
 Hamarsheh & Goossens Expires March 7, 2011 [Page 1]

Behave A. Hamarsheh
Internet-Draft ETRO/Vrije Universiteit Brussel
Obsoletes: 3338 (if approved) M. Goossens
Intended status: Experimental ETRO/Vrije Universiteit Brussel
Expires: March 7, 2011 August 31, 2010

Hosts with Any Network Connectivity Using "Bump-in-the-API" (BIA)

draft-hamarsheh-behave-biav2-00

Abstract

This document specifies a mechanism for hosts with any network
connectivity (IPv4 only, IPv6 only, or dual IPv4/IPv6 connectivity)
to run applications of any capability (IPv4 only, IPv6 only, or dual
IPv4/IPv6) without any modification to those applications. It is a
generalisation of a previous experimental protocol called "Bump-in-
the-API"(BIA) [RFC3338]. New mechanism of BIA allows a changeover
between the application layer and the IP communication layers from
IPv4 to IPv6 and vice versa or IPv6 to IPv4 and vice versa, without
requiring those applications to be converted in addressing
capabilities, effectively shielding the application layer from IPv4
or IPv6 connectivity. This is considered by the authors to be one of
the essential conditions for the transition to IPv6 in the Internet
to be successful.

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on March 7, 2011.

Copyright Notice

Copyright (c) 2010 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of

 Hamarsheh & Goossens Expires March 7, 2011 [Page 2]

the Trust Legal Provisions and are provided without warranty as
described in the BSD License.
Table of Contents:

 1. Motivation and Introduction 4
 1.1 Motivation .. 4
 1.2 Introduction .. 5
 2. Applicability and Related Techniques 6
 2.1 Applicability ... 6
 2.2 Related Techniques 6
 3. Host Configurations Using BIA 7
 3.1 IPv6 Only Host Using BIA 8
 3.2 IPv4 Only Host Using BIA 8
 3.3 Dual Connectivity Host Using BIA 9
 4. BIA Modules ... 9
 4.1 Name Resolver ... 9
 4.1.1 IPv4 Only Application on The Local Host 9
 4.1.2 IPv6 Only Application on The Local Host 10
 4.1.3 Reverse DNS Lookup 11
 4.1.4 Originating Without DNS Lookup 11
 4.2 Address Resolver 11
 4.2.1 Mapping ... 12
 4.2.2 Embedding ... 12
 4.3 Function Mapper ... 13
 5. Behavior Examples 13
 5.1 IPv4 Only Application, IPv6 Only Connectivity with an IPv6
 Only Peer ... 13
 5.1.1 Behavior for IPv4 Only Originator Application on IPv6 Only
 Host Communicating to IPv6 Only Peer 13
 5.1.2 Behavior for IPv4 Only Recipient Application on IPv6 Only
 Host .. 15
 5.2 IPv4 only Application, IPv6 Only Network and Dual
 Connectivity Peer 16
 5.2.1 Behavior for IPv4 Only Originator Application on IPv6 Only
 Host Communicating with Dual Connectivity Host 16
 5.2.2 Behavior for IPv4 Only Recipient Application on IPv6 Only
 Host Communicating with Dual Connectivity Host 16
 5.3 IPv6 Only Application, IPv4 Only Connectivity with an IPv4
 Only Peer ... 16
 5.3.1 Behavior for IPv6 Only Originator Application on IPv4 Only
 Host Communicating with IPv4 Only Host 16
 5.3.2 Behavior for IPv6 Only Recipient Application on IPv4 Only
 Host Communicating with IPv4 Only Host 18
 5.4 IPv6 Only Application, IPv4 Only Network and Dual
 Connectivity Peer 18
 5.4.1 Behavior for IPv6 Only Originator Application on IPv4 Only
 Host Communicating with Dual Connectivity Host 18
 5.4.2 Behavior for IPv6 Only Recipient Application on IPv4 Only
 Host Communicating with Dual Connectivity Host 18
 5.5 IPv4 Only Application on Dual Connectivity Host
 Communicating to IPv6 Only Peer 19
 5.5.1 IPv4 Only Originator Application on Dual Connectivity Host
 Communicating to IPv6 Only Peer 19
 5.5.2 IPv4 Only Recipient Application on Dual Connectivity Host
 Communicating to IPv6 Only Peer 19
 5.6 IPv6 Only Application on Dual Connectivity Host
 Communicating to IPv4 Only Peer 19
 5.6.1 IPv6 Only Originator Application on Dual Connectivity Host
 Communicating to IPv4 Only Peer 19
 5.6.2 IPv4 Only Recipient Application on Dual Connectivity Host
 Communicating to IPv4 Only Peer 19

