
I2RS working group S. Hares
Internet-Draft Huawei
Intended status: Standards Track A. Beirman
Expires: September 22, 2016 YumaWorks
 A. Dass
 Ericsson
 March 21, 2016

 I2RS protocol strawman
 draft-hares-i2rs-protocol-strawman-01.txt

Abstract

 This document provides a strawman proposal for the I2RS protocol
 covering the ephemeral data store and data flow requirements not
 covered by I2RS publication/subscription service or traceability. It
 also proposes additions to YANG for the ephemeral data store and for
 additional data flow requirements. It proposes additions to the
 NETCONF and RESTCONF for these additions. Future versions of this
 document will propose changes to support the I2RS protocol security
 requirements.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 22, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Hares, et al. Expires September 22, 2016 [Page 1]

Internet-Draft I2RS Protocol Strawman March 2016

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Ephemeral Changes . 4
 1.2. Data Flow Changes . 4
 2. Definitions Related to Ephemeral Configuration 5
 3. Definition of ephemeral datastore for NETCONF/RESTCONF . . . 6
 4. Error handling . 9
 4.1. Error handling: I2RS Normal handling 9
 4.2. Error Handling: Multiple I2RS Clients Write Same Node . . 10
 4.3. Error handling: Basic Impact on functions 10
 4.3.1. Initial Support of Parital Writes 10
 4.3.2. Future Scope of multiple message writes 10
 4.3.3. Grouping and Error handling 11
 4.4. Error Handling: Different levels of Validation (Debate
 topic) . 11
 4.4.1. Validation during security outage 12
 4.4.2. Solution ideas 12
 4.4.3. Impact on NETCONF/RESTCONF functions 13
 5. transport protocol . 15
 5.1. Secure Protocols . 15
 5.2. Insecure Protocol . 15
 6. Yang Library Use by Ephemeral 16
 7. Simple Thermostat Model 17
 7.1. Yang changes . 19
 7.2. RESTCONF sequence . 20
 7.3. NETCONF messages . 20
 8. NETCONF protocol extensions for the ephemeral datastore . . . 21
 8.1. Overview . 21
 8.2. Dependencies . 22
 8.3. Capability identifier 22
 8.4. New Operations . 22
 8.4.1. Bulk-Write . 22
 8.5. Modification to existing operations 23
 8.5.1. <get-config> . 23
 8.5.2. <edit-config> . 23
 8.5.3. <copy-config> . 24
 8.5.4. <delete-config> 25
 8.5.5. <lock> and <unlock> 25
 8.5.6. <get> . 25
 8.5.7. <close-session> and <kill-session> 25

Hares, et al. Expires September 22, 2016 [Page 2]

Internet-Draft I2RS Protocol Strawman March 2016

 8.6. Interactions with Capabilities 25
 8.6.1. writable-running and candidate datastore 25
 8.6.2. confirmed commmit 26
 8.6.3. rollback-on-error 26
 8.6.4. validate . 26
 8.6.5. Distinct Startup Capability 26
 8.6.6. URL capability and XPATH capability 27
 9. RESTCONF protocol extensions for the ephemeral datastore . . 27
 9.1. Overview . 27
 9.2. Dependencies . 27
 9.3. Capability identifier 27
 9.4. New Operations . 27
 9.5. modification to data resources 28
 9.6. Modification to existing operations 28
 9.6.1. OPTIONS changes 28
 9.6.2. HEAD changes . 28
 9.6.3. GET changes . 28
 9.6.4. POST changes . 28
 9.6.5. PUT changes . 29
 9.6.6. PATCH changes . 29
 9.6.7. DELETE changes 29
 9.6.8. Query Parameters 29
 9.7. Interactions with Notifications 29
 9.8. Interactions with Error Reporting 29
 10. IANA Considerations . 29
 11. Security Considerations 30
 12. Acknowledgements . 30
 13. Major Contributors . 30
 14. References . 31
 14.1. Normative References: 31
 14.2. Informative References 33
 Authors’ Addresses . 33

1. Introduction

 This documents is a strawman for I2RS higher level protocol. The
 I2RS protocol is a higher level protocol comprised of a set existing
 protocols which have been extended to work together to support a new
 interface to the routing system. Some people are suggesting only two
 protocols should be defined: NETCONF [RFC6241], and RESTCONF
 [I-D.ietf-netconf-restconf]. Others are suggesting we should include
 other data protocols.

 This draft is input to a NETCONF review and design team. Many items
 have been settled on. Some items are in debate and those titles of
 those sections are marked.

Hares, et al. Expires September 22, 2016 [Page 3]

Internet-Draft I2RS Protocol Strawman March 2016

 This strawman proposal for the I2RS protocol covers the ephemeral
 data store and data flow requirements not covered by I2RS
 publication/subscription service or traceability. It also proposes
 additions to YANG for the ephemeral data store and for these
 additional data flow requirements. It also proposes extensions to
 NETCONF and RESTCONF to support ephemeral state and I2RS.

 draft-hares-i2rs-protocol-strawman-examples (pending) provides
 examples of this strawman protocol use for I2RS. This draft uses a
 simple thermostat model to illustrate commands.

1.1. Ephemeral Changes

 This document proposes additions to support ephemeral state in the
 datastores supported by NETCONF and RESTCONF, and in the YANG modules
 that define these data stores. The requirements for the I2RS
 ephemeral state are covered in [I-D.ietf-i2rs-ephemeral-state]

 This draft provides suggests the following additions to support the
 I2RS ephemeral state:

 o Yang ephemeral statement,

 o NETCONF ([RFC6241]) protocol extensions for the ephemeral data
 store,

 o RESTCONF ([I-D.ietf-netconf-restconf]) protocol extensions for the
 ephemeral data store

1.2. Data Flow Changes

 This document proposes additions to support data flows from different
 data models for large data flows, traffic monitoring, actions and OAM
 interaction, and flows during outages or attacks. The requirements
 for these changes are define in [I-D.hares-i2rs-dataflow-req].

 Most large data flows will be handled utilizing the publication/
 subscription service define in the I2RS publication/subscription
 service requirements specified in
 [I-D.ietf-i2rs-pub-sub-requirements]. Extensions to NETCONF to
 support a push publication/subscription service have been defined in
 [I-D.ietf-netconf-yang-push]. This document does not propose a pull
 publication/subscription (pull pub-sub) service for the first set of
 component protocols for the I2RS higher level protocol. If
 deployments require the pull pub-sub service, then an expansion of
 the push service can provide one mechanism.

