
I2NSF S. Hares
Internet-Draft Huawei
Intended status: Standards Track R. Moskowitz
Expires: September 22, 2016 HTT Consulting
 March 21, 2016

 Secure Session Layer Services
 draft-hares-i2nsf-slss-00.txt

Abstract

 Each I2NSF agent and I2NSF client needs to provide application level
 support for management traffic during periods of DDoS and network
 security attacks to deal with congestion (burst and/or continuous),
 high error rates and packet loss due to the attacks, and the
 inability to utilize a transport protocol (E.g. TCP) due to a
 specific protocol attack. This application level support needs to be
 able to select the key management system and provide "chunking" of
 data (in order to fit in reduced effective MTUs), compression of data
 (in order to fit into reduced bandwidth), small security envelope)in
 order to maximize room for mangement payload), and fragmentation and
 reassembly at the application layer for those protocols which do not
 support fragmentation/reassembly (E.g. UDP or SMS). The application
 layer needs to be able to turn off this features if the system
 detects these features are no longer needed.

 This draft specifies a security session layer services(SSLs) which
 provide these features in terms of an API, and the component features
 (interface to key management systems, data compression, chunking of
 data, secure session envelope (SSE) to send data, and fragmentation
 and reassembly, and ability to detect existence of attack).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Hares & Moskowitz Expires September 22, 2016 [Page 1]

Internet-Draft SSLS March 2016

 This Internet-Draft will expire on September 22, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. API for SSLS . 4
 2.1. SSLS socket calls . 4
 2.1.1. KMP related options 5
 2.1.2. SSE Envelope related options 6
 2.2. OpenSSL X.509 API calls used 7
 2.3. HIPv2 API calls used 7
 2.3.1. HIP Structures 7
 2.3.2. HIP KMP calls . 8
 3. Data Compression . 8
 4. SSLS Processes . 8
 4.1. Chunking of Data . 8
 4.2. Secure Session Envelope 9
 4.3. Application Packet Fragmentation and Reassembly 10
 4.4. Proprietary Plugins: Detect Conditions + Select Transport 13
 5. IANA Considerations . 13
 6. Security Considerations 13
 7. Acknowledgements . 14
 8. References . 14
 8.1. Normative References 14
 8.2. Informative References 14
 Authors’ Addresses . 15

1. Introduction

 Each I2NSF agent and I2NSF client needs to provide application level
 support for management traffic during periods of DDoS and network
 security attacks to deal with congestion (burst and/or continuous),
 high error rates and packet loss due to the attacks, and the

Hares & Moskowitz Expires September 22, 2016 [Page 2]

Internet-Draft SSLS March 2016

 inability to utilize a transport protocol (E.g. TCP) due to a
 specific protocol attack. Some of the services the I2NSF controller
 must provide during these periods of DDoS or network security attacks
 are:

 o receiving information regarding DDoS Threats from DOTS systems,

 o Changing policy on vNSF and NSF devices during these periods,

 o exchanging information with user security applications using I2NSF
 to obtain information from the controller,

 o Aid the I2NSF reporting of attacks with the the CERT (MILE) either
 by providing data or sendign the report

 o and manages network connnectivity of devices out of compliance
 (SACM).

 This application level support for I2NSF client-agent communication
 needs to be able to select the key management system and provide
 "chunking" of data (in order to fit in reduced effective MTUs),
 compression of data (in order to fit into reduced bandwidth), small
 security envelope)in order to maximize room for mangement payload),
 and fragmentation and reassembly at the application layer for those
 protocols which do not support fragmentation/reassembly (E.g. UDP or
 SMS). The application layer needs to be able to turn off this
 features if the system detects these features are no longer needed.

 This draft specifies a security session layer (SSL) which provides
 these features in terms of:

 o an API for the layer (section 2)

 o interface to key management system (section 3),

 o data compression (section 4)

 o chunking of data (section 5)

 o secure envelope (section 6),

 o fragmentation and reassembly (section 7),

 o detection of network conditions that require this service (section
 8).