 Hamarsheh & Goossens Expires March 7, 2011 [Page 3]

 6. Considerations .. 19
 6.1 Socket API Conversion 19
 6.2 Address Mapping and Embedding 19
 6.3 ICMP Message Handling 20
 6.4 Implementation Issues 20
 7. Limitations ... 20
 8. IANA Considerations 21
 9. Security Considerations 21
 10. References .. 22
 Appendix: API list intercepted by BIA 23
 Authors Addresses ... 25

 Hamarsheh & Goossens Expires March 7, 2011 [Page 4]

1. Motivation And Introduction
1.1 Motivation

It is probably important to give a brief analysis first of one of the
blocking factors withholding the wide-spread introduction of IPv6 in
order to fully understand why the here proposed BIA is considered an
essential component in the unlocking of IPv6.
At the inception of IPv6 it was - rather naively - presumed that all
parties involved with the Internet would be eager to make the
changeover and that the transition would happen spontaneously. It is
now quite generally acknowledged that some human and commercial
factors preventing a spontaneous transition have been largely
underestimated. In the transition to IPv6 there are essentially two
parties involved: network providers and end-users. The benefits of
using IPv6 are almost entirely for the network providers, while the
end-users have only potentially indirect benefits from better network
operation. No drive to make the changeover should be expected from
the majority of end-users, as they have probably little to gain. The
network providers can expect benefits, but they are obviously
dependent on the willingness of their end-users to make any
changeover. The result is some kind of deadlock: no (commercial)
network provider is going to force the customers to make the
changeover against their will. So making the transition transparent
to the end-user is the key in any transition to IPv6. The average
end-users are not really aware about what goes on in the network
layer, and even if they do, they usually could not care less. It does
not matter much to them if their applications are communicating using
IPv4 or IPv6. But, while there is no drive to be expected from the
end-users for any transition to IPv6, the vast majority would not
object to the transition on condition they can go on using their
applications as before.
While the first impression is that applications are not affected by
the changeover on the IP layer from IPv4 to IPv6, this is
unfortunately not true. The applications are using IP addresses, and
hence should be capable of dealing with the longer IPv6 addresses
when having to communicate over IPv6.
Expecting all applications to be modified to be capable of dealing
with the longer IPv6 addresses is rather naive. Apart from the
"standard" Internet applications with rather good support such as web
browsers, email programs, etc. that can be expected to be IPv6
enabled, there are thousands of other applications, some of them are
written by small companies (of which some may be out of business) and
others are even "home-made". For some applications, Internet
communication is only a side-issue, for example for registering
and/or checking for updates, and upgrading to become IPv6 compatible
is probably not a high priority. It is to be expected that a large
proportion of applications will only be modified to be IPv6
compatible when IPv6 usage gets into full swing. And even if the IPv6
capable new versions of application software are made available, it
is again rather naive to expect all end-users to do the required
updating of all the software on their system.
The end-users MAY be willing to accept a changeover to IPv6, but will
NOT accept that some of their applications will no longer work as
before. From this observation it becomes obvious that it is
absolutely essential that provisions are standard installed and
enabled on any general purpose machine (the vast majority of systems
connected to the Internet) that is provided for IPv6 communication
and potentially has to run IPv4-only applications to continue
communicating as before when communicating using IPv6. While the
demand for mandatory provisions on every general purpose machine
capable of communicating using IPv6 may seem a tall order, it should