 This document does provide support for the I2RS protocol to:

Hares, et al. Expires September 22, 2016 [Page 4]

Internet-Draft I2RS Protocol Strawman March 2016

 Support large data transfers in a data agnostic format (DF-REQ-02)
 supporting transfers of data in any format (E.g. XML, JSON, MTL,
 protobuf, ASCII) over any transport (DF-REQ-03).

 Support the use of IPFIX as a component protocol to send traffic
 monitoring data or any type of large data flow from I2RS agent to
 I2RS client (DF-REQ-04),

 Support exporting traffic statistics for filter-based policy usage
 (BGP-FS, I2RS FB-FIB, policy routing), IPPM, SFLOW and other
 traffic statistics using either yang models or IPFIX template
 formats over any data encapsulation format over any transport (DF-
 REQ-05).

2. Definitions Related to Ephemeral Configuration

 Currently the configuration systems managed by NETCONF ([RFC6241]) or
 RESTCONF ([I-D.ietf-netconf-restconf]) have three types of
 configuration: candidate, running, and startup running under the
 config=true flag.

 o The candidate receives configuration changes from NETCONF/
 RESTCONF.

 o The running configuration is the configuration currently operating
 on a devices

 o The start-up configuration is the configuration that survives a
 reboot.

 The config=false flag has operational data which exists alongside the
 config=true data. However, at this point there is no datastored
 defined for configuration false.

 :Candidate : --> : running : --> :start-up :

 config true

 config false

 Figure 1

 The [I-D.ietf-netmod-opstate-reqs] defines new terms to clarify how
 this works. In reality, the running configuration becomes the
 intended configuration that is intended to be loaded into a device.

Hares, et al. Expires September 22, 2016 [Page 5]

Internet-Draft I2RS Protocol Strawman March 2016

 The loading of the update into the system can be either asynchronous
 or synchronous. In the asynchronous case, the NETCONF server
 responds to the client after the intended has been updated, but the
 applied configuration is only updated later when the configuration
 change has full impacted all components on the device. The
 synchronous configuration operation occurs when both the intent
 configuration has been updated and the actual configuration has been
 loaded after resolving the necessary things to load in a box.

 This document will use the terms defined in
 [I-D.ietf-netmod-opstate-reqs].

 :Candidate : --> : running : --> :start-up :
 ||...
 ||
 =======||========
 | Intended |
 | configuration |
 ======||=========
 config true ||
 ----------------------||-------------------
 config false ||
 +----------------||------+
 | operational || |
 | state || |
 | =========||== |
 | | Applied | |
 | | config | |
 | ============= |
 | _____________ |
 | | derived | |
 | | state | |
 | |___________| |
 +------------------------+
 Figure 2

3. Definition of ephemeral datastore for NETCONF/RESTCONF

 This section describes the properties of the ephemeral datastore.
 The ephemeral datastore is not unique to I2RS. This approach to the
 ephemeral datastore is a panes-of-glass model. This definition of
 I2RS does not support caching in the I2RS Agents. Future I2RS work
 may reconsidered supporting caching.

Hares, et al. Expires September 22, 2016 [Page 6]

Internet-Draft I2RS Protocol Strawman March 2016

 :Candidate :-->: running :-->:start-up :
 |............
 :ephemeral : |
 |
 |
 ===========|====================
 | Intended Ephemeral |==[I2RS Agent]
 | configuration Intended | asynchronous/
 | Configuration| synchronous write
 |===========||==================
 ||
 config true ||
 -------------------||----------------------
 config false ||
 ||
 +-------------||--------------------+
 | operational || |
 | state || |
 | ======||=================== |
 | | Applied Configuration | |
 | |(from normal + ephemeral)| |
 | | | |
 | ========================== |
 | _________________________ |
 | | derived state | |
 | |from normal + ephemeral)| |
 | | RIB and protocols | |
 | |________________________| |
 +-----------------------------------+
 Figure 3

 The ephemeral data store has the following qualities:

 1. Ephemeral state is not unique to I2RS work.

 2. The ephemeral datastore is never locked.

 3. The ephemeral datastore is really a portion of the intended
 configuration that does not persist over a reboot.

 * Since Ephemeral is just about data not presisting over a
 reboot, then in theory any node or group of nodes in a YANG
 data model could be ephemeral. The YANG data module must
 indicate what portion of the data model (if any) is ephemeral.

Hares, et al. Expires September 22, 2016 [Page 7]

Internet-Draft I2RS Protocol Strawman March 2016

 * A YANG data module could be all ephemeral (e.g.
 [I-D.ietf-i2rs-rib-data-model]) with no directly associated
 configuration models,

 * A YANG model could be all ephemeral but associated with a
 configuration model (E.g. [I-D.hares-i2rs-bgp-dm],

 * or a single data node or data tree could be made ephemeral.

 4. The applied configuration is the result of the the intent
 configuration (normal and ephemeral). Similarly, the derived
 data is a result of the applied configuration.

 5. Ephemeral portions (node, tree, or data model) need to be
 signalled in the conformance portions of the NETCONF and RESTCONF
 work. Conformance is signalled in the following ways:

 * The conformance portion of NETCONF ([RFC6241]) is currently
 signalled in the <hello>.

 * Yang 1.1 and RESTCONF uses the module library
 ([I-D.ietf-netconf-yang-library])

 * NETCONF may use the module library in the future.

 * The ephemeral status in a module will be listed as "all, none
 or partial". Optionally the module may provide a list of
 nodes.

 6. The ephemeral data store is treated as one pane of glass that an
 I2RS client(s) may read/write which has the following
 implications:

 * The ephemeral datastore overlays the configuration datastore
 at the intended configuration. By overlays, the I2RS write
 overwrites a previous configuration value, but if a local
 configuration value changes after that over-write the default
 is to have the local-config win. [aka Last Write wins.]

