietf-netconf-call-home], and server modules
 [I-D.ietf-netconf-server-model] (server module must be
 augmented to support mutual authentication).

 * encoding support - XML or JSON,

 * transports protocols supported: "HTTP 1.1 over TLS"

 * mandatory transports supported: "TLS", TCP (non-secure)

 * ability to select transports data model is available. Insecure
 portions of data model must be able to selet an insecure
 transport.

 * dependencies are the following:

 + yang changes (see above) supported,

 + support notification of changes or write conflicts (see
 Ephemeral-REQ-09 to Ephemeral-REQ-12),

 + support I2RS publication-subscription requirements specified
 in [I-D.ietf-i2rs-pub-sub-requirements] and implemented in
 [I-D.ietf-netconf-yang-push],

Hares, et al. Expires November 6, 2016 [Page 12]

Internet-Draft I2RS Protocol Strawman May 2016

 + yang patch feature specified in
 [I-D.ietf-netconf-yang-patch],

 + yang module library specified in
 [I-D.ietf-netconf-yang-library].

 * modifications to context: Support ephemeral data in ephemeral
 data context that supports "edit-collision" features that
 include timestamp, Entity tag, and the ability to compare I2RS
 priorities (see Ephemeral-REQ-09 to Ephemeral-REQ-12).

 * modification to existing RESTCONF operations:

 + OPTIONS - provide indication if ephemeral is in data
 modules,

 + HEAD - be able to get HEAD of ephemeral module, config
 module, or the head of groups of ephemeral, or groups of
 config.

 + GET, POST, PUT, PATCH, DELETE, QUERY parameters - must be
 able to handle "context=ephemeral",

 + Ephemeral data modules must be able to support publication
 of notification or errors as event stream, and allow
 subscription to portions of the event stream (see
 [I-D.ietf-netconf-yang-push]),

 o Ephemeral-REQ-09: I2RS clients MUST have identifiers and
 secondsary identifiers. I2RS Agents shall have identifiers.

 o Ephemeral-REQ-10: Data nodes MAY store I2RS client identity rather
 than the effective priority of the I2RS client writing the data at
 the time the data node is stored. I2RS Clients MUST have one
 priority at a TIME. I2RS Client’s priority MAY change dyanmically
 as long as the requirements in Ephemeral-REQ-11, Ephemeral-REQ-12,
 and Ephemeral-REQ-13 are fulfilled.

 o Ephemeral-REQ-11: When a collision occurs as two I2RS clients are
 trying to write the same data node, this collision is considered
 an error and priorities are created to give a deterministic
 result. The I2RS client with the highest priority wins the
 ability to write the data. When there is a collision, a
 notification MUST be sent to the original client to give the
 original client a chance to deal with the issues surrounding the
 collision. The original client may need to fix their state.

Hares, et al. Expires November 6, 2016 [Page 13]

Internet-Draft I2RS Protocol Strawman May 2016

 o Ephemeral-REQ-12: The requirement to support multi-headed control
 is required to collisions and the priority resolution of
 collisions. Multi-headed control is not tied to ephemeral state.

 o Ephemeral-REQ-13: If two clients have the same priority, the I2RS
 architecture says the first one wins. The I2RS protocol has this
 requirement to prevent oscillation between clients. If the last
 one wins, you may oscillate.

 o Ephemeral-REQ-14: Section 7.9 of [I-D.ietf-i2rs-architecture]
 states the I2RS architecture does not include multi-message
 atomicity and roll-back mechanisms. It also notes performing
 multiple operatinos in one or more messages can cause errors
 within the set of operations inmany ways. No multi-message
 commands SHOULD cause errors to be inserted in the I2RS ephemeral
 data store.

 (Editor’s note: This section provides a complete list of the
 ephemeral data store requirements. This section may be removed as it
 is covered in [I-D.ietf-i2rs-ephemeral-state], and only provided here
 for convenience of the reader.)

3.2. Protocol Security

 The I2RS protocol requires the ability to run over secure transport
 connections for the I2RS protocol to run over. Each secure transport
 must provide data confidentiality, data integrity, and replay
 prevention. NETCONF running over TLS or SSH over TCP, and RESTCONF
 running over HTTP 1.1 over TLS over TCP provide these features.
 However, the I2RS protocol requires extensions to this protocol
 security. This section provides an overview these changes.

3.2.1. Summary of Protocol Security Changes

 The I2RS protocol requires the following new security features:

 o mutual identification of I2RS Client and Agents via unique
 identifiers,

 o the I2RS client identifier to be associated with a priority and a
 secondary identity

 o data access (read/write) for each data model to be associated with
 I2RS client roles,

 o the ability to send some data over an insecure section as
 specified in a data model.

Hares, et al. Expires November 6, 2016 [Page 14]

Internet-Draft I2RS Protocol Strawman May 2016

 This section describes these new features.

3.2.1.1. Multiple secure transports

 The I2RS protocol MAY operate over a set of secure transports (1 to
 many transports) which provide data confidentiality, data integrity,
 and replay prevention. The key management that distributes keys MUST
 guarantee that only the entities having sufficient privileges can get
 the keys to encrypt/decrypt the sensitive data. NETCONF’s
 operatoring over TLS or SSH protocols, both of which run over TCP,
 provide such a secure transport as does RESTCONF operating over HTTP
 1.1 operating over TLS which runs over TCP also fits this
 description.

3.2.1.2. Mutual Identification

 I2RS protocol security requires mutual identification of I2RS client
 and agent via a unique identifier. The identity of each I2RS client
 must be represented by at least one unique I2RS client identifier,
 and the identity of an I2RS Agent must be represented by at least one
 unique I2RS agent identifier. The I2RS protocol must perform mutual
 identification of the I2RS client and the I2RS agent. The I2RS
 client-agent security association is valid for a single transport
 session or a set of parallel transport sessions. The I2RS client-
 agent security association does not need to have an active transport
 session to remain active. The I2RS agent and client unique
 identifiers are created and distributed outside the I2RS protocol.

3.2.1.3. I2RS Client has Identifier + Priority + Secondary Identifier

 Each I2RS client identifier will have one priority and one secondary
 identifier during a particular I2RS transaction (read/write
 sequence), but the priority and the secondary identity associated
 with a I2RS client identity may change during a I2RS client-agent
 association.

3.2.1.4. I2RS Role Based Access

 Certain data within routing elements is sensitive and read/write
 operations on such data SHOULD be controlled as to which I2RS client
 can access the data for read/write based on the I2RS client’s roles
 in order to protect its confidentiality. A I2RS Client’s role
 describe which data models and which data within those data models
 the I2RS client can have read access, write access, or both (read/
 write).

Hares, et al. Expires November 6, 2016 [Page 15]

Internet-Draft I2RS Protocol Strawman May 2016

3.2.1.5. Insecure Transport

 An I2RS data model with ephemeral state MAY require the passage of
 I2RS data will require the some data to be be sent from the I2RS
 agent to a I2RS client via an insecure transport. Examples of this
 transport could be the I2RS agent agent opening up a TCP connection
 to an I2RS Client via TCP. The yang data model specifying this MUST
 indicate what data is able to be passed over an insecure transport
 connection. Insecure transport must still support traceability and
 publication/subscription of the insecure data.