 Hamarsheh & Goossens Expires March 7, 2011 [Page 5]

be realized that this approach is much more realistic then expecting
all applications to be made IPv6 compatible: compared to thousands of
applications that would need conversion requiring all application
developers to follow suit, the number of communication stack
implementations on general purpose machines is very small and is made
by only a handful of developers.
While somewhat less of an urgent issue, the solution should be
general enough to handle the reverse problem as well: an IPv6 only
application should be able to communicate on a machine with IPv4 only
connectivity, or dual IPv4/IPv6 connectivity when communicating using
IPv4 with remote hosts that have IPv4-only connectivity. While this
looks like a move in the wrong direction in the context of transition
towards IPv6, this capability is also important to break the slowdown
of the development of IPv6 compatible applications, as described in
[RFC2460]. Little effort is being invested into making applications
IPv6 capable, as almost no machines currently have IPv6 connectivity.
BIA allows to using these IPv6 capable applications to run on the
IPv4 infrastructure, removing the practical limitation that IPv6
applications cannot be used at this time.
Other practical issues are blocking the deployment of IPv6, such as
the lack of IPv6 support in public access networks, the lack of real
auto configuration between IPv4 and IPv6 connectivity,
incompatibility in IPv4/IPv6 connectivity of hosts, etc. Solutions to
these other practical issues are being investigated currently by the
authors.

1.2 Introduction

The original BIA is an experimental function intended at allowing
IPv4 only applications on dual stack (dual connectivity) hosts to
communicate over IPv6 with remote IPv6 only applications. It was also
only useable in the specific context described.
The proposed BIA is a generalisation of the original concept,
allowing any mixture of IPv4/IPv6 type capable applications to
communicate over any IPv4/IPv6 connections with any IPv4/IPv6 type
capable remote applications. BIA effectively decouples application
IPv4/IPv6 capability from IPv4/IPv6 connectivity, and all allows
IPv4/IPv6 incompatibility between two communicating applications.
The concept is quite simple: BIA essentially does internal address
translation where necessary between IPv4 and IPv6 addresses in
between the application and the communication stack; functionally, it
can be compared to an internal NAT [RFC1631] between the
communication stack and the application layer. Conceptually BIA is an
adaptation layer that needs to be inserted between the application
layer and the IP communication stack as an API layer on top of the
native API functions, offering the same API functions as the native
ones to the application layer. In an optimized implementation, it can
probably better be implemented as an internal modification to the API
itself.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119] .

This document uses terms defined in [RFC2460], [RFC2893], [RFC2767],
[RFC3338], and [I-D.draft-huang-behave-rfc3338bis].

 Hamarsheh & Goossens Expires March 7, 2011 [Page 6]

2. Applicability and Related techniques

The term IPv4/IPv6 connectivity will be used, rather than stack,
since it is the connectivity that specifies whether the machine can
communicate using IPv4, IPv6 or both, and not only the implementation
of the IP stacks inside the machine; e.g. a dual stack machine has
both IPv4 and IPv6 stacks implemented, but may have only IPv4 or IPv6
network connectivity due to the type of network it is connected to,
or may have to use IPv6 because the remote has only IPv6
connectivity.

2.1 Applicability

The BIA is a mechanism that should be mandatory installed and enabled
on hosts potentially having to run applications with incompatible
IPv4/IPv6 addressing capability regarding to their IPv4/IPv6 network
connectivity. For example, IPv4 only applications that have to
communicate over IPv6; or IPv6 only applications having to
communicate over IPv4 only connectivity. It allows an IPv4 only
application which is running on the local host to communicate over
IPv6 with another IPv4/IPv6 application on another host without any
modification.
It is important to note that the mechanism assumes that the host
knows whether it is connected via dual IPv4/IPv6 connectivity, IPv4
only connectivity, or IPv6 only connectivity (this is an
implementation issue and will not be discussed here). Table 1
describes the scenarios of all IPv4/IPv6 capability types of
applications running over all possible types of host connectivities.
Only the situations with incompatibility between application
IPv4/IPv6 capability and IPv4/IPv6 connectivity are listed.