 + An example may help to illustrate this default rule. Say a
 configuration specifies a local route of 128.2/16 with a
 nexthop of 192.5.10.1. Afterwards an ephemeral route is
 added for 128.2/16 with nexthop of 192.5.10.2. This
 ephemeral route would replace the first route. If the
 configuration changes the underlying route (128.2/16 with
 nexthop of 192.5.10.1) and the default rule of local
 configuration is in effect, the local configuration value
 (128.2/16 with nexthop of 192.5.10.1) would take effect.

Hares, et al. Expires September 22, 2016 [Page 8]

Internet-Draft I2RS Protocol Strawman March 2016

 This follows the normal netconf concept that Last
 configured wins. The I2RS agent would notify the I2RS
 Client that the ephemeral route (128.2/16 with nexthop of
 192.5.10.2) had been overwritten by the local
 configuration.

 * The default of local can be changed by operator-applied policy
 to allow ephemeral to always win or local configuration to
 always win, but the status of the operator applied policy must
 be queryable in the I2RS agent (if that scope) or in the I2RS
 ephemeral data model. I2RS clients are required to understand
 and handle if the an I2RS agent supports something different
 than the default (aka Last write wins).

4. Error handling

 This section will go over I2RS normal error handling, error handling
 when multiple I2RS clients write to the same node, and suggested
 alterations to the validation process for nodes.

 Editor’s note: The requirement for alterations to validation needs to
 be confirmed.

4.1. Error handling: I2RS Normal handling

 Normal error handling of I2RS Agent for an I2RS client’s information
 examines the following:

 o message syntax validation,

 o syntax validation for nodes of data model,

 o removes referential requirements for leafref checking, MUST
 clauses, and instance indentifier,

 o grouping of data within a data model or across data models to
 accomplish tasks,

 o permission to write nodes of data model,

 o grouping,

 o priority to write nodes of data model being higher than existing
 priority

 The full error handling status includes all checks included for any
 normal YANG data module used by NETCONF/RESTCONF. This includes

Hares, et al. Expires September 22, 2016 [Page 9]

Internet-Draft I2RS Protocol Strawman March 2016

 referential checks for leafref checks, MUST clauses, and instance
 identifiers.

 If the I2RS protocol allows agents to set permissible range of error
 handling for writes on a data model (none, I2RS normal, full), then
 those stating this requirement want to be able to change this with
 operator-applied settings (e.g. always request full validation).

4.2. Error Handling: Multiple I2RS Clients Write Same Node

 Multiple I2RS clients writing to the same variable is considered an
 "error condition" in the I2RS architecture
 [I-D.ietf-i2rs-architecture], but the I2RS Agent must handle this
 error condition. Upon multiple I2RS clients writing, the ephemeral
 data store allows for priority pre-emption of the write operation.
 Priority pre-emption means each I2RS client of the ephemeral I2RS
 agent (netconf server) is associated with a priority. Priority pre-
 emption occurs when a I2RS client with a higher priority writes a
 node which has been written by an I2RS client (with the lower
 priority). At this point, the I2RS agent (netconf server) allows the
 write and provides a notification indication to the notification
 publication/subscription service.

4.3. Error handling: Basic Impact on functions

4.3.1. Initial Support of Parital Writes

 The initial releases of I2RS will only require "all-or-nothing" in
 the I2RS Agent.

4.3.1.1. NETCONF Support of Partial Writes

 NETCONF does not support a mandated sequencing of edit functions or
 write functions. Without this mandated sequences, NETCONF cannot
 support partial edits.

4.3.1.2. RESTCONF Support of Partial Writes

 RESTCONF has a complete set of operations per message. The RESTCONF
 patch can support write functions per messages.

4.3.2. Future Scope of multiple message writes

 Error handling on writes of the ephemeral datastore is different for
 nodes that are grouped versus orthogonal. Group nodes may need to be
 all changed or all removed (all-or-nothing). In contrast, writing
 orthogonal data nodes in the same data module or between data models
 need to be added or deleted in sync.

Hares, et al. Expires September 22, 2016 [Page 10]

Internet-Draft I2RS Protocol Strawman March 2016

 The [I-D.ietf-i2rs-architecture] specifies three types of error
 handling for a partial write operation: "all-or-nothing", "stop-on-
 error", or "continue-on-error". Partial write operations of "stop-
 on-error" or "continue-on-error" are allowed only for data writes
 which are not a part of a grouping within a data model. The
 definition of the I2RS error conditions are:

 o stop-on-error - means that the configuration process stops when a
 write to the configuration detects an error due to write conflict.

 o continue-on-error - means the configuration process continues when
 a write to the configuration detects an error due to write
 process, and error reports are transmitted back to the client
 writing the error.

 o all-or-nothing - means that all of the configuration process is
 correctly applied or no configuration process is applied.
 (Inherent in all-or-nothing is the concept of checking all changes
 before applying.)

4.3.3. Grouping and Error handling

 Yang 1.0 and Yang 1.1 provide the ability to group data in groupings,
 leafref lists, lists, and containers. Grouping of data within a
 model links to data that is logically associated with one another.
 Data models may logical group data across models. One example of
 such an association is the association of a static route with an
 interface. The concepts of groupings apply to both ephemeral and
 non-ephemeral nodes within a data model.

4.4. Error Handling: Different levels of Validation (Debate topic)

 The requirement for Ephemeral nodes level of validation/error
 handling in the I2RS protocol have been suggested to have three types
 of validation based on an operator-applied policy for I2RS protocol.

 o syntax validation only,

 o Ephemeral data store allows for reduced error handling that
 removes the requirements for referential checks [I2RS normal error
 handling]

 o ephemeral data store handling that uses normal NETCONF/RESTCONF
 error handling with syntax and referential [full],

 Editor’s note: Andy Bierman believes that only full-validation will
 work. Kent Watsen suggested the "no-referential checks". Jan Medved
 suggested the "syntax only checks". Three excellent engineers who

Hares, et al. Expires September 22, 2016 [Page 11]

Internet-Draft I2RS Protocol Strawman March 2016

 are implementing I2RS suggested these three features. The editor
 needs aid to discuss the details of this requirement and proposal.

 The first step is to see if we can confirm the requirement. After
 we’ve confirmed the requirement, the second step is to have a
 detailed discussion about the pro/cons of this validation. We expect
 to do this at IETF95.