3.2.2. I2RS Protocol Security Requirements

 [I-D.ietf-i2rs-protocol-security-requirements] specifies the
 following requirements:

 o SEC-REQ-01: All I2RS clients and I2RS agents MUST have an
 identity, and at least one unique identifier that uniquely
 identifies each party in the I2RS protocol context.

 o SEC-REQ-02: The I2RS protocol MUST utilize these identifiers for
 mutual identification of the I2RS client and I2RS agent.

 o SEC-REQ-03: An I2RS agent, upon receiving an I2RS message from a
 I2RS client, MUST confirm that the I2RS client has a valid
 identifier.

 o SEC-REQ-04: The I2RS client, upon receiving an I2RS message from
 an I2RS agent, MUST confirm the I2RS agent has a valid identifier.

 o SEC-REQ-05: Identifier distribution and the loading of these
 identifiers into I2RS agent and I2RS Client SHOULD occur outside
 the I2RS protocol.

 o SEC-REQ-06: The I2RS protocol SHOULD assume some mechanism (IETF
 or private) will distribute or load identifiers so that the I2RS
 client/agent has these identifiers prior to the I2RS protocol
 establishing a connection between I2RS client and I2RS agent.

 o SEC-REQ-07: Each Identifier MUST have just one priority.

 o SEC-REQ-08: Each Identifier is associated with one secondary
 identifier during a particular I2RS transaction (e.g. read/write
 sequence), but the secondary identifier may vary during the time a
 connection between the I2RS client and I2RS agent is active.
 Since a single I2RS client may be use by multiple applications,
 the secondary identifier may vary as the I2RS client is utilize by

Hares, et al. Expires November 6, 2016 [Page 16]

Internet-Draft I2RS Protocol Strawman May 2016

 different application each of whom have a unique secondary
 identity and identifier.

 o SEC-REQ-09: The I2RS protocol MUST be able to transfer data over a
 secure transport and optionally MAY be able to transfer data over
 a non-secure transport. A secure transport MUST provide data
 confidentiality, data integrity, and replay prevention.

 o SEC-REQ-10: A secure transport MUST be associated with a key
 management solution that can guarantee that only the entities
 having sufficient privileges can get the keys to encrypt/decrypt
 the sensitive data. Per BCP107 [RFC4107] this key management
 system SHOULD be automatic, but MAY be manual in the following
 scenarios:

 * a) The environment has limited bandwidth or high round-trip
 times.

 * b) The information being protected has low value.

 * c) The total volume of traffic over the entire lifetime of the
 long-term session key will be very low.

 * d) The scale of the deployment is limited.

 o SEC-REQ-11: The I2RS protocol MUST be able to support multiple
 secure transport sessions providing protocol and data
 communication between an I2RS Agent and an I2RS client. However,
 a single I2RS Agent to I2RS client connection MAY elect to use a
 single secure transport session or a single non-secure transport
 session.

 o SEC-REQ-12: The I2RS Client and I2RS Agent protocol SHOULD
 implement mechanisms that mitigate DoS attacks.

 o SEC-REQ-13: In a critical infrastructure, certain data within
 routing elements is sensitive and read/write operations on such
 data SHOULD be controlled in order to protect its confidentiality.
 To achieve this, access control to sensitive data needs to be
 provided, and the confidentiality protection on such data during
 transportation needs to be enforced.

 o SEC-REQ-14: An integrity protection mechanism for I2RS SHOULD be
 able to ensure the following:

 1. the data being protected is not modified without detection
 during its transportation,

Hares, et al. Expires November 6, 2016 [Page 17]

Internet-Draft I2RS Protocol Strawman May 2016

 2. the data is actually from where it is expected to come from,
 and

 3. the data is not repeated from some earlier interaction of the
 protocol. (That is, when both confidentiality and integrity
 of data is properly protected, it is possible to ensure that
 encrypted data is not modified or replayed without detection.)

 o SEC-REQ-15: The integrity that the message data is not repeated
 means that I2RS client to I2RS agent transport SHOULD protect
 against replay attack

 o SEC-REQ-16: The I2RS message traceability and notification
 requirements requirements found in [I-D.ietf-i2rs-traceability]
 and [I-D.ietf-i2rs-pub-sub-requirements] SHOULD be supported in
 communication channel that is non-secure to trace or notify about
 potential security issues.

 o SEC-REQ-17: The rules around what role is permitted to access and
 manipulate what information plus a secure transport (which
 protects the data in transit) SHOULD ensure that data of any level
 of sensitivity is reasonably protected from being observed by
 those without permission to view it, so that privacy requirements
 are met.

 o SEC-REQ-18: Role security MUST work when multiple transport
 connections are being used between the I2RS client and I2RS agent
 as the I2RS architecture [I-D.ietf-i2rs-architecture] states.
 These transport message streams may start/stop without affecting
 the existence of the client/agent data exchange. TCP supports a
 single stream of data. SCTP [RFC4960] provides security for
 multiple streams plus end-to-end transport of data.

 o SEC-REQ-19: I2RS clients MAY be used by multiple applications to
 configure routing via I2RS agents, receive status reports, turn on
 the I2RS audit stream, or turn on I2RS traceability. Application
 software using I2RS client functions may host multiple secure
 identities, but each connection will use only one identifier with
 one priority. Therefore, the security of each I2RS Client to I2RS
 Agent connection is unique.

 o Sec-REQ-20: If an I2RS agents or an I2RS client is tightly
 correlated with a person, then the I2RS protocol and data models
 should provide additional security that protects the person’s
 privacy.

Hares, et al. Expires November 6, 2016 [Page 18]

Internet-Draft I2RS Protocol Strawman May 2016

 (Editor’s note: Since [I-D.ietf-i2rs-protocol-security-requirements]
 specifies these requirements, this section may be dropped. It is
 included in this version for the convenience of the reader.)

3.3. Data Flow

 The data flow requirements are in [I-D.hares-i2rs-dataflow-req].

 Large amounts of data can flow from the I2RS agent to the I2RS
 client, or from the I2RS client to the I2RS Agent. OAM functions in
 a router can require large data flows plus system resources (cpu,
 memory, data storage). Future versions of the I2RS protocol (after
 protocol version 1) should be able to support IPFIX protocol as one
 of ways an I2RS Agent send data. This section describes the changes
 to NETCONF/RESTCONF to support these new features.

 Data flow requirements specify that the transports used between an
 I2RS client and I2RS agent be negotiated. This negotiation between
 I2RS client and I2RS agent can be simple. The I2RS client could
 query the I2RS Agent over a mandatory protocol (E.g. NETCONF over
 TLS over TCP on standard port) for other mandatory parameters for
 I2RS Client can use to communicate or I2RS Agent outbound
 communication via call-home ([I-D.ietf-netconf-call-home].

 The I2RS Data flow requirements specify that the following should be
 able to be negotiated:

 o I2RS protocol encodings (XML or JSON) (I2RS-DF-REQ-02),

 o secure transports from mandatory list (I2RS-DF-REQ-03),

 o alternate transports during outages or attacks (I2RS-DF-REQ-04)
 with different resource contraints (I2RS-DF-REQ-06)

 o ports the secure transports or alternate transports use (I2RS-DF-
 REQ-06),

 o insecure transports from mandatory list based on the requirements
 of supported yang data models (I2RS-DF-REQ-04, I2RS-DF-REQ-09),

3.3.1. Data Flows From the I2RS Agent

 Large data flows can be required by the I2RS agent to publish large
 data for protocol state, virtual topologies, events, and
 notifications from a routing system.
 [I-D.ietf-i2rs-pub-sub-requirements] specify the I2RS requirements
 for publication of large data flows from the I2RS Agent via a
 publication/subscription (aka pub-sub) mechanism. The pub-sub

Hares, et al. Expires November 6, 2016 [Page 19]

Internet-Draft I2RS Protocol Strawman May 2016

 mechanisms has been specified for the "push" service in
 [I-D.ietf-netconf-yang-push].

 Large data flows can also be required to trace the actions of a
 routing system. These requirements are listed in the
 [I-D.ietf-i2rs-traceability]. These traceability requirements
 specify mandatory fields in the trace log including an end of message
 marker for a record plus handling of the trace logs. This handling
 includes creation of trace logs, limits on trace logs, trace log
 rotation, and trace log retrieval by syslog [RFC5424], the pub-sub
 mechanism or a large data push. This large data push can be a pull
 in a large write.

 Large data flows from the I2RS client also mean that some of the data
 flows from the I2RS Agent may be prioritized over other data flows
 (I2RS-DF-REQ-07). This priorization will be based on what the data
 is, what the operator-applied policy knobs are for reporting, and the
 current resource constraints (I2RS-DF-REQ-05).

3.3.2. Data Flows to I2RS agent

 I2RS protocol may write specific data such as routes or flow-filters
 in a specific rpc actions. Writing large numbers of flow filters or
 routes may require a great deal of processing by the I2RS agent and
 the remote I2RS client. In some cases, I2RS client may the I2RS
 agent to trust the validation the I2RS client does for an rpc that
 writes a route (or routes) or a flow filter (or flow filters). This
 trust in the I2RS client validation speeds up the processing of the
 rpc at risk of invalid data (see I2RS-DF-REQ-01).