 Source Host Destination Host
+---------------+-------------------+ +-------------------+
| Appl. Version | Host Connectivity | Network | Host Connectivity |
+---------------+-------------------+ +-------------------+
| IPv4 | IPv6 | <-IPv6-> | IPv6 |
+---------------+-------------------+ +-------------------+
| IPv4 | IPv6 | <-IPv6-> | IPv4/IPv6 |
+---------------+-------------------+ +-------------------+
| IPv6 | IPv4 | <-IPv4-> | IPv4 |
+---------------+-------------------+ +-------------------+
| IPv6 | IPv4 | <-IPv4-> | IPv4/IPv6 |
+---------------+-------------------+ +-------------------+
| IPv4 | IPv4/IPv6 | <-IPv6-> | IPv6 |
+---------------+-------------------+ +-------------------+
| IPv6 | IPv4/IPv6 | <-IPv4-> | IPv4 |
+---------------+-------------------+ +-------------------+

Table 1: List all the scenarios treated by BIA mechanism

2.2 Related Techniques

The original BIA mechanism is customized for dual stack hosts. BIA is
a mechanism that is inserted between the socket API module and the
TCP/IP module. The main purpose of this mechanism is to make the IPv4
applications communicate with applications that can only communicate
using IPv6 (IPv6 only connectivity and/or IPv6 only application)
without any modification on those IPv4 applications. This would be
achieved by translating the IPv4 socket API functions into IPv6
socket API functions and vice versa.

 Hamarsheh & Goossens Expires March 7, 2011 [Page 7]

BIS mechanism [RFC2767] allows host to communicate with other IPv6
hosts using existing IPv4 applications. It is also customized for
dual stack hosts. The technique uses SIIT [RFC2765] to translate the
IPv4 traffic into IPv6 traffic and vice versa. However, this
mechanism uses translator which is inserted between the TCP/IP module
and the network card driver. The limitations of this mechanism are
similar to the SIIT limitations concerning the IP header translation
methods. Its implementation is also fully dependent on the network
interface driver.

3. Host Configurations using BIA

BIA can be installed on three different host configurations regarding
to IPv4/IPv6 connectivity:

1. IPv4 only host: only IPv4 connectivity.
2. IPv6 only host: only IPv6 connectivity.
3. IPv4/IPv6 host: both IPv4 and IPv6 connectivity.

The connectivity of the local host for communication with a remote
host is actually decided by several factors:

- The implementation of stack(s) in the local (IPv4 only stack, IPv6
only stack, or dual stack).

- The network connectivity of the local host (IPv4 network connectivity
only, IPv6 network connectivity only, both IPv4 and IPv6 network
connectivity).

- The connectivity of the remote machine (IPv4 only connectivity, IPv6
only connectivity, both IPv4 and IPv6 connectivity).

This means that the connectivity of a host, even with dual stack
implementation, is dynamic: it depends on the network connectivity,
which may change (e.g. a laptop that may be regularly connected to
different networks over time) and/or the connectivity of the remote
host.
For example a local host may be limited to IPv6 communication with a
remote host because it only has an IPv6 stack implemented, it may
have a dual stack implementation but only IPv6 network connectivity,
or the remote host may have only IPv6 connectivity.

The connectivity of the host will be combined with three
possibilities of application addressing capability.

- IPv4 only application: only IPv4 addressing capability.
- IPv6 only application: only IPv6 addressing capability.
- IPv4/IPv6 application: both IPv4 and IPv6 addressing capability.

There will be different behavior for BIA depending on the local host
IPv4/IPv6 connectivity as well as the application’s IPv4/IPv6
addressing capability.

- IPv4 applications communicating over IPv4 or IPv6 applications
communicating over IPv6 are the native situations and do not need
consideration here; in this case BIA simply has to perform no action.