 A diagram of the SSLS with these process is in figure 1.

Hares & Moskowitz Expires September 22, 2016 [Page 3]

Internet-Draft SSLS March 2016

 The API for this SSLS allows the application to select the types of
 key management, and the different types of services (data
 compression, chunking of data, secure e)

 Secure Session Layer Services(SSLS)
 | API |
 | |
 +------------------------------+
 | | Key Mangement(KMP) |
 | |........................|
 | | Detection of network |
 | | conditions + selection |
 | | of transport (optional |
 | | proprietary code) |
 | |
 |SSLS | Compression (GPComp) |
 | |........................|
 | | Chunking of data |
 | | (this draft) |
 | |
 | | Session Security |
 | | Envelope (SSE) |
 | |........................|
 | | fragmentation and |
 | | reassembly at |
 | | application layer |
 | | (This draft) |
 +------------------------------+

2. API for SSLS

2.1. SSLS socket calls

 The SSLS uses socket calls to set up the application session layer.
 The calls are shown below.

 s = int socket(int domain, int type, int protocol)

 where:

 domain: AF_INET and AF_INET6 supported

 type: SOCK_SSLS

 desired protocol: Transport protocol (TCP (6), UDP (6), SCTP
 (132)), SMS (xx)

Hares & Moskowitz Expires September 22, 2016 [Page 4]

Internet-Draft SSLS March 2016

 int setsockopt(int sockfd, int level, int optname,
 const void *optval, socklen_t optlen);

 int getsocketopt(int sockfd, int level, int optname
 const void *optval, socket
 where:
 sockfd: # socket file descriptor
 optname: # option name (see below)
 optval; # points to *sse_transport structure;
 optlen; # length of option

 optnam:
 SSLS_AUTH_PRIV]1]
 SSLS_AES_MODE[2]
 SSLS_ALGS[3]
 SSLS_SSE [4]

 Where the opt_val structure are define in the figure below.

 Figure 2

2.1.1. KMP related options

Hares & Moskowitz Expires September 22, 2016 [Page 5]

Internet-Draft SSLS March 2016

 Security Keying structures for:
 SSLS_AUTH_PRV, SSLS_AES_MODE, SSLS_ALGS
 options of setsockopt, getsockopt

 #struture for SSL_AUTH-PRIV optval
 struct *ssls_auth-priv_opts {
 *ssls-x509-auth [SSLS-X509-LIMIT]
 }

 #SSL-X509-limit
 typedef struct ssls-x509-auth {
 const char name;
 void *x509-cert; #cert struture by API
 }

 #structure for SSL_AES_MODE optval
 struct *ssls_aes_mode_opts {
 ... IKEV2 options # openikev2 API
 ... HIPv2 options # HIPv2 API
 #[RFC6317 + HIPv2]
 struct ssls_algs_opts;
 }

 #compression options
 struct *ssls_algs_opts {
 boolean gpcomp-kmp; # computed with keys
 enum gmcomp-type; #
 }

 figure 3: setsockopt structure
 for KMP related optins

2.1.2. SSE Envelope related options

Hares & Moskowitz Expires September 22, 2016 [Page 6]

Internet-Draft SSLS March 2016

 Security Session Envelope Related options
 #structure for SSL_SSE optval
 # SPI - is generated by KMP
 # SSE - sequence number - by SSE
 # Flags = Fragment (5 bits [0-5],

 struct *ssls_sse_opts {
 int nt_sockfd; # new transport socket
 int *protocol; # transport protocol for SSLS SSE
 # can choose from (1-n)
 int *known_ports # known ports
 int chunk-size; # chunk size
 int frag-size; # fragment size
 # greater than 0 means fragment]
 int SSEs-at-once # number of SSEs sent at once
 enum SSE_size; # (compact, large, extreme)
 enum SSE-FLAG; # compression flags
);

 Figure 4

2.2. OpenSSL X.509 API calls used

 TBD

2.3. HIPv2 API calls used

 (API calls will be added later based on HIP [RFC6317] upgraded to
 HIPv2.