3.3.3. OAM Constraints

 OAM actions in a router may require extra processing, extra memory or
 data storage, or extra data flows to/from the I2RS agent. The OAM
 functions SHOULD not impact the routing functions so it cannot
 perform its main task of guiding the traffic. OAM functions must be
 able to be limited in terms of processing power, memory, data
 storage, or data flows to/from network (I2RS-DF-REQ-05).

3.3.4. IPFIX as Transport for traffic monitoring

 Due to the potentially large data flow the traffic measurment
 statistics generate, these statistics are best handled by publication
 techniques within NETCONF or a separate protocol such as IPFIX. In
 the future version of the I2RS protocol may desire to support a data
 stream outbound from the I2RS Agent to an I2RS client via the IPFIX
 protocol.

Hares, et al. Expires November 6, 2016 [Page 20]

Internet-Draft I2RS Protocol Strawman May 2016

3.3.5. Data Flow Requirements

 The following are the data flow related requirements from
 [I-D.hares-i2rs-dataflow-req] for I2RS protocol version 1:

 I2RS-DF-REQ-01:No Validation RPCs I2RS generic interfaces in I2RS
 protocol independent modules or I2RS protocol dependent modules
 should be able to optionally create rpcs which store configuration
 data in the I2RS ephemeral data store without the normal
 configuration checking. The only thing check will be the syntax
 within the protocol packets. The data models allowing must
 provide a "no-checking flag" at the level the rpc stores the data.
 For example, the I2RS RIB could create a rpc for a route-add that
 allowed a flag that indicates validation status ("full or no-
 checks")

 I2RS-DF-REQ-02: XML and JSON: encoding formats SHOULD be supported
 in RESTCONF and NETCONF.

 I2RS-DF-REQ-03: Transport Protocols: MAY be negotiated between
 I2RS client and I2RS agent from a list of mandatory transports and
 optional transports.

 I2RS-DF-REQ-04: Insecure Transport: For a few select data models,
 the communication between the I2RS client and I2RS agent MAY run
 over an insecure transports. The I2RS client and I2RS agent
 should negotiate this insecure protocol, and the portion of the
 data model which can be sent via the insecure transport SHOULD be
 marked in YANG data model with "i2rs-insecure-transport ok".

 I2RS-DF-REQ-05: Resource Contraints on the I2RS Agent: should have
 the ability to constraints for OAM functions operating to limit
 CPU processing, data rate across a transport, the rate of
 publication of data in a subscription, and logging rates.

 I2RS-DF-REQ-06: Alternative Transport protocols or ports: The I2RS
 should be able to support an OAM actions that select alternate
 transports from available list of transports, and to support
 selection of alternate ports for these protocols. The alternate
 transports may have constraints specified for security levels,
 sizes of messages, or data flow priorities.

 I2RS-DF-REQ-07: Priorization of Data Flows: The I2RS Agent should
 be able to prioritize some of the management data flows in the
 I2RS Agent-I2RS Client data flows. This prioriziation can for
 data schedule for publication, data flows within a single
 transport, or data flows flows within a single transport, or
 between multiple data flow streams an I2RS Agent is sending. This

Hares, et al. Expires November 6, 2016 [Page 21]

Internet-Draft I2RS Protocol Strawman May 2016

 priorization may be for the data flows the I2RS Agent is
 receiving.

 DF-REQ-08: Yang indicates rpc with no validation: Yang MUST have a
 way to indicate rpc can write without validating data except for
 syntax of data because I2RS client has validated data.

 ephemeral-validation nocheck;"

 DF-REQ-09: Yang for Data sent over insecure transport : Yang MUST
 have a way to indicate in a data model that insecure transmission
 is ok.

 i2rs-transport-insecure ok;"

 (Editor’s note: This section provides a complete list of the
 ephemeral data store requirements. This section may be removed as it
 is covered in [I-D.hares-i2rs-dataflow-req], and only provided here
 for convenience of the reader.)

3.4. Error handling

 This section reviews I2RS normal error handling and error handling
 for rpc with no validation checks.

3.4.1. Normal validation checks

 An I2RS agent validates an I2RS client’s information by examining the
 following:

 o message syntax validation,

 o syntax validation for nodes of data model,

 o referential checks (leafref checks MUST clauses, and instance
 indentifier),

 o checks groups of data within a data model or groups of data across
 data models,

 o write access to data,

 o if write access and values already exist, if I2RS client write
 access is higher than existing priority.

Hares, et al. Expires November 6, 2016 [Page 22]

Internet-Draft I2RS Protocol Strawman May 2016

3.4.1.1. Multiple I2RS Clients Write Same Node

 Multiple I2RS clients writing to the same variable is considered an
 "error condition" in the I2RS architecture
 [I-D.ietf-i2rs-architecture], but an I2RS Agent must handle this
 error condition. Upon multiple I2RS clients writing, the ephemeral
 data store allows for priority pre-emption of the write operation.
 Priority pre-emption means each I2RS client of the ephemeral I2RS
 agent (netconf server) is associated with a priority. Priority pre-
 emption occurs when a I2RS client with a higher priority writes a
 node which has been written by an I2RS client (with the lower
 priority). At this point, the I2RS agent (netconf server) allows the
 write and provides a notification indication to the notification
 publication/subscription service.

 The I2RS protocol security requires that each I2RS client has a
 identity that has a unique identifier which has one priority and one
 secondary identitifer associated it during a write sequence (singel
 write or multiple group actions (see below).

 An I2RS client’s unique identifier is distributed along with valid
 roles and a valid priority via exterior mechanisms (AAA,
 administrative interface) to the I2RS agent. The secondary
 identifier is passed as an opaque meta value in the I2RS Client
 write. The exterior mechanism may change the the valid roles and
 priority associated with an I2RS client’s identifier. If a change
 occurs after the I2RS client data has written information, the I2RS
 agent must revaluate the writes associate with this I2RS client
 (including rpcs). The I2RS agent may schedule this evaluation, but
 it should provide the following notifications to the I2RS client:

 I2RS agent had received change of priority for I2RS client,

 I2RS agent is beginning reevaluation of writes or rpcs associated
 with the client due to priority change,

 I2RS agent has completed the revaluation due to priority change.

3.4.1.2. Multiple Action Messages

 An I2RS agent receiving multiple action to write data within a
 message from an I2RS client must validate the data and check to make
 sure this I2RS client has permission and priority to change all the
 values. If one of the values in the multiple action messages fails
 one of these tests, then error handling must decide what to do with
 the rest of the values.

Hares, et al. Expires November 6, 2016 [Page 23]

Internet-Draft I2RS Protocol Strawman May 2016

 Error handling in I2RS protocol version 1 simply remove all changed
 nodes and restores the previous values (all-or-nothing). In this
 case, the short term ephemeral values are kept until the message is
 processed.

 Error handling on writes of the ephemeral datastore could be
 different for nodes that are grouped versus orthogonal. Group nodes
 may need to be all changed or all removed (all-or-nothing). In
 contrast, writing orthogonal data nodes in the same data module or
 between data models need to be added or deleted in sync, but the
 writes do not have to be "all-or-nothing."

3.4.1.2.1. Grouping and Error handling

 Yang 1.1 provide the ability to group data in groupings, leafref
 lists, lists, and containers. Grouping of data within a model links
 to data that is logically associated with one another. Data models
 may logical group data across models. One example of such an
 association is the association of a static route with an interface.
 The concepts of groupings apply to both ephemeral and non-ephemeral
 nodes within a data model.

3.4.1.2.2. Why All-or-Nothing

 NETCONF does not support a mandated sequencing of edit functions or
 write functions. Without this mandated sequences, NETCONF cannot
 support partial edits.

 RESTCONF has a complete set of operations per message. The RESTCONF
 patch [I-D.ietf-netconf-yang-patch] could support partial edit
 functions per messages.

 Since version 1 of I2RS protocol desires to support NETCONF and
 RESTCONF equally, the partial

3.4.1.2.3. Future Error Handling of Multiple Write Messages

 The [I-D.ietf-i2rs-architecture] specifies three types of error
 handling for a partial write operation of orthogonal data:

 o stop-on-error - means that the configuration process stops when a
 write to the configuration detects an error due to write conflict.

 o continue-on-error - means the configuration process continues when
 a write to the configuration detects an error due to write
 process, and error reports are transmitted back to the client
 writing the error.