- For an IPv4 application that needs to communicate using IPv6, the
IPv4 application’s addressing needs to be converted to IPv6 in order
to be transmitted to the remote host. The opposite conversion has to
be applied when an IPv6 application needs to communicate over IPv4.

- For an IPv6 only application on an IPv4/IPv6 host communicating with
an IPv4/IPv6 remote host, the mechanism provides an optional feature
to make this application able to communicate over IPv4 as well as
over IPv6. If this application is trying to communicate over IPv4,
the application’s addressing needs to be converted to IPv4 in order
to be transmitted to the remote host.

 Hamarsheh & Goossens Expires March 7, 2011 [Page 8]

3.1 IPv6 Only Host Architecture Using BIA

IPv4 applications need IPv4 connectivity for communication. BIA is a
mechanism that enables hosts that have to communicate using IPv6 to
run IPv4 applications. Such hosts MUST have BIA installed and
enabled. Figure 1 shows the architecture of the IPv6 host in which
BIA is installed.

 +---+
 | +-------------------+ |
 | | IPv4 Applications | |
 | +-------------------+ |
 | +-[BIA]-----------------------------------+ |
 | | +-----------------------+ | | | |
 | | |Socket API (IPv4, IPv6)| | |
 | | +-----------------------+ | |
 | +---+ |
 | +-------------------+ |
 | | IPv6 API | |
 | +-------------------+ |
 | | | |
 | | TCP(UDP)/IPv6 | |
 | | | |
 | +-------------------+ |
 +---+
 Figure 1: the architecture of IPv6 only host
 In which BIA is installed.

3.2 IPv4 Only Host Architecture Using BIA

IPv4 only hosts are capable of running IPv4 applications only. BIA
can be installed on such machines to allow these hosts to run IPv6
only applications as well. Figure 2 shows the host architecture of
the IPv4 host in which BIA is installed.

 +---+
 | +-------------------+ |
 | | IPv6 Applications | |
 | +-------------------+ |
 | +-[BIA]-----------------------------------+ |
 | | +-----------------------+ | | | |
 | | |Socket API (IPv4, IPv6)| | |
 | | +-----------------------+ | |
 | +---+ |
 | +-------------------+ |
 | | IPv4 API | |
 | +-------------------+ |
 | | | |
 | | TCP(UDP)/IPv4 | |
 | | | |
 | +-------------------+ |
 +---+
 Figure 2: the architecture of IPv4 only host
 In which BIA is installed.

 Hamarsheh & Goossens Expires March 7, 2011 [Page 9]

3.3 Dual Connectivity Host Architecture Using BIA

[RFC2893] suggests that dual stack hosts need applications, dual
TCP/IP modules and addresses for both IPv4 and IPv6. In such hosts,
the BIA will be used only when the received DNS record(s) version is
incompatible with the running of the application’s IPv4/IPv6
capability. For example, if a dual connectivity host is running an
IPv4 only application, and this application is going to communicate
with an IPv6 only host, then the name resolver will receive the
‘AAAA’ record for the destination host so that the current
connectivity will be IPv6, and BIA will translate the IPv4 socket API
functions into IPv6 socket API functions and vice versa. BIA always
will use the API functions that are compatible with the destination
address. Figure 3 shows a dual connectivity host on which BIA is
installed.

 +---+
 | +-------------------+ +-------------------+ |
 | | IPv4 Applications | | IPv6 Applications | |
 | +-------------------+ +-------------------+ |
 | +-[BIA]-----------------------------------+ |
 | | +-----------------------+ | | | |
 | | |Socket API (IPv4, IPv6)| | |
 | | +-----------------------+ | |
 | +---+ |
 | +-------------------+ +-------------------+ |
 | | IPv4 API | | IPv6 API | |
 | +-------------------+ +-------------------+ |
 | | | | | |
 | | TCP(UDP)/IPv4 | | TCP(UDP)/IPv6 | |
 | | | | | |
 | +-------------------+ +-------------------+ |
 +---+
 Figure 3: the architecture of dual stack host
 In which BIA is installed.