4.4.1. Validation during security outage

 [I-D.hares-i2rs-dataflow-req] indicates that higher levels of
 validity need to occur during security attacks. Network security
 controllers communicate with routing devices with network security
 functions such as basic firewalls in order change firewall settings
 during attacks. The I2NSF WG is defining communication bewteen the
 network security controllers and the NSF/vNSF functions in the
 routers and other network devices. [I-D.hares-i2nsf-mgtflow-reqs]
 describes the challenges to management information flow between NSF
 controllers and NSF/vNSF devices operating correctly or effective
 during DDoS or network security attacks.

 Higher referential checks may be useful during these periods of
 security attacks (DDoS or others).

4.4.2. Solution ideas

 This section is written to provide ideas for that discussion.

 If the I2RS protocol is required to have three levels of error
 handling (syntax only, no-referential, full), the following are ideas
 for solutions:

 1. only allow full validation,

 2. allow a particular set of validation (syntax checks, no-
 referential, all-checks) per deployments of an I2RS Agent
 (operator-applied selection of error checking on the whole
 system),

 3. Restrict the use of the "syntax only to operator-applied error
 checking" (argument: if the operator wants to shoot himself in
 the foot, fine). Note any module, submodule, or node that has
 this feature.

 4. Restrict the the use of "no-referential checking to I2RS
 independent protocol modules, and provide error resports of
 referential checks,

Hares, et al. Expires September 22, 2016 [Page 12]

Internet-Draft I2RS Protocol Strawman March 2016

4.4.3. Impact on NETCONF/RESTCONF functions

 This section describes the ephemeral data stores handling for each of
 the functions.

4.4.3.1. Syntax validation

 Syntax validation of the message should be done according to the
 NETCONF or RESTCONF protocol features. New features for ephemeral
 datastore should provide the error handling with the feature.
 Message syntax validation can be for read, write, or rpc functions.

 Syntax validation of the data model included in the ephemeral data
 store should be done by I2RS Agent.

4.4.3.2. Referential validation

 The ephemeral data store normal processing does not do the following
 referencial checks: leafref, MUST, instance identifier. The removal
 of these validations allows for intelligent I2RS clients to rapidly
 read or write data, and handle error conditions at a higher level.

4.4.3.3. Grouping and Error handling

 Yang 1.0 and Yang 1.1 provide the ability to group data in groupings,
 leafref lists, lists, and containers. Adding the ephemeral data
 store will add these rules to references between data stores:

 1. Ephemeral node can refer to config nodes, or derived state nodes
 (e.g. LSP),

 2. config nodes cannot refer to ephemeral intended configuration
 nodes, and

 3. derived state nodes can refer to ephemeral configuration or
 configuratino nodes.

 4. derived state nodes are "non-persistent" and may disappear if a
 protocol event occurs

 5. ephemeral datastore nodes are "non-presistent" and will disappear
 upon a reboot of the software/hardware.

 Referential checks require the above rules. Not doing referential
 checks could cause one or more broken references to exist in the
 ephemeral data base. An ephemeral data bases with broken references
 may crash, given faulty information, or perform wrong protocol
 actions.

Hares, et al. Expires September 22, 2016 [Page 13]

Internet-Draft I2RS Protocol Strawman March 2016

4.4.3.4. Priority preemption

 I2RS protocol uses priority to resolve two I2RS clients having
 permissions to write the same pieces of data in an I2RS agent
 (NETCONF server). If two (or more) I2RS clients attempt to write the
 same data, the the one with the highest priority is enable to write
 the data. In the case of two clients with the sample priority
 attempting to write data, the the first one to request write wins.

 Each client has a unique priority. Client identities and priorities
 are assigned outside of I2RS by exterior mechanisms such as AAA or
 adminstrative interfaces. A valid I2RS client must have both an
 identity and a priority.

 A client-id and priority must be saved per node.

 A sample container for I2RS client information is shown below.

 container i2rs-clients {
 leaf max-clients {
 config false;
 mandatory true;
 type uint32 {
 range "1 .. max";
 }
 }
 list i2rs-client {
 key name;
 unique priority;
 leaf name { ... }
 leaf priority { ... }
 }
 }
 Figure 4

4.4.3.4.1. Andy Bierman Priority Comment

 (Andy)This priority is not required to be densely numbered. Whether
 there are 1 pane per client or 1 pane per priority or 1 giant blob
 full of everything, the code will be the same. The goal of "unique
 priority" is to require that only priority be saved in the meta-data
 for the ephemeral datastore. Without that, client-id and priority
 must be saved (per data node).

Hares, et al. Expires September 22, 2016 [Page 14]

Internet-Draft I2RS Protocol Strawman March 2016

5. transport protocol

5.1. Secure Protocols

 NETCONF’s XML-based protocol ([RFC6241]) can operate over the
 following secure and encrypted transport layer protocols:

 SSH as defined in [RFC6242],

 TLS with X.509 authentication [RFC7589]

 RESTCONF’s XML-based or JSON [RFC7158] data encodings of Yang
 functions are passed over HTTOS with (GET, POST, PUT, PATCH, DELETE,
 OPTIONS, and HEAD).

5.2. Insecure Protocol

 The ephemeral database may support insecure protocols for information
 which is ephemeral state which does not engage in configuration. The
 insecure protocol must be defined in conjunction with a data model or
 a subdata model.

 [RFC6536] has two extensions for security. Two extensions supporting
 ephemeral and insecure might look like:

 extenson ephemeral {
 description "if present in a data definition statement
 then the object is considered OK for editing as ephemeral data."
 }
 extension non-secure-ok {
 description "if present in data definition statement
 then the object is considered OK for non-secure transport."}

Hares, et al. Expires September 22, 2016 [Page 15]

Internet-Draft I2RS Protocol Strawman March 2016

 T declare a local config and ephemeral edit:
 leaf both {
 i2rs:ephemeral;
 type string;
 config true;
 // Yang allows leafref/XPATH to point at config=true only
 }

 To declare an object ephemeral edit only
 leaf eph {
 i2rs:ephemeral;
 type string;
 config false;
 }

 To declare a non-secure leaf
 leaf in-octets {
 i2rs:nonsecure-ok;
 type yang:counter64;
 config false;
 }

6. Yang Library Use by Ephemeral

 The data modules supporting the ephemeral datastore can use the Yang
 module library to describe their datastore. Figure 5 shows the
 module library data structure as found
 [I-D.ietf-netconf-yang-library].