Hares, et al. Expires November 6, 2016 [Page 24]

Internet-Draft I2RS Protocol Strawman May 2016

 o all-or-nothing - means that all of the configuration process is
 correctly applied or no configuration process is applied.
 (Inherent in all-or-nothing is the concept of checking all changes
 before applying.)

 Grouped data must only use "all-or-nothing."

 Future I2RS protocol versions will mandate "stop-on-error" handling
 or "continue-on-error" handling of multiple orthongal actions if a
 RESTCONF "patch" like facility is defined for NETCONF.

3.4.2. No Validation for rpcs

 In some circumstances, the I2RS client-agent communication may be
 considered almost perfect (99.999%), and the speed of update
 critical. In such cases, the operator may choose to have the I2RS
 client do all the validation within a group and between groups prior
 to downloading the data, and the I2RS agent to simply upload the
 data.

 The "no validation" feature requires:

 o operator-applied policy knob enabling this feature;

 o rpc in a data model with the yang "ephemeral-validation no-check;"

4. Yang Changes

 The data modules supporting the ephemeral datastore can use the Yang
 module library to describe their datastore. Figure 5 shows the
 module library data structure as found
 [I-D.ietf-netconf-yang-library].

 The Proposed changes to Yang for I2RS protocol version 1 are:

 o i2rs:version 1;

 o i2rs:transport-nonsecure ok;

 o i2rs:ephemeral-validation nocheck;

 o ephemeral true;

 o encoding [XML | JSON]

 o protocol [RESTCONF | NETCONF]

 o protocol-transport [ssh, tls, tcp]

Hares, et al. Expires November 6, 2016 [Page 25]

Internet-Draft I2RS Protocol Strawman May 2016

 o transport-ports [ports]

 Since ephemeral data store, encoding methods, protocols, protocol
 transport, and transport ports are features of the general protocols,
 these are not tagged with the "i2rs:" key word.

5. Transport Protocol Changes

5.1. Secure Protocols

 NETCONF’s XML-based protocol ([RFC6241]) can operate over the
 following secure and encrypted transport layer protocols:

 SSH as defined in [RFC6242],

 TLS with X.509 authentication [RFC7589]

 RESTCONF’s XML-based or JSON [RFC7158] data encodings of Yang
 functions are passed over HTTOS with (GET, POST, PUT, PATCH, DELETE,
 OPTIONS, and HEAD).

5.2. Insecure Protocol

 The ephemeral database may support insecure protocols for information
 which is ephemeral state which does not engage in configuration. The
 insecure protocol must be defined in conjunction with a data model or
 a subdata model.

 [RFC6536] with extensions supporting ephemeral, non-secure transport,
 and rpcs with no validation checks might look like:

 extension ephemeral {
 description "if present in a data definition statement
 then the object is considered OK for editing as ephemeral data."
 }
 extension non-secure-ok {
 description "if present in data definition statement
 then the object is considered OK for non-secure transport."
 }
 extension ephemeral-validation-nocheck {
 description "if present in rpc definition
 the data received in the rpc is considered to
 not require validation checks.
 }

Hares, et al. Expires November 6, 2016 [Page 26]

Internet-Draft I2RS Protocol Strawman May 2016

6. NETCONF protocol extensions for the ephemeral datastore

 capability-name: ephemeral-datastore

6.1. Overview

 This capability defines the NETCONF protocol extensions for the
 ephemeral state. The ephemeral state has the following features:

 o the ephemeral data store is a part of the intended configuration
 datastore, applied configuration datastore, and the derived state
 store whose components are not survive a reboot.

 o The ephemeral capability is signalled as a capability of a leaf,
 grouping, a sub-module, or module that is stored as a feature of
 the module in the netconf yang module library
 ([I-D.ietf-netconf-yang-library]) used by Yang 1.1 and RESTCONF
 and NETCONF.

 o ephemeral data will be noted by an "ephemeral" statement in for a
 leaf, grouping, sub-module, or module.

 o The ephemeral datastore is never locked.

 o The ephemeral data store is one pane of glass that overrides the
 local configuration (which is considered one pane of glass) in the
 intended config based on operator-applied policy knobs (see
 section 2.1).

 o Ephemeral data can occur as part of protocol or protocol
 independent modules. However, ephemeral data nodes cannot have
 non-ephemeral data nodes within the subtree. Ephemeral sub-
 modules cannot have non-ephemeral data nodes within the module.
 Ephemeral modules cannot have non-ephemeral sub-modules or nodes
 within the module. Yang 1.1 [I-D.ietf-netmod-rfc6020bis]
 augmented by ephemeral state must enforce this restriction.
 Similarly, the Yang mount schema [I-D.ietf-netmod-schema-mount]
 must check for this restriction.

 o Ephemeral writes should enforce the normal validation checks,
 priority pre-emption error handling if multiple I2RS clients write
 the same data, and "all-or-nothing" error handling for multiple
 actions in a write for data in groupings or orthogonal data (see
 section 3.4). The I2RS agent should send the I2RS client
 requesting write the notification of any type of error during the
 write process: failure of normal validation, priority pre-emption
 causing failure to write, multiple actions causing failure to
 sustain write (aka all-or-nothing roll-back). If the I2RS agent

Hares, et al. Expires November 6, 2016 [Page 27]

Internet-Draft I2RS Protocol Strawman May 2016

 allows a priority pre-emption of the write of data model value by
 an I2RS client (e.g. client 1) of another I2RS client (e.g. client
 2), then the I2RS agent must send a notification of the I2RS pre-
 emption to the previous I2RS client (e.g. client 2).

 o Ephemeral writes as part of an rpc should allow the rpc to skip
 normal validation checks if data model specifies "ephemeral-
 validation nocheck;". The rpc which skips the normal validation
 MUST resolve the pre-emption write error handling for any data
 being written without normal validation check, and MUST only all
 the data within a grouping rather than orthogonal data.

6.2. Dependencies

 The following are the dependencies for ephemeral support:

 o The Yang definitions specified in section 6.

 o The Yang modules must support the event notification write and
 read errors as well as data model errors.

 o The following features must be supported by NETCONF

 * Call Home [I-D.ietf-netconf-call-home],

 * Server Configuratino Module [I-D.ietf-netconf-server-model],

 * Module library [I-D.ietf-netconf-yang-library],

 * Publication/Subscription via Push [I-D.ietf-netconf-yang-push],

 * Patch [I-D.ietf-netconf-yang-patch],

 * syslog yang module (both [RFC5424] and
 [I-D.ietf-netmod-syslog-model]

6.3. Capability identifier

 The ephemeral-datastore capability is identified by the following
 capability string: (capability uri)

6.4. New Operations

 None

Hares, et al. Expires November 6, 2016 [Page 28]

Internet-Draft I2RS Protocol Strawman May 2016

6.5. Modification to existing operations

 The capability for :ephemeral-datastore modifies the target for
 existing operations.

6.5.1. <get-config>

 The :ephemeral-datastore capability modifies the <edit-config> to
 accept the <ephemeral> as a target for source, and allows the filters
 focused on a particular module, submodule, or node.

 The positive and negative responses remain the same.

 Example - retrieve users subtree from
 ephemeral database

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <source>
 <emphemeral-datastore/>
 </source>
 <filter type="subtree">
 <top xmlns="http://example.com/schema/1.0/thermostat/config">
 <desired-temp>
 </top>
 </filter>
 </get-config>
 </rpc>

6.5.2. <edit-config>

 The :ephemeral-datastore capability modifies the <edit-config> to
 accept the <ephemeral> as a target for source with filters. The
 operations of merge, replace, create, delete, and remove are
 available, but each of these operations is modified by the priority
 write as follows:

 <merge> parameter is replaced by <merge-priority> The current data
 is modified by the new data in a merge fashion only if existing
 data either does not exist, or is owned by a lower priority
 client. If any data is replaced, this event is passed to the
 notification function within the pub/sub and traceability.