4. BIA Modules

Like BIA, the API translator in BIA consists of three modules, name
resolver, address resolver, and function mapper.

4.1 Name Resolver

In general the name resolver module returns a proper answer in
response to the IPv4 or IPv6 application’s DNS resolving request. The
name resolver has different behaviors depending on the running
application’s IPv4/IPv6 capability and the IPv4/IPv6 connectivity.

4.1.1 IPv4 only application on the local host:

- IPv4 Only Host:
Since this is the native situation, BIA needs to perform no action.

- IPv6 Only Host
This behavior of the name resolver occurs when an IPv4 application
needs to communicate using IPv6. The application will try to resolve
names via the IPv4 resolver library (e.g. gethostbyname). BIA will
call the IPv6 equivalent function (e.g. getnameinfo) that will
resolve both ‘A’ and ‘AAAA’ records. If it got ‘AAAA’ record(s) only,
it requests the address resolver (see below) to assign internal IPv4

 Hamarsheh & Goossens Expires March 7, 2011 [Page 10]

address(es) corresponding to the IPv6 address(es) of the ‘AAAA’
record(s), then creates ‘A’ record(s) for the assigned IPv4
address(es), finally returns the created ‘A’ record(s) of the
internal address(es) to the IPv4 application. Note that this behavior
is similar to the name resolver behavior in the BIA mechanism, but
there are differences in the way internal addresses are assigned and
managed (see address resolver further).
If both ‘A’ and ‘AAAA’ records are received, BIA will discard the ‘A’
record(s) as these cannot be used with IPv6, and select only the
‘AAAA’ record(s).

- IPv4/IPv6 Host:
The application will try to resolve names via the IPv4 resolver
library (e.g. gethostbyname). BIA will call the IPv6 equivalent
function (e.g. getnameinfo) that will resolve both ‘A’ and ‘AAAA’
records. If it got ‘AAAA’ record(s) only, it requests the address
resolver (see below) to assign internal IPv4 address(es)
corresponding to the IPv6 address(es) of the ‘AAAA’ record(s), then
creates ‘A’ record(s) for the assigned IPv4 address(es), finally
returns the created ‘A’ record(s) of the internal address(es) to the
IPv4 application. If it got ‘A’ record(s) only, the communication
will continue as native IPv4 communication, and BIA has to do no
operation. If both ‘A’ and ‘AAAA’ records are returned, the
communication can be effected natively using IPv4 using the ‘A’
record(s). But as an additional, optional feature, the IPv4
application can also be allowed to communicate over IPv6 with IPv6
peer(s). In that case, it requests the address resolver (see below)
to assign internal IPv4 address(es) corresponding to the IPv6
address(es) of the ‘AAAA’ record(s), then creates ‘A’ record(s) for
the assigned IPv4 address(es), and finally returns both the original
‘A’ for the remote AND the created ‘A’ record(s) of the internal
address(es) to the IPv4 application. This extends the communication
capabilities of the application to cover both IPv4 and IPv6
communication with the remote(s).

4.1.2 IPv6 Application on the local host:

- IPv6 Only Host:
Since this is the native situation, BIA needs to perform no action.

- IPv4 Only Host:
This situation occurs when an IPv6 application needs to communicate
using IPv4, the application will try to resolve names via the IPv6
resolver library (e.g. getnameinfo). BIA will call the IPv4
equivalent function (e.g. gethostbyname). If it got ‘A’ record(s)
only, it requests the address resolver to assign an internal IPv4-
embedded IPv6 address(es) [I-D.draft-ietf-behave-address-format]
corresponding to the IPv4 ddress(es), then creates ‘AAAA’ record(s)
for the IPv4-embedded IPv6 address(es) and returns these ‘AAAA’
record(s) to the IPv6 application.