 The I2RS modules will provide features for I2RS ephemeral state and
 protocol of:

 o protocol version support - "version 1",

 o ephemeral model scope - ephemeral modules, mixed config module
 (ephemeral and config), mixed derived state (ephemeral and
 config).

 o multiple message support - "all or nothing",

 o pane of glass support - "single only".

 o protocol supported - "NETCONF", "RESTCONF", "NETCONF pub-sub
 push",

 o encoding support - XML or JSON

Hares, et al. Expires September 22, 2016 [Page 16]

Internet-Draft I2RS Protocol Strawman March 2016

 o transports protocol supported: "TCP", "SSH", "TLS", non-secure,
 and othrs.

 o configuration for non-secure transport (An example is

 * i2rs:nonsecure-ok;

)

 +--ro modules
 +--ro module*[name revision]
 +--ro name yang: yang-identifier
 +--ro revision union;
 +--ro schema? inet:uri
 +--ro namespace inet:uri
 +--ro feature* yang:yang-identifier
 +--ro deviation* [name revision]
 | +-- ro name yang:yang-identifier
 | +-- ro revision union
 +--ro conformance enumeration
 +--ro submodules
 +--ro submodule*[name revision]
 +--ro name yang:yang-identifier
 +--ro revision union
 +--ro schema? inet:uri

 Figure 5

 Editor’s Note: One feature under debate is data modules providing
 different levels of check on rpc or writes.

 ephemeral checking - syntax only, no-referential, and full
 checking.

7. Simple Thermostat Model

 In this discussion of ephemeral configuration, this draft utilizes a
 simple thermostat model with the YANG configuration found in figure
 6.

Hares, et al. Expires September 22, 2016 [Page 17]

Internet-Draft I2RS Protocol Strawman March 2016

 module thermostat {
 ..
 leaf desired-temp {
 type int32;
 units "degrees Celsius";
 description "The desired temperature";
 }

 leaf actual-temp {
 type int32;
 config false;
 units "degrees Celsius";
 description "The measured temperature
 (operational state).";
 }
 }

 Figure 6 - Simple thermostat YANG Model

 Figure 6 shows two I2RS clients talking to this model: scheduler and
 hold-temp. Scheduler has a schedule set of temperatures to put in
 the thermostat. Hold-temp holds the temperature at the same value.
 The hold-temp I2RS client has a higher priority than the scheduler
 client.

Hares, et al. Expires September 22, 2016 [Page 18]

Internet-Draft I2RS Protocol Strawman March 2016

 :Candidate :---:running config :--: start-up :
 : : :desired-temp (cfg): : :

 |
 |
 |
 |
 | =============
 | |I2rs Client|
 | /|scheduler |
 | | ============
 |.......... |
 Intended . ’’’’’’’V’’’’’’’ . | ==============
 Config . ’desired-temp’’ | |I2RS Client |
 . ’’’’’’’’’^’’’’’’<---+ | hold temp |
 . ’ephemeral-temp’<========| |
 |.......
 config true |
 ------------------------|-------------
 config false | (config down,
 V status of config up)
 =============
 | Actual |============ I2RS clients
 | config |
 =============

 | actual temp |========== I2RS Clients
 | (op-state) |

 Figure 6 - Two I2RS clients

7.1. Yang changes

Hares, et al. Expires September 22, 2016 [Page 19]

Internet-Draft I2RS Protocol Strawman March 2016

 module thermostat {
 ..

 leaf desired-temp {
 type int32;
 units "degrees Celsius";
 ephemeral true;
 description "The desired temperature";
 }

 leaf actual-temp {
 type int32;
 config false;
 units "degrees Celsius";
 description "The measured temperature";
 }
 }

 Figure 7 - Simple Thermostat Yang with ephemeral

7.2. RESTCONF sequence

 Figure 7 shows the thermostat model has ephemeral variable desired-
 temp in the running configuration and the ephemeral data store. The
 RESTCONF way of addressing is below:

 RESTCONF running data store

 PUT /restconf/data/thermostat:desired-temp
 {"desired-temp":18}

 RESTCONF ephemeral datastore

 PUT /restconf/data/thermostat:desired-temp?datastore=ephemeral
 {"desired-temp":19 }

 Figure 8 - RESTCONF setting of ephemeral state

7.3. NETCONF messages

 The NETCONF way of transmitting this data would be

Hares, et al. Expires September 22, 2016 [Page 20]

Internet-Draft I2RS Protocol Strawman March 2016

 <rpc-message-id=101
 xmlns="urn:ietf:params:xml:ns:base:1.0">
 <edit-config>
 <target>
 <ephemeral >
 true
 </ephemeral >
 </target>
 <config>
 <top xmlsns="http:://example.com/schema/1.0/thermostat/config>
 <desired-temp> 18 </desired-temp>
 </top>
 </config>
 </edit-config>
 </rpc>

 Note: config=TRUE; datastore = ephemeral
 ephemeral-validation=full-check;

 figure 8 NETCONF setting of desired-temp

8. NETCONF protocol extensions for the ephemeral datastore

 capability-name: ephemeral-datastore

8.1. Overview

 This capability defines the NETCONF protocol extensions for the
 ephemeral state. The ephemeral state has the following features:

 o the ephemeral datastore is a datastore that holds configuration
 information (Config=true) that is intended to not survive a
 reboot.

 o The ephemeral capbility is signalled as a capability for a node, a
 sub-module, or a module either in the conformance portion of
 NETCONF (<hello>) or via netconf yang module library
 ([I-D.ietf-netconf-yang-library]) used by Yang 1.1 and RESTCONF.

 o ephemeral data will be noted by an "ephemeral statement at the
 node or module "

 o The ephemeral datastore is never locked.

 o The ephemeral data store is one pane of glass that overrides the
 intended config which is normally the running datastore, but can
 be designated as the candidate config.