2.3.1. HIP Structures

 struct addrinfo {
 int ai_flags; /* e.g., AI_CANONNAME */
 int ai_family; /* e.g., AF_HIP */
 int ai_socktype; /* e.g., SOCK_STREAM */
 int ai_protocol; /* 0 or IPPROTO_HIP */
 socklen_t ai_addrlen; /* size of *ai_addr */
 struct sockaddr *ai_addr; /* sockaddr_hip */
 char *ai_canonname; /* canon. name of the host */
 struct addrinfo *ai_next; /* next endpoint */
 int ai_eflags; /* RFC 5014 extension */
 };

Hares & Moskowitz Expires September 22, 2016 [Page 7]

Internet-Draft SSLS March 2016

2.3.2. HIP KMP calls

 #HIP uses
 # #include <netdb.h>
 int getaddrinfo(const char *nodename,
 const char *servname,
 const struct addrinfo *hints,
 struct addrinfo **res)
 void free_addrinfo(struct addrinfo *res)

 Figure 3

3. Data Compression

 The first step in making the application data easier to send through
 the network is to compress the data. The data compression algorithm
 is defined in draft-moskowitz-gpcomp-00.txt. The result of the
 compressed data is handed to the chunking function.

 The user can disable or enable the compression function by setting
 SSE-DATA types to be one of the following:

 o SSLS compress only - set compression, [1]

 o SSLS compression and fragmentation [3],

 Setting this flag to:

 o no compression or fragmentation [0],

 o SSLS to fragmentation only [2]

 will skip the data compression step.

4. SSLS Processes

4.1. Chunking of Data

 The process that "chunks" data breaks down the application stream
 after the compression process. If the compression process has
 compressed the data, the chunking process will chunk compressed data.
 If the user has requested no compression, this chunking process will
 chunk uncompressed data. The size of chunks of data the SSLS process
 creates to encapsulate in the secure session envelope (SSE) is
 specified on SSL_SSE setsockopt call.

 The secure session envelope must be bigger than the chunk.

Hares & Moskowitz Expires September 22, 2016 [Page 8]

Internet-Draft SSLS March 2016

 If the SSE is using TCP or STCP, that assembles the application flow
 into a byte stream, then the SSE packages will contain a chunk within
 the secure session envelope.

 If Transports that do not fragment and re-assembly are being
 specified, the SSL will support application layer fragmentation and
 reassembly. (see the fragmentation section below

4.2. Secure Session Envelope

 The Secure Session Envelope (SSE) creates a secure envelope using the
 SPI created by the key management and running over the transport
 selected by the user. The SSE has three forms: compact, Large,
 Extreme. The SSE compact form is below in figure x. SSL defines 4
 bytes of the reserved field in the FLAGS field. See
 [I-D.moskowitz-sse] for details on secure session envelope sizes and
 formats.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | SPI | FLAGS |
 +-+
 | Length | Sequence Number |
 +-+
 | Encrypted Payload and ICV (Variable) |
 ˜ ˜
 | |
 +-+

 2 3
 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+
 | Reserve |C|
 +---------------+
 | Flag field |
 +---------------+

 Figure 5 - Compact format of SSE

 The SSLS utilizes 6 bits of the 8 bit flag in order to provide
 provide fragmentation and reassembly checks when the SSE gets
 fragmented into multiple transport packets. Each time the SSE
 fragments the packet to fit in the transport, it increments the
 fragment count in bits [24-28]. The bits for the flag word shown in
 figure 6.

Hares & Moskowitz Expires September 22, 2016 [Page 9]

Internet-Draft SSLS March 2016

 2 3
 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+
 |Frag |R R|C|
 +---------------+
 | Flag field |
 +---------------+

 Flag work in SSE header

 Bits [4-8] - 1-30 bit value for the fragment number
 0 - no fragmentation
 31 - indicates an fragmentation ACK response
 Bits 5-6 - reserved
 Bit 7 - compression

 Figure 6 - SSLS redefined SSE Flag byte

4.3. Application Packet Fragmentation and Reassembly

 SSE’s secure envelope may be passed over UDP to avoid transport-level
 security attacks. Alternatively SSE’s secure transport may go over
 the extremely limited SMS fabric so that some security management
 information gets through. In both cases, the user (or the "detection
 log") can select the transport and fragmentation.