 <replace> is replaced by <replace-priority> for ephemeral
 datastore which replaces data if the existing data is owned by a
 lower priority client. If data any data is replaced, this event
 is passed to the notification function within pub/sub and

Hares, et al. Expires November 6, 2016 [Page 29]

Internet-Draft I2RS Protocol Strawman May 2016

 traceability for notification to the previous client. The success
 or failure of the event is passed to traceabilty.

 <create> - the creation of the data node works as in [RFC6241]
 except that the success or failure is passed to pub/sub and
 traceability functions.

 <deletion> - the deletion of the data node works as in [RFC6241]
 except event that the success or the error event is passed to the
 notiication services in the pub/sub and traceability functions.

 <remove> - the remove of the data node works as in [RFC6241]
 except that all results are forwarded to traceabilty.

 The existing parameters are modified as follows:

 <target> - add a target of :emphemeral-datastore

 <default-operation> -allows only <merge-priority> or <replace-
 priority>

 <error-option> - the I2RS agent agent supports only the a"all-or-
 nothing" equivalent to a "rollback-on-error" function.

 positive response - the <ok> is sent for a positive response
 within an <rpc-reply>.

 negative response - the <rpc-error> is sent for a negative
 response within an <rpc-reply>. Note a negative respones may
 evoke a publication of an event.

6.5.3. <copy-config>

 Copy config allows for the complete replacement of all the ephemeral
 nodes within a target. The alternation is that source is the
 :ephemeral datastore with the filtering to match the datastore. The
 following existing parameters are modified as follows:

 <target> - add a target of :emphemeral-datastore

 <error-option> - the I2RS agent agent supports only the a"all-or-
 nothing" equivalent to a "rollback-on-error" function.

 positive response - the <ok> is sent for a positive response
 within an <rpc-reply>.

 negative response - the <rpc-error> is sent for a negative
 response within an <rpc-reply>.

Hares, et al. Expires November 6, 2016 [Page 30]

Internet-Draft I2RS Protocol Strawman May 2016

6.5.4. <delete-config>

 The delete will delete all ephemeral nodes out of a datastore. The
 target parameter must be changed to allow :ephemeral-datastore. and
 filters.

6.5.5. <lock> and <unlock>

 Lock and unlock are not supported with a target of :ephemeral-
 datastore.

6.5.6. <get>

 The <get> is altered to allow a target of :ephemeral-datastore and
 with the filters.

6.5.7. <close-session> and <kill-session>

 The close session is modified to take a target of :ephemeral-
 datastore, Since no locks are set, none should be released.

 The kill session is modified to take a target of "ephemeral-
 datastore. Since no locks are set, none should be released.

6.6. Interactions with Capabilities

 [RFC6241] defines NETCONF capabilities for writeable-running
 datastore, candidate config data store, confirmed commit, rollback-
 on-error, validate, distinct start-up, URL capability, and XPATH
 capability. I2RS ephemeral state does not impact the writeable-
 running data store or the candiate config datastore.

6.6.1. writable-running and candidate datastore

 The writeable-running and the candidate datastore cannot be used in
 conjunction with the ephemeral data store. Ephemeral database
 overlays an intended configuration, and does not impact the writable-
 running or candidate data store.

6.6.2. confirmed commmit

 Confirmed commit capability is not supported for the ephemeral
 datastore.

Hares, et al. Expires November 6, 2016 [Page 31]

Internet-Draft I2RS Protocol Strawman May 2016

6.6.3. rollback-on-error

 The rollback-on-error when included with ephemeral state allows the
 error handling to be "all-or-nothing" (roll-back-on-error).

6.6.4. validate

 The validation function operates normally with one addition with one
 addition for any data handled by an rpc with "ephemeral-validation
 nocheck".

 The rpc specifying ephemeral-validation nocheck MUST specify within
 the ephemeral data written by the rpc function the following
 grouping:

 grouping ephemeral-validation-notcheck {
 leaf rpc {
 type string rpc-id;
 description "rpc wrote
 the non-check data";
 }
 leaf rpc-seq {
 type uint32 rpc-id;
 description "sequence number of
 rpc that wrote non-check data";
 }
 leaf client-id {
 type uint64 client-id;
 description "client identifier
 that wrote non-checking rpc;"
 }
 description "Tracking on rpc with
 no validation checking so validation
 failure can send note to client.";
 };

 If the data validation finds an error in a component that was non-
 check, the notification should include the data module, submodule (if
 valid).

 (Editor’s note: Initial experiments on this type of rpc for I2RS RIB
 routes and I2RS FB-RIB filters will be done before IETF 96.

Hares, et al. Expires November 6, 2016 [Page 32]

Internet-Draft I2RS Protocol Strawman May 2016

6.6.5. Distinct Startup Capability

 This NETCONF capability appears to operate to load write-able running
 config, running-config, or candidate datastore. The ephemeral state
 does not change the environment based on this command.

6.6.6. URL capability and XPATH capability

 The URL capabilities specify a <url> in the <source> and <target>.
 The initial suggestion to allow both of these features to work with
 ephemeral datastore.

7. RESTCONF protocol extensions for the ephemeral datastore

 capability-name: ephemeral-datastore

7.1. Overview

 This capability defines the RESTCONF protocol extensions for the
 ephemeral state. The ephemeral state has the features described in
 the previous section on NETCONF.

7.2. Dependencies

 The ephemeral capabilities have the following dependencies:

 o The Yang definitions specified in section 6.

 o The Yang modules must support the event notification write and
 read errors as well as data model errors.

 o The following features must be supported by RESTCONF

 * Call Home [I-D.ietf-netconf-call-home],

 * Server Configuratino Module [I-D.ietf-netconf-server-model],

 * Module library [I-D.ietf-netconf-yang-library],

 * Publication/Subscription via Push [I-D.ietf-netconf-yang-push],

 * Patch [I-D.ietf-netconf-yang-patch],

 * syslog yang module (both [RFC5424] and
 [I-D.ietf-netmod-syslog-model]

Hares, et al. Expires November 6, 2016 [Page 33]

Internet-Draft I2RS Protocol Strawman May 2016

7.3. Capability identifier

 The ephemeral-datastore capability is identified by the following
 capability string: (capability uri)

7.4. New Operations

 none

7.5. modification to data resources

 RESTCONF must be able to support the ephemeral datstore as a context
 with its rules as part of the "{+restconf}/data" subtree. The "edit
 collision" features in RESTCONF must be able to provide notification
 to I2RS read functions or to rpc functions. The "timestamp" with a
 last modified features must support the traceability function.

 The "Entity Tag" could support saving a client-priority tuple as a
 opaque string, but it is important that that additions be made to
 restore client-priority so it can be compared with strimgs can be
 done to determine the comparison of two I2RS client-priorities.

7.6. Modification to existing operations

 The current operations in RESTCONF are: OPTIONS, HEAD, GET, POST,
 PUT, PATCH, and DELETE. This section describes the modification to
 these exiting operations.

7.6.1. OPTIONS changes

 The options methods should be augmented by the
 [I-D.ietf-netconf-yang-library] information that will provide an
 indication of what ephemeral state exists in a data modules, or a
 data modules sub-modules or nodes.

7.6.2. HEAD changes

 The HEAD in retrieving the headers of a resources. It would be
 useful to changes these headers to indicate the datastore a node or
 submodule or module is in (ephemeral or normal), and allow filtering
 on ephemeral nodes or trees, submodules or module.

7.6.3. GET changes

 GET must be able to read from the URL and a context
 ("?context=ephemeral"). Similarly, it is important the Get be able
 to determine if the context=ephemeral.

Hares, et al. Expires November 6, 2016 [Page 34]

Internet-Draft I2RS Protocol Strawman May 2016

7.6.4. POST changes

 POST must simply be able to create resources in ephemeral datastores
 ("context=ephemeral") and invoke operations defined in ephemeral data
 models.

7.6.5. PUT changes

 PUT must be able to reference an ephemeral module, sub-module, and
 nodes ("?context=ephemeral").

7.6.6. PATCH changes

 Plain PATCH must be able to update or create child resources in an
 ephemeral context ("?context=ephemeral") The PATCH for the ephemeral
 state must be change to provide a merge or update of the original
 data only if the client’s using the patch has a higher priority than
 an existing datastore’s client, or if PATCH requests to create a new
 node, sub-module or module in the datastore.