Hares, et al. Expires September 22, 2016 [Page 21]

Internet-Draft I2RS Protocol Strawman March 2016

 o Ephemeral data nodes can occur as part of protocol or protocol
 independent modules. However, ephemeral data nodes cannot have
 non-ephemeral data nodes within the subtree. Ephemeral sub-
 modules cannot have non-ephemeral data nodes wihin the module.
 Ephemeral modules cannot have non-ephemeral sub-modules or nodes
 within the module.

 o ephemeral writes have two checks: error validation and priority
 premption between two I2RS client writes to the same data.

 o ephemeral error checking has the following three levels

 * syntax only - message and data module syntax,

 * reduced error checking that remove the requirement for leafref
 checking, MUST clauses, and instance identifier validation.

 The default is reduced error checking.

 o The write operation with a priority pre-emption by a higher
 priority client of the lower priority clients write where the
 overwrite triggers a notification by the I2RS agent to the lower
 priority client.

8.2. Dependencies

 The following are the dependencies for ephemeral support:

 The Yang data modules must be flag with the ephemeral data store
 at the node, sub-module and model.

 (under debate) Yang data models must specify ephemeral validation
 if the models desire validation other reduced error checking.

 The Yang modules must support the notification of write-conflicts.

8.3. Capability identifier

 The ephemeral-datastore capability is identified by the following
 capability string: (capability uri)

8.4. New Operations

8.4.1. Bulk-Write

 Bulk Write allows for large scale writes with error handling that is
 specified as syntax or reduced or full. Alternatively, the data
 modules can utilize an RPC to do bulk reads/writes. The bulk write

Hares, et al. Expires September 22, 2016 [Page 22]

Internet-Draft I2RS Protocol Strawman March 2016

 will be first check for other I2RS clients having a higher priority
 write value for any of the values.

 Editor: Do we need something beyond rpc for bulk data writes?

8.5. Modification to existing operations

 The capability for :ephemeral-datastore modifies the target for
 existing operations.

8.5.1. <get-config>

 The :ephemeral-datastore capability modifies the <edit-config> to
 accept the <ephemeral> as a target for source, and allows the filters
 focused on a particular module, submodule, or node.

 The positive and negative responses remain the same.

 Example - retrieve users subtree from
 ephemeral database

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <source>
 <emphemeral-datastore/>
 </source>
 <filter type="subtree">
 <top xmlns="http://example.com/schema/1.0/thermostat/config">
 <desired-temp>
 </top>
 </filter>
 </get-config>
 </rpc>

8.5.2. <edit-config>

 The :ephemeral-datastore capability modifies the <edit-config> to
 accept the <ephemeral> as a target for source with filters. The
 operations of merge, replace, create, delete, and remove are
 available, but each of these operations is modified by the priority
 write as follows:

 <merge> parameter is replaced by <merge-priority> The current data
 is modified by the new data in a merge fashion only if existing
 data either does not exist, or is owned by a lower priority
 client. If any data is replaced, this event is passed to the
 notification function within the pub/sub and traceability.

Hares, et al. Expires September 22, 2016 [Page 23]

Internet-Draft I2RS Protocol Strawman March 2016

 <replace> is replaced by <replace-priority> for ephemeral
 datastore which replaces data if the existing data is owned by a
 lower priority client. If data any data is replaced, this event
 is passed to the notification function within pub/sub and
 traceability for notification to the previous client. The success
 or failure of the event is passed to traceabilty.

 <create> - the creation of the data node works as in [RFC6241]
 except that the success or failure is passed to pub/sub and
 traceability functions.

 <deletion> - the deletion of the data node works as in [RFC6241]
 except event that the success or the error event is passed to the
 notiication services in the pub/sub and traceability functions.

 <remove> - the remove of the data node works as in [RFC6241]
 except that all results are forwarded to traceabilty.

 The existing parameters are modified as follows:

 <target> - add a target of :emphemeral-datastore

 <default-operation> -allows only <merge-priority> or <replace-
 priority>

 <error-option> - the I2RS agent agent supports only the a"all-or-
 nothing" equivalent to a "rollback-on-error" function.

 positive response - the <ok> is sent for a positive response
 within an <rpc-reply>.

 negative response - the <rpc-error> is sent for a negative
 response within an <rpc-reply>. Note a negative respones may
 evoke a publication of an event.

8.5.3. <copy-config>

 Copy config allows for the complete replacement of all the ephemeral
 nodes within a target. The alternation is that source is the
 :ephemeral datastore with the filtering to match the datastore. The
 following existing parameters are modified as follows:

 <target> - add a target of :emphemeral-datastore

 <error-option> - the I2RS agent agent supports only the a"all-or-
 nothing" equivalent to a "rollback-on-error" function.

Hares, et al. Expires September 22, 2016 [Page 24]

Internet-Draft I2RS Protocol Strawman March 2016

 positive response - the <ok> is sent for a positive response
 within an <rpc-reply>.

 negative response - the <rpc-error> is sent for a negative
 response within an <rpc-reply>.

8.5.4. <delete-config>

 The delete will delete all ephemeral nodes out of a datastore. The
 target parameter must be changed to allow :ephemeral-datastore. and
 filters.

8.5.5. <lock> and <unlock>

 Lock and unlock are not supported with a target of :ephemeral-
 datastore.

8.5.6. <get>

 The <get> is altered to allow a target of :ephemeral-datastore and
 with the filters.

8.5.7. <close-session> and <kill-session>

 The close session is modified to take a target of :ephemeral-
 datastore, Since no locks are set, none should be released.

 The kill session is modified to take a target of "ephemeral-
 datastore. Since no locks are set, none should be released.

8.6. Interactions with Capabilities

 [RFC6241] defines NETCONF capabilities for writeable-running
 datastore, candidate config data store, confirmed commit, rollback-
 on-error, validate, distinct start-up, URL capability, and XPATH
 capability. I2RS ephemeral state does not impact the writeable-
 running data store or the candiate config datastore.

8.6.1. writable-running and candidate datastore

 The writeable-running and the candidate datastore cannot be used in
 conjunction with the ephemeral data store. Ephemeral database
 overlays an intended configuration, and does not impact the writable-
 running or candidate data store.

Hares, et al. Expires September 22, 2016 [Page 25]

Internet-Draft I2RS Protocol Strawman March 2016

8.6.2. confirmed commmit

 Confirmed commit capability is not supported for the ephemeral
 datastore.

8.6.3. rollback-on-error

 The rollback-on-error when included with ephemeral state allows the
 error handling to be "all-or-nothing" (roll-back-on-error).