 If fragmentation is turned on, the individual SSE envelopes will
 track the IP messages the SSE envelope is broken into by placing the
 fragment number in the lowest 5 bits of the SSE Flag byte [24-28].
 The SSE process receiving the traffic will send back an acknowledge
 SSE packet [Flag value in bits 0-4 is 0x1F or 31] within 30 bit map
 of sequences acked [1-30] in first 4 bits of SSE data. It is
 anticipate that the fragmentation process will attempt to bundle some
 acks.

Hares & Moskowitz Expires September 22, 2016 [Page 10]

Internet-Draft SSLS March 2016

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | SPI | FLAGS |
 +-+
 | Length | Sequence Number |
 +-+
 | Encrypted Payload and ICV (Variable) [4 byte flag word] [data]|
 ˜ ˜
 | |
 +-+

 2 3
 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+
 |1|1|1|1|1|0|0|C|
 +---------------+
 | Flag field |
 +---------------+

 SSLS Fragment ACK
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | bit mask ack for fragments [0-31] |
 +---+
 [bit 0, 31 - are illegal, bit [1-31] fragments of sequence #]

 Figure 7 - SSLS ACK flag filed and first 4 bytes of payload

 An example Fragmentation and ACK exchange

Hares & Moskowitz Expires September 22, 2016 [Page 11]

Internet-Draft SSLS March 2016

 SSLS-process-1--------IP/SMS---------SSLS Process-2
 [E.g. I2NSF Client -----------------I2NSF Agent]

 SSE-packet (SPI,(flags(fragment=1,C=1),
 length, seq 1, data)---->

 SSE-packet (SPI,(flags(fragment=2,C=1),
 length, seq 1, data)---->

 SSE-packet (SPI,(flags(fragment=3,C=1),
 length, seq 1, data)---->

 SSE-packet (SPI,(flags(fragment=1,C=1),
 length, seq 2, data)---->

 SSE-packet (SPI,(flags(fragment=2,C=1),
 length, seq 2, data)---->
 <--SSE-packet (SPI)(flags fragment=31,C=1)
 length, seq1,[ack-fragment 1,2])
 <--SSE-packet (SPI)(flags fragment=32,C=1)
 length, seq2,[ack-fragment1,2]

 SSE-packet (SPI,(flags(fragment=3,C=1),
 length, seq 1, data)---->
 <--SSE-packet (SPI)(flags fragment=31,C=1)
 length, seq1,[ack-fragment 3])

 Below is a set of pseudo call for the calls to socket

 pseudo
 struct sse_opts = {};
 optlen=size(sse_opts);
 optname= SSLS_SSE; #4
 s = int socket(int domain, int type, int protocol)
 errno = int setsockopt(sockfd,level,optname,
 void struct *sse_opts,optlen);

 Errors: (Exact ERNOS added later)
 - protocol not support
 - error in known ports
 - error in chunk_size
 - error in fragment size
 - error in SSE-at-once
 - error - unsupported SSE
 - error in compression flags

 [Add read-write to socket]

Hares & Moskowitz Expires September 22, 2016 [Page 12]

Internet-Draft SSLS March 2016

 The SSE window size for fragmentation is 30 IP fragments or 30 SMS
 fragments per SSE chunk. The SSE process SHOULD assign the SSE
 fragments in order if possible. The SSE process will send an error
 response to the SSE if the data chunk does not fit in 30 IP/SM
 fragments.

 If the SSE transmitting process has not received an acknowlegement
 for all IP fragments for a particular SSE envelope (identified by
 sequence number) with a SSE-retransmit-time, it sill retransmit the
 unacknowledged fragments.