7.6.7. DELETE changes

 The phrase "?context=ephemeral" following an element will specify the
 ephemeral data store when deleting an entry.

7.6.8. Query Parameters

 The query parameters (content, depth, fields, insert, point, start-
 time, stop-time, and with-defaults (report-all, trim, explicit,
 report-all-tagged) must support ephemeral context
 ("?context=ephemeral") described above.

7.7. Interactions with Notifications

 The ephemeral database must support the ability to publish
 notifications as events and the I2RS clients being able to receiving
 notifications as Event stream. The event error stream processing
 should support the publication/subscription mechanisms for ephemeral
 state defined in [I-D.ietf-netconf-yang-push].

7.8. Interactions with Error Reporting

 The ephemeral database must support in RESTCONF must also support
 passing error information regarding ephemeral data access over to
 RESTCONF equivalent of the and traceability client.

Hares, et al. Expires November 6, 2016 [Page 35]

Internet-Draft I2RS Protocol Strawman May 2016

8. Simple Thermostat Model

 In this discussion of ephemeral configuration, this draft utilizes a
 simple thermostat model with the YANG configuration found in figure
 6. The desired-temp is local configuration node that has an
 ephemeral The actual temperature is a derived state node that records
 the actual temperature of the room.

 Figure 6 shows two I2RS clients. I2RS client 1 has one connection to
 write the ephemeral copy of the desired temperature at priority 1.
 I2RS client 2 writes to the intended configuration with priority 10.
 I2RS client 1 has a second connetion to read the actual temperature,
 and I2RS client 2 also has a second connection to read the actual
 temperature.

 The NETCONF example shows a simple write of the ephemeral state value
 over the local configuration

Hares, et al. Expires November 6, 2016 [Page 36]

Internet-Draft I2RS Protocol Strawman May 2016

 :Candidate :---:running config :--: start-up :
 : : :desired-temp (cfg): : :

 |
 | ==========
 | | I2RS |
 | +-|Client 1|
 | | |=========
 |..................... |
 Intended . ’’’’’’’|’’’’’’’’’’’’’’’’’’’ . | =========
 Config . ’local config|ephemeral ’<--| |I2RS |
 . ’desired-temp|desired-temp’<----|Client 2|
 . ’’’’’’’’’’’’|’’’’’’’’’’’’’’ . ==========
 |................
 | read-write data
 -------------------|--
 | read only data
 |
 ======|====== ---------------
 | Actual |-----|I2RS client 1|
 Config true | Config | ---------------
 | desired- | |
 | temp |==============
 ============= | ||
 ******************************** | ||
 config false | derived |------+ ||
 | state | ===============
 | actual- |=======|I2RS Client 2 |
 | temp | ===============

 Policy Knob 1:Ephemeral overwrites local config (TRUE)
 Policy Knob 2:Updated local config overwrite ephemeral (FALSE)

 Figure 6 - Two I2RS clients

8.1. YANG data model

Hares, et al. Expires November 6, 2016 [Page 37]

Internet-Draft I2RS Protocol Strawman May 2016

 module thermostat {
 ..
 leaf desired-temp {
 type int32;
 config true;
 ephemeral true;
 units "degrees Celsius";
 description "The desired temperature";
 }

 leaf actual-temp {
 type int32;
 config false;
 units "degrees Celsius";
 description "The measured
 temperature is derived state.
 }
 }
 Figure 6 - Simple thermostat YANG Model

 The changes in each step are shown in the figure 7. In step 1, the
 running configuration desired-temp is change to 68 degress. In step
 2, the intended configuration value for desired-temp is updated, and
 asynchronously the applied configuration is updated in step 4. The
 actual temperature begins to rise to meet the desired temperature,
 and reaches it in step 4. In step 5, I2RS client 1 update the
 intended configuration with a desired-temp=70. In step 6 this value
 is updated to the applied configuration, and the actual temperature
 begins to rise (actual-temp = 69). In step 7, the actual temperature
 has reached 70 degrees. In step 8, I2RS Client 1 removes the
 ephemeral state from the intended configuration and the local
 configuration value is reasserted. In step 9, the intended desired-
 temp is synchronously moved to applied configuration and the actual
 temperature drops.

Hares, et al. Expires November 6, 2016 [Page 38]

Internet-Draft I2RS Protocol Strawman May 2016

 Step Running Intended Config Applied Config Derived
 state
 ==
 1 desired- actual-
 temp=68 temp=65
 --
 2 desired- from running actual-
 temp=68 desired-temp temp=65
 temp = 68
 --
 3 Desired Desired Desired Actual-
 temp=68 temp=68 temp=68 temp=67

 4 Desired Desired Desired Actual-
 temp=68 temp=68 temp=68 temp=68
 --
 from I2RS
 client 1
 5 Desired Desired Desired Actual-
 temp=68 temp=70 temp=68 temp=68
 --
 6 Desired Desired Desired Actual-
 temp=68 temp=70 temp=70 temp=69
 --
 7 Desired Desired Desired Actual-
 temp=68 temp=70 temp=70 temp=70
 --
 I2RS client 1
 removes state
 8 Desired Desired Desired Actual-
 temp=68 temp=68 temp=70 temp=70

 9 Desired Desired Desired Actual-
 temp=68 temp=68 temp=68 temp=68
 ==

 Figure 7

 I2RS Client 1 handle the normal lowering and raising of the
 temperature during different time periods in the day. I2RS Client 2
 has the ability for individuals to request the room warms up rapidly
 to a maximum of 72 degrees. Figure 8 shows a simple example of the
 two clients interaction. Steps 1-6 are the same as in figure 7. In
 step 7, I2RS Client 2 sets the desired-temp in the intended
 configuration to 72. In step 8, this intended configuration is
 passed to the applied configuration and the actual temperature
 reaches 72.

Hares, et al. Expires November 6, 2016 [Page 39]

Internet-Draft I2RS Protocol Strawman May 2016

 In step 9, I2RS client 2 removes its state. The I2RS Client 1 is
 notified of the removal, and the I2RS Client 1 re-write the desired
 value of 70 degrees (desired-temp=70), and this is passed to the
 applied state. The actual temperature drops to 70 degress (actual-
 temp=70). In step 10, I2RS Client 1 removes its ephemeral state and
 desired-temp reverts to the local configuration value
 (desired=temp=68). This value is installed in applied temperature
 and the actual temperature goes to 68 (actual-temp=68.)

Hares, et al. Expires November 6, 2016 [Page 40]

Internet-Draft I2RS Protocol Strawman May 2016

 Step Running Intended Config Applied Config Derived
 state
 ==
 1 desired- actual-
 temp=68 temp=65
 --
 2 Desired from running actual-
 temp=68 desired-temp temp=65
 temp = 68
 --
 3 Desired Desired Desired Actual-
 temp=68 temp=68 temp=68 temp=67

 4 Desired Desired Desired Actual-
 temp=68 temp=68 temp=68 temp=68
 --
 from I2rs
 client 1
 5 Desired Desired Desired Actual-
 temp=68 temp=70 temp=68 temp=68
 --
 6 Desired Desired Desired Actual-
 temp=68 temp=70 temp=70 temp=69
 --
 I2RS Client 2
 sets
 7 Desired Desired Desired Actual-
 temp=68 temp=72 temp=70 temp=70
 --
 8 Desired Desired Desired Actual-
 temp=68 temp=72 temp=72 temp=72

 I2RS client 2 removes state
 reverts to I2RS client 1

 9 Desired Desired Desired Actual-
 temp=68 temp=70 temp=70 temp=70

 I2RS client 1 removes state

 10 Desired Desired Desired Actual-
 temp=68 temp=68 temp=68 temp=68
 ==

 Figure 8

Hares, et al. Expires November 6, 2016 [Page 41]

Internet-Draft I2RS Protocol Strawman May 2016

8.2. NETCONF Changes

 The NETCONF way of writing the ephemeral data to the intended
 configuratino would be

 <rpc-message-id=101
 xmlns="urn:ietf:params:xml:ns:base:1.0">
 <edit-config>
 <target>
 <ephemeral >
 true
 </ephemeral >
 </target>
 <config>
 <top xmlsns="http:://example.com/schema/1.0/thermostat/config>
 <desired-temp> 70 </desired-temp>
 </top>
 </config>
 </edit-config>
 </rpc>

 figure 9 NETCONF setting of desired-temp

8.3. RESTCONF Initial Write

 Figure 10 shows the thermostat model has ephemeral variable desired-
 temp in the running configuration and the ephemeral data store. The
 RESTCONF way of addressing is below:

 RESTCONF ephemeral datastore

 PUT /restconf/data/thermostat:desired-temp?context=ephemeral
 {"desired-temp":19 }

 Figure 8 - RESTCONF setting of ephemeral state

9. Simple Route Add

 In this discussion of ephemeral configuration, this draft utilizes
 the I2RS RIB data model [I-D.ietf-i2rs-rib-data-model] where one
 client adds an route via a rpc to the I2RS ephemeral data model.