8.6.4. validate

 Editorial: Andy Bierman feels that any validation except full is
 going to leave the ephemeral datastore unusable. Kent Watsen
 suggested a "no-referential" validation as the default for I2RS
 protocol. Jan Medved indicated that many of the ODL Route updates
 are validated on the I2RS client extensively, so that the update can
 occur quickly with a "syntax only". Three operations people have
 indicated 3 different implementations. This needs to be discussed at
 IETF.

 The text below is only a command that would provide a key word to
 allow three different types of validation. The command gives form to
 the requirements and comments from others, but it may also be broken.

 The <validate> key word is expanded to support the following:

 source: ephemeral-datastore

 validate: (syntax, no-referential, full) with the following
 definitions:

 * syntax - validates only the message syntax and the data base
 syntax.

 * no-referentail - skips referential test (leafref, MUST clauses,
 and instance identifiers).

 * full - all normal netconf/restconf module error chcking

8.6.5. Distinct Startup Capability

 This NETCONF capability appears to operate to load write-able running
 config, running-config, or candidate datastore. The ephemeral state
 does not change the environment based on this command.

Hares, et al. Expires September 22, 2016 [Page 26]

Internet-Draft I2RS Protocol Strawman March 2016

8.6.6. URL capability and XPATH capability

 The URL capabilities specify a <url> in the <source> and <target>.
 The initial suggestion to allow both of these features to work with
 ephemeral datastore.

9. RESTCONF protocol extensions for the ephemeral datastore

 capability-name: ephemeral-datastore

9.1. Overview

 This capability defines the RESTCONF protocol extensions for the
 ephemeral state. The ephemeral state has the features described in
 the previous section on NETCONF.

9.2. Dependencies

 The ephemeral capabilities have the following dependencies:

 Yang data nodes, sub-modules, or modules must be flaged with the
 config datastore flag;

 The Yang modules must support the notification of write-conflicts.

 The I2RS Yang modules must support the following:

 the yang-patch features as specified in
 [I-D.ietf-netconf-yang-patch].

 The yang module library feature
 [I-D.ietf-netconf-yang-library],

 the equivalent of the netconf pub/subscription push service
 found in [I-D.ietf-netconf-yang-push]

9.3. Capability identifier

 The ephemeral-datastore capability is identified by the following
 capability string: (capability uri)

9.4. New Operations

 none

Hares, et al. Expires September 22, 2016 [Page 27]

Internet-Draft I2RS Protocol Strawman March 2016

9.5. modification to data resources

 RESTCONF must be able to support the ephemeral datstore as a context
 with its rules as part of the "{+restconf}/data" subtree. The "edit
 collision" features in RESTCONF must be able to provide notification
 to I2RS read functions or to rpc functions. The "timestamp" with a
 last modified features must support the traceability function.

 The "Entity Tag" could support saving a client-priority tuple as a
 opaque string, but it is important that that additions be made to
 restore client-priority so it can be compared with strimgs can be
 done to determine the comparison of two I2RS client-priorities.

9.6. Modification to existing operations

 The current operations in RESTCONF are: OPTIONS, HEAD, GET, POST,
 PUT, PATCH, and DELETE. This section describes the modification to
 these exiting operations.

9.6.1. OPTIONS changes

 The options methods should be augmented by the
 [I-D.ietf-netconf-yang-library] information that will provide an
 indication of what ephemeral state exists in a data modules, or a
 data modules sub-modules or nodes.

9.6.2. HEAD changes

 The HEAD in retrieving the headers of a resources. It would be
 useful to changes these headers to indicate the datastore a node or
 submodule or module is in (ephemeral or normal), and allow filtering
 on ephemeral nodes or trees, submodules or module.

9.6.3. GET changes

 GET must be able to read from the URL and a context
 ("?context=ephemeral"). Similarly, it is important the Get be able
 to determine if the context=ephemeral.

9.6.4. POST changes

 POST must simply be able to create resources in ephemeral datastores
 ("context=ephemeral") and invoke operations defined in ephemeral data
 models.

Hares, et al. Expires September 22, 2016 [Page 28]

Internet-Draft I2RS Protocol Strawman March 2016

9.6.5. PUT changes

 PUT must be able to reference an ephemeral module, sub-module, and
 nodes ("?context=ephemeral").

9.6.6. PATCH changes

 Plain PATCH must be able to update or create child resources in an
 ephemeral context ("?context=ephemeral") The PATCH for the ephemeral
 state must be change to provide a merge or update of the original
 data only if the client’s using the patch has a higher priority than
 an existing datastore’s client, or if PATCH requests to create a new
 node, sub-module or module in the datastore.

9.6.7. DELETE changes

 The phrase "?context=ephemeral" following an element will specify the
 ephemeral data store when deleting an entry.

9.6.8. Query Parameters

 The query parameters (content, depth, fields, insert, point, start-
 time, stop-time, and with-defaults (report-all, trim, explicit,
 report-all-tagged) must support ephemeral context
 ("?context=ephemeral") described above.

9.7. Interactions with Notifications

 The ephemeral database must support the ability to publish
 notifications as events and the I2RS clients being able to receiving
 notifications as Event stream. The event error stream processing
 should support the publication/subscription mechanisms for ephemeral
 state defined in [I-D.ietf-netconf-yang-push].

9.8. Interactions with Error Reporting

 The ephemeral database must support in RESTCONF must also support
 passing error information regarding ephemeral data access over to
 RESTCONF equivalent of the and traceability client.

10. IANA Considerations

 This is a protocol strawman - nothing is going to IANA.

Hares, et al. Expires September 22, 2016 [Page 29]

Internet-Draft I2RS Protocol Strawman March 2016

11. Security Considerations

 The security requirements for the I2RS protocol are covered in
 [I-D.ietf-i2rs-protocol-security-requirements]. The security
 environment the I2RS protocol is covered in
 [I-D.ietf-i2rs-security-environment-reqs]. Any person implementing
 or deploying the I2RS protocol should consider both security
 requirements.