 Several SSE envelopes may be sent with fragmentation at once. The
 user signals the number sent at once with multiple SSE with fragment
 variable on the options. If fragmentation is selected, each of these
 SSE envelopes may need to track up to 30 IP fragments.

4.4. Proprietary Plugins: Detect Conditions + Select Transport

 The SSL process allows two properitary plugins:

 1. Plugin to detect error conditions which require SSLS services
 which include:

 * High levels of end-to-end congestion,

 * High levels of error and loss,

 * Input from IDS/IPS that detects problems

 * Signals from other I2NSF applications

 2. Proprietary actions may select transport based on input from
 other standardize security services (DOTS, CERT, MILE) or
 proprietary services.

 Prototype code will provide instances to show plugin values.

5. IANA Considerations

 TBD

6. Security Considerations

 The SSLS shares the following security considerations with the SSE
 Technology:

 o As SSE uses an AEAD block cipher, it is vulnerable to attack if a
 sequence number is reused for a given key. Thus implementations

Hares & Moskowitz Expires September 22, 2016 [Page 13]

Internet-Draft SSLS March 2016

 of SSE MUST provide for rekeying prior to Sequence Number
 rollover. An implementation should never assume that for a given
 context, the sequence number space will never be exhausted. Key
 Management Protocols like IKEv2 [RFC7296] or HIP [RFC7401] could
 be used to provide for rekeying management. The KMP SHOULD not
 create a network layer fate-sharing limitation.

 o As any security protocol can be used for a resource exhaustion
 attack, implementations should consider methods to mitigate
 flooding attacks of messages with valid SPIs but invalid content.
 Even with the ICV check, resources are still consumed to validate
 the ICV.

 o SSE makes no attempt to recommend the ICV length. For constrained
 network implementations, other sources should guide the
 implementation as to ICV length selection. The ICV length
 selection SHOULD be the the responsibility of the KMP.

 o As with any layered security protocol, SSE makes no claims of
 protecting lower or higher processes in the communication stack.
 Each layer’s risks and liabilities need be addressed at that
 level.

7. Acknowledgements

 The authos would like to thank Frank (Liang) Xia for his comments and
 suggestions on this draft.

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

8.2. Informative References

 [I-D.hares-i2nsf-mgtflow-reqs]
 Hares, S., "I2NSF Data Flow Requirements", draft-hares-
 i2nsf-mgtflow-reqs-00 (work in progress), March 2016.

 [I-D.moskowitz-sse]
 Moskowitz, R., Faynberg, I., Lu, H., Hares, S., and P.
 Giacomin, "Session Security Envelope", draft-moskowitz-
 sse-02 (work in progress), February 2016.

Hares & Moskowitz Expires September 22, 2016 [Page 14]

Internet-Draft SSLS March 2016

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <http://www.rfc-editor.org/info/rfc6241>.

 [RFC6317] Komu, M. and T. Henderson, "Basic Socket Interface
 Extensions for the Host Identity Protocol (HIP)",
 RFC 6317, DOI 10.17487/RFC6317, July 2011,
 <http://www.rfc-editor.org/info/rfc6317>.

 [RFC7296] Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.
 Kivinen, "Internet Key Exchange Protocol Version 2
 (IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October
 2014, <http://www.rfc-editor.org/info/rfc7296>.

 [RFC7401] Moskowitz, R., Ed., Heer, T., Jokela, P., and T.
 Henderson, "Host Identity Protocol Version 2 (HIPv2)",
 RFC 7401, DOI 10.17487/RFC7401, April 2015,
 <http://www.rfc-editor.org/info/rfc7401>.

Authors’ Addresses

 Susan Hares
 Huawei
 Saline
 US

 Email: shares@ndzh.com

 Robert Moskowitz
 HTT Consulting
 Oak Park, MI 48237
 USA

 Phone: +1-248-968-9809
 Email: rgm@htt-consult.com

Hares & Moskowitz Expires September 22, 2016 [Page 15]