 Figure 9 shows two I2RS clients. I2RS client 1 writes ephemeral
 routes with priority 1, and I2RS client 2 writes ephemeral routes
 with priority 5. I2RS Client 1 and I2RS client can read the I2RS RIB
 With its status of installation. For ease of display the I2RS client
 1 is show as two separate boxes, but these boxes are logically one
 client. Client 2 is also shown as two boxes, but has only one box.

Hares, et al. Expires November 6, 2016 [Page 42]

Internet-Draft I2RS Protocol Strawman May 2016

 :Candidate :---:running config :--: start-up :
 : : :desired-temp (cfg): : :

 |
 | ==========
 | | I2RS |
 | +-|Client 1|
 | | |=========
 |................... |
 Intended . ’’’’’’’|’’’’’’’’’’’’’’’’’ . | =========
 Config . ’local config|ephemeral ’<--| |I2RS |
 . ’ route | route ’<----|Client 2|
 . ’’’’’’’’’’’’|’’’’’’’’’’’ . ==========
 |.............
 read-write data
 --
 | read only data
 |
 ============= ---------------
 | Actual |-----|I2RS client 1|
 Config true | Config | ---------------
 | route | |
 | |==============
 ============= | ||
 ******************************** | ||
 config false | derived |------+ ||
 | state | ===============
 | route |=======|I2RS Client 2 |
 | active | ===============

 Policy Knob 1:Ephemeral overwrites local config (TRUE)
 Policy Knob 2:Updated local config overwrite ephemeral (FALSE)

 Figure 11 - Two I2RS clients

 Figure 10 shows the addition of routes to a IPv4 RIB using the rpc-
 add route function in the I2RS RIB [I-D.ietf-i2rs-rib-data-model].
 Step 1 shows the route being configured via netconf as a static
 route, and step 2 shows how this static route is installed in the
 intended configuration. Step 3 shows how this static route is
 installed in the applied configuration and the derived status
 "installed" is added to the routing devices route table. Step 4
 shows how the I2RS Client 1 adds the same route with a different next
 hop. In this example, there is only one nexthop per route so the
 ephemeral route replaces static route configuration and is
 synchronously installed in the applied configuration. Due to the

Hares, et al. Expires November 6, 2016 [Page 43]

Internet-Draft I2RS Protocol Strawman May 2016

 installation, the "installed" state is recorded in the kernel and
 associated with the I2RS RIB route.

 In step 5, I2RS client 2 adds the same route to the intended
 configuration with a different next hop which replaces the route
 added by I2RS client 1 because I2RS Client 2 has a higher priority
 that client 1.

 In step 6, I2RS client 2 removes the route. and the I2RS client 1 is
 notified of the removal. The I2RS client 1 re-write the route with a
 nexthop of 192.11.1.2, and the applied configuration is updasted.

 In step 7, the I2RS Client 1 removes route and the local
 configuration is restored in the intended configuration. The
 intended configuration sent to applied configuration as part of the
 restoration.

 Step Running Intended Config Applied Config Derived
 state
 ==
 1 route=
 128.2/16
 nexthop=
 192.11.1.1
 --
 2 route= route=
 128.2/16 128.2/16
 nexthop= nexthop=
 192.11.1.1 192.11.1.1
 --
 3 route= route= route= route-
 128.2/16 128.2/16 128.2/16 128.2/16
 nexthop= nexthop= nexthop= nexthop=
 192.11.1.1 192.11.1.1 192.11.1.1 192.11.1.1
 status-installed

 I2RS
 client 1
 rpc route-add
 4 route= route= route= route-
 128.2/16 128.2/16 128.2/16 128.2/16
 nexthop= nexthop= nexthop= nexthop=
 192.11.1.1 192.11.1.2 192.11.1.2 192.11.1.2
 status-installed

 from I2RS client 2

Hares, et al. Expires November 6, 2016 [Page 44]

Internet-Draft I2RS Protocol Strawman May 2016

 5 route= route= route= route-
 128.2/16 128.2/16 128.2/16 128.2/16
 nexthop= nexthop= nexthop= nexthop=
 192.11.1.1 192.11.1.3 192.11.1.3 192.11.1.3
 status-installed

 I2RS Client2 removes route
 and I2RS agent notifies
 I2RS Client of change.
 I2RS client 1 re-writes route.

 6 route= route= route= route-
 128.2/16 128.2/16 128.2/16 128.2/16
 nexthop= nexthop= nexthop= nexthop=
 192.11.1.1 192.11.1.2 192.11.1.2 192.11.1.2
 status-installed

 I2RS client 1
 removes route
 local configuration is restored

 7 route= route= route= route-
 128.2/16 128.2/16 128.2/16 128.2/16
 nexthop= nexthop= nexthop= nexthop=
 192.11.1.1 192.11.1.1 192.11.1.1 192.11.1.1
 status-installed
 ==

 Figure 12

9.1. Portions of I2RS YANG data model

Hares, et al. Expires November 6, 2016 [Page 45]

Internet-Draft I2RS Protocol Strawman May 2016

 module I2rs-RIB {
 ..
 module i2rs-rib {
 container routing-instance {
 ...
 list rib-list {
 ...
 list route-list {
 key "route-index";
 uses route;
 }
 }

 grouping route {
 description
 "The common attribute used for all routes;"
 uses routeg-prefix;
 container nexthop {
 uses nexthop;
 }
 container route-statistics {
 leaf route-state {
 type route-state-def;
 config false; /* operational state */
 }
 leaf route-installed state {
 type route-installed-state def;
 config false;
 }
 leaf route-reason {
 type route-reason-def;
 config false;
 }
 }
 container router-attributes {
 uses router-attributes;
 }
 container route-vendor-attributes
 uses route-vendor attributes;
 }
 }
 Figure 13 - Simplified I2RS Route Model

Hares, et al. Expires November 6, 2016 [Page 46]

Internet-Draft I2RS Protocol Strawman May 2016

9.2. NETCONF Changes

 The NETCONF way of writing the ephemeral I2RS data would be:

 (TBD)

 Figure 14

9.3. RESTCONF Changes

 Figure 8 shows the thermostat model has ephemeral variable desired-
 temp in the running configuration and the ephemeral data store. The
 RESTCONF way of addressing is below:

 RESTCONF ephemeral datastore

 (TBD)

 Figure 15 - RESTCONF Route change

10. IANA Considerations

 This is a protocol strawman - nothing is going to IANA.

11. Security Considerations

 The security requirements for the I2RS protocol are covered in
 [I-D.ietf-i2rs-protocol-security-requirements]. The security
 environment the I2RS protocol is covered in
 [I-D.ietf-i2rs-security-environment-reqs]. Any person implementing
 or deploying the I2RS protocol should consider both security
 requirements.