12. Acknowledgements

 This document is an attempt to distill lengthy conversations on the
 I2RS proto design team from August

 Here’s the list of the I2RS protocol design team members

 o Alia Atlas

 o Ignas Bagdonas

 o Andy Bierman

 o Alex Clemm

 o Eric Voit

 o Kent Watsen

 o Jeff Haas

 o Keyur Patel

 o Hariharan Ananthakrishnan

 o Dean Bogdanavich

 o Anu Nair

 o Juergen Schoenwaelder

 o Kent Watsen

13. Major Contributors

 o Andy Bierman (Yuman Networks) - andy@yumaworks.com

 o Kent Watson (Juniper) (kwatsent@juniper.net)

Hares, et al. Expires September 22, 2016 [Page 30]

Internet-Draft I2RS Protocol Strawman March 2016

14. References

14.1. Normative References:

 [I-D.hares-i2rs-dataflow-req]
 Hares, S., "I2RS Data Flow Requirements", draft-hares-
 i2rs-dataflow-req-02 (work in progress), March 2016.

 [I-D.ietf-i2rs-architecture]
 Atlas, A., Halpern, J., Hares, S., Ward, D., and T.
 Nadeau, "An Architecture for the Interface to the Routing
 System", draft-ietf-i2rs-architecture-13 (work in
 progress), February 2016.

 [I-D.ietf-i2rs-ephemeral-state]
 Haas, J. and S. Hares, "I2RS Ephemeral State
 Requirements", draft-ietf-i2rs-ephemeral-state-04 (work in
 progress), March 2016.

 [I-D.ietf-i2rs-protocol-security-requirements]
 Hares, S., Migault, D., and J. Halpern, "I2RS Security
 Related Requirements", draft-ietf-i2rs-protocol-security-
 requirements-03 (work in progress), March 2016.

 [I-D.ietf-i2rs-pub-sub-requirements]
 Voit, E., Clemm, A., and A. Prieto, "Requirements for
 Subscription to YANG Datastores", draft-ietf-i2rs-pub-sub-
 requirements-05 (work in progress), February 2016.

 [I-D.ietf-i2rs-rib-data-model]
 Wang, L., Ananthakrishnan, H., Chen, M.,
 amit.dass@ericsson.com, a., Kini, S., and N. Bahadur, "A
 YANG Data Model for Routing Information Base (RIB)",
 draft-ietf-i2rs-rib-data-model-05 (work in progress),
 March 2016.

 [I-D.ietf-i2rs-rib-info-model]
 Bahadur, N., Kini, S., and J. Medved, "Routing Information
 Base Info Model", draft-ietf-i2rs-rib-info-model-08 (work
 in progress), October 2015.

 [I-D.ietf-i2rs-security-environment-reqs]
 Migault, D., Halpern, J., and S. Hares, "I2RS Environment
 Security Requirements", draft-ietf-i2rs-security-
 environment-reqs-00 (work in progress), October 2015.

Hares, et al. Expires September 22, 2016 [Page 31]

Internet-Draft I2RS Protocol Strawman March 2016

 [I-D.ietf-i2rs-traceability]
 Clarke, J., Salgueiro, G., and C. Pignataro, "Interface to
 the Routing System (I2RS) Traceability: Framework and
 Information Model", draft-ietf-i2rs-traceability-07 (work
 in progress), February 2016.

 [I-D.ietf-netconf-restconf]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", draft-ietf-netconf-restconf-10 (work in
 progress), March 2016.

 [I-D.ietf-netconf-yang-library]
 Bierman, A., Bjorklund, M., and K. Watsen, "YANG Module
 Library", draft-ietf-netconf-yang-library-04 (work in
 progress), February 2016.

 [I-D.ietf-netconf-yang-patch]
 Bierman, A., Bjorklund, M., and K. Watsen, "YANG Patch
 Media Type", draft-ietf-netconf-yang-patch-08 (work in
 progress), March 2016.

 [I-D.ietf-netconf-yang-push]
 Clemm, A., Prieto, A., Voit, E., Tripathy, A., and E.
 Einar, "Subscribing to YANG datastore push updates",
 draft-ietf-netconf-yang-push-01 (work in progress),
 February 2016.

 [I-D.ietf-netmod-opstate-reqs]
 Watsen, K. and T. Nadeau, "Terminology and Requirements
 for Enhanced Handling of Operational State", draft-ietf-
 netmod-opstate-reqs-04 (work in progress), January 2016.

 [I-D.ietf-netmod-yang-metadata]
 Lhotka, L., "Defining and Using Metadata with YANG",
 draft-ietf-netmod-yang-metadata-06 (work in progress),
 March 2016.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <http://www.rfc-editor.org/info/rfc6241>.

 [RFC7158] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7158, DOI 10.17487/RFC7158, March
 2014, <http://www.rfc-editor.org/info/rfc7158>.

Hares, et al. Expires September 22, 2016 [Page 32]

Internet-Draft I2RS Protocol Strawman March 2016

 [RFC7589] Badra, M., Luchuk, A., and J. Schoenwaelder, "Using the
 NETCONF Protocol over Transport Layer Security (TLS) with
 Mutual X.509 Authentication", RFC 7589,
 DOI 10.17487/RFC7589, June 2015,
 <http://www.rfc-editor.org/info/rfc7589>.

14.2. Informative References

 [I-D.hares-i2nsf-mgtflow-reqs]
 Hares, S., "I2NSF Data Flow Requirements", draft-hares-
 i2nsf-mgtflow-reqs-00 (work in progress), March 2016.

 [I-D.hares-i2rs-bgp-dm]
 Wang, L., Hares, S., and S. Zhuang, "An I2RS BGP Data
 Modell", draft-hares-i2rs-bgp-dm-00 (work in progress),
 October 2014.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <http://www.rfc-editor.org/info/rfc6020>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <http://www.rfc-editor.org/info/rfc6242>.

 [RFC6536] Bierman, A. and M. Bjorklund, "Network Configuration
 Protocol (NETCONF) Access Control Model", RFC 6536,
 DOI 10.17487/RFC6536, March 2012,
 <http://www.rfc-editor.org/info/rfc6536>.

Authors’ Addresses

 Susan Hares
 Huawei
 Saline
 US

 Email: shares@ndzh.com

Hares, et al. Expires September 22, 2016 [Page 33]

Internet-Draft I2RS Protocol Strawman March 2016

 Andy Bierman
 YumaWorks

 Email: andy@yumaworks.com

 Amit Daas
 Ericsson

 Email: amit.dass@ericsson.com

Hares, et al. Expires September 22, 2016 [Page 34]