12. Acknowledgements

 This document is an attempt to distill lengthy conversations on the
 I2RS proto design team from August

 Here’s the list of the I2RS protocol design team members

 o Alia Atlas

 o Ignas Bagdonas

 o Andy Bierman

 o Alex Clemm

Hares, et al. Expires November 6, 2016 [Page 47]

Internet-Draft I2RS Protocol Strawman May 2016

 o Eric Voit

 o Kent Watsen

 o Jeff Haas

 o Keyur Patel

 o Hariharan Ananthakrishnan

 o Dean Bogdanavich

 o Anu Nair

 o Juergen Schoenwaelder

 o Kent Watsen

13. Major Contributors

 o Andy Bierman (Yuman Networks) - andy@yumaworks.com

 o Kent Watson (Juniper) (kwatsent@juniper.net)

14. References

14.1. Normative References:

 [I-D.hares-i2rs-dataflow-req]
 Hares, S. and a. amit.dass@ericsson.com, "I2RS Data Flow
 Requirements", draft-hares-i2rs-dataflow-req-03 (work in
 progress), March 2016.

 [I-D.ietf-i2rs-architecture]
 Atlas, A., Halpern, J., Hares, S., Ward, D., and T.
 Nadeau, "An Architecture for the Interface to the Routing
 System", draft-ietf-i2rs-architecture-15 (work in
 progress), April 2016.

 [I-D.ietf-i2rs-ephemeral-state]
 Haas, J. and S. Hares, "I2RS Ephemeral State
 Requirements", draft-ietf-i2rs-ephemeral-state-05 (work in
 progress), March 2016.

 [I-D.ietf-i2rs-protocol-security-requirements]
 Hares, S., Migault, D., and J. Halpern, "I2RS Security
 Related Requirements", draft-ietf-i2rs-protocol-security-
 requirements-03 (work in progress), March 2016.

Hares, et al. Expires November 6, 2016 [Page 48]

Internet-Draft I2RS Protocol Strawman May 2016

 [I-D.ietf-i2rs-pub-sub-requirements]
 Voit, E., Clemm, A., and A. Prieto, "Requirements for
 Subscription to YANG Datastores", draft-ietf-i2rs-pub-sub-
 requirements-07 (work in progress), May 2016.

 [I-D.ietf-i2rs-rib-data-model]
 Wang, L., Ananthakrishnan, H., Chen, M.,
 amit.dass@ericsson.com, a., Kini, S., and N. Bahadur, "A
 YANG Data Model for Routing Information Base (RIB)",
 draft-ietf-i2rs-rib-data-model-05 (work in progress),
 March 2016.

 [I-D.ietf-i2rs-rib-info-model]
 Bahadur, N., Kini, S., and J. Medved, "Routing Information
 Base Info Model", draft-ietf-i2rs-rib-info-model-08 (work
 in progress), October 2015.

 [I-D.ietf-i2rs-security-environment-reqs]
 Migault, D., Halpern, J., and S. Hares, "I2RS Environment
 Security Requirements", draft-ietf-i2rs-security-
 environment-reqs-01 (work in progress), April 2016.

 [I-D.ietf-i2rs-traceability]
 Clarke, J., Salgueiro, G., and C. Pignataro, "Interface to
 the Routing System (I2RS) Traceability: Framework and
 Information Model", draft-ietf-i2rs-traceability-09 (work
 in progress), May 2016.

 [I-D.ietf-netconf-call-home]
 Watsen, K., "NETCONF Call Home and RESTCONF Call Home",
 draft-ietf-netconf-call-home-17 (work in progress),
 December 2015.

 [I-D.ietf-netconf-restconf]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", draft-ietf-netconf-restconf-13 (work in
 progress), April 2016.

 [I-D.ietf-netconf-server-model]
 Watsen, K. and J. Schoenwaelder, "NETCONF Server and
 RESTCONF Server Configuration Models", draft-ietf-netconf-
 server-model-09 (work in progress), March 2016.

 [I-D.ietf-netconf-yang-library]
 Bierman, A., Bjorklund, M., and K. Watsen, "YANG Module
 Library", draft-ietf-netconf-yang-library-06 (work in
 progress), April 2016.

Hares, et al. Expires November 6, 2016 [Page 49]

Internet-Draft I2RS Protocol Strawman May 2016

 [I-D.ietf-netconf-yang-patch]
 Bierman, A., Bjorklund, M., and K. Watsen, "YANG Patch
 Media Type", draft-ietf-netconf-yang-patch-08 (work in
 progress), March 2016.

 [I-D.ietf-netconf-yang-push]
 Clemm, A., Prieto, A., Voit, E., Tripathy, A., and E.
 Einar, "Subscribing to YANG datastore push updates",
 draft-ietf-netconf-yang-push-02 (work in progress), March
 2016.

 [I-D.ietf-netmod-opstate-reqs]
 Watsen, K. and T. Nadeau, "Terminology and Requirements
 for Enhanced Handling of Operational State", draft-ietf-
 netmod-opstate-reqs-04 (work in progress), January 2016.

 [I-D.ietf-netmod-rfc6020bis]
 Bjorklund, M., "The YANG 1.1 Data Modeling Language",
 draft-ietf-netmod-rfc6020bis-12 (work in progress), April
 2016.

 [I-D.ietf-netmod-schema-mount]
 Bjorklund, M. and L. Lhotka, "YANG Schema Mount", draft-
 ietf-netmod-schema-mount-01 (work in progress), April
 2016.

 [I-D.ietf-netmod-syslog-model]
 Wildes, C. and K. Koushik, "SYSLOG YANG Model", draft-
 ietf-netmod-syslog-model-07 (work in progress), March
 2016.

 [I-D.ietf-netmod-yang-metadata]
 Lhotka, L., "Defining and Using Metadata with YANG",
 draft-ietf-netmod-yang-metadata-07 (work in progress),
 March 2016.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC5424] Gerhards, R., "The Syslog Protocol", RFC 5424,
 DOI 10.17487/RFC5424, March 2009,
 <http://www.rfc-editor.org/info/rfc5424>.

Hares, et al. Expires November 6, 2016 [Page 50]

Internet-Draft I2RS Protocol Strawman May 2016

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <http://www.rfc-editor.org/info/rfc6241>.

 [RFC6244] Shafer, P., "An Architecture for Network Management Using
 NETCONF and YANG", RFC 6244, DOI 10.17487/RFC6244, June
 2011, <http://www.rfc-editor.org/info/rfc6244>.

 [RFC7158] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7158, DOI 10.17487/RFC7158, March
 2014, <http://www.rfc-editor.org/info/rfc7158>.

 [RFC7589] Badra, M., Luchuk, A., and J. Schoenwaelder, "Using the
 NETCONF Protocol over Transport Layer Security (TLS) with
 Mutual X.509 Authentication", RFC 7589,
 DOI 10.17487/RFC7589, June 2015,
 <http://www.rfc-editor.org/info/rfc7589>.

14.2. Informative References

 [I-D.hares-i2nsf-mgtflow-reqs]
 Hares, S., "I2NSF Management Traffic Flow Requirement",
 draft-hares-i2nsf-mgtflow-reqs-01 (work in progress),
 March 2016.

 [I-D.hares-i2rs-bgp-dm]
 Wang, L., Hares, S., and S. Zhuang, "An I2RS BGP Data
 Modell", draft-hares-i2rs-bgp-dm-00 (work in progress),
 October 2014.

 [RFC4107] Bellovin, S. and R. Housley, "Guidelines for Cryptographic
 Key Management", BCP 107, RFC 4107, DOI 10.17487/RFC4107,
 June 2005, <http://www.rfc-editor.org/info/rfc4107>.

 [RFC4960] Stewart, R., Ed., "Stream Control Transmission Protocol",
 RFC 4960, DOI 10.17487/RFC4960, September 2007,
 <http://www.rfc-editor.org/info/rfc4960>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <http://www.rfc-editor.org/info/rfc6020>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <http://www.rfc-editor.org/info/rfc6242>.

Hares, et al. Expires November 6, 2016 [Page 51]

Internet-Draft I2RS Protocol Strawman May 2016

 [RFC6536] Bierman, A. and M. Bjorklund, "Network Configuration
 Protocol (NETCONF) Access Control Model", RFC 6536,
 DOI 10.17487/RFC6536, March 2012,
 <http://www.rfc-editor.org/info/rfc6536>.

Authors’ Addresses

 Susan Hares
 Huawei
 Saline
 US

 Email: shares@ndzh.com

 Andy Bierman
 YumaWorks

 Email: andy@yumaworks.com

 Amit Daas
 Ericsson

 Email: amit.dass@ericsson.com

Hares, et al. Expires November 6, 2016 [Page 52]