- IPv4/IPv6 Host:
The application will try to resolve names via the IPv6 resolver
library (e.g. gethostinfo) that will resolve both ‘A’ and ‘AAAA’
records. If it got ‘A’ record(s) only, the name resolver will request
the address resolver to assign internal IPv4-embedded IPv6
address(es) corresponding to the IPv4 address(es), then creates
‘AAAA’ record(s) for the IPv4-embedded IPv6 address(es) and returns
these ‘AAAA’ record(s) to the application. If it got ‘AAAA’ records
only, the communication will continue as native IPv6 communication,
and BIA has to do no operation. If both ‘A’ and ‘AAAA’ records are

 Hamarsheh & Goossens Expires March 7, 2011 [Page 11]

returned, the communication can be effected natively using IPv6 using
the ‘AAAA’ record(s). But as an additional, optional feature, the
IPv6 application can also be allowed to communicate over IPv4 with
IPv4 peer(s). In that case, it requests the address resolver to
assign internal IPv4-embedded IPv6 address(es), then creates ‘AAAA’
record(s), and finally returns both the original ‘AAAA’ for the
remote AND the created ‘AAAA’ record(s) of the internal address(es)
to the IPv6 application. This extends the communication capabilities
of the application to cover both IPv4 and IPv6 communication with the
remote(s)

4.1.3 Reverse DNS lookup

For various reasons, applications may do “pointer” lookups, i.e. the
application passes the IP address and expects the host name in
return. BIA should be able to handle these calls. When address
translation (mapping or embedding) was performed on the host IP
address, the application will call with the internal address
generated by BIA. The DNS call to resolve the name should obviously
be made with the external address that corresponds to the translated
address, and the name returned for the external address needs to be
returned to the application.

4.1.4 Originating without DNS lookup

Some applications bypass the DNS lookup, and use an IP address
directly instead. While often this is bad practice, in some instances
this how the software is being operated. For an IPv4 only application
making such call, if an address mapping was stored for the supplied
IPv4 address, that mapping can be used. Otherwise, as no DNS call is
made, a correspondence between IPv4 and IPv6 addresses cannot be made
by the name and address resolvers, and communication using
incompatible application IPv4 capability and IPv6 connectivity is
impossible.
But for both for IPv4 and IPv6 applications, as a last resort, a
“dirty trick” can be attempted however. Using the IP address from the
application, a “pointer” DNS lookup can be made. If this succeeds, a
forward DNS lookup can be made on the returned name, which may return
one or more addresses of the other type required to establish the
required IPv4/IPv6 address relationship. If this trick does not
succeed, communication will be impossible, unless native
communication is available (IPv4 over IPv4 connectivity or IPv6 over
IPv6 connectivity).
It is recommended that address relationships can be manually entered
in the mapping table for such occurrences. Such address mappings are
in this case external IPv4-to-external IPv6 address mappings, and not
relations between an internal and an external address.

4.2 Address Resolver

The address resolver is only involved with incompatibility between
application IPv4/IPv6 capability and host IPv4/IPv6 connectivity. The
address resolver has different behavior depending on the name
resolver and function mapper requests. Like in the original BIA
address mapper, the address resolver in BIA maintains a table of the
pairs of an internal IPv4 address and an external IPv6 address in an
IPv6 only host. These IPv4 addresses are assigned from an IPv4
address pool for internal addresses, but the mechanism for the pool
is different here, as explained further.
The key difference between BIA and the BIA mechanism is the ability
for the later to address all kinds of remote host connectivity (i.e.

 Hamarsheh & Goossens Expires March 7, 2011 [Page 12]

IPv4 only, IPv6 only and dual IPv4/IPv6 connectivity). Different
addressing techniques are used depending on the remote host. The
sending host has to take the decision either to map the destination
IPv6 address into an internal IPv4 address assigned from the IPv4
address pool, or to embed the IPv4 address into an internal IPv4-
embedded IPv6 address. The Address resolver in BIA can receive two
possible address types – normally after calling the name resolver and
querying the DNS – regarding the remote host(s) for that domain name:

- IPv6 Address: in this case it receives ‘AAAA’ record(s) and the
address resolver has to map the IPv6 into an internal IPv4
address(es).

- IPv4 address: in this case it receives ‘A’ record(s) and the address
resolver has to embed the IPv4 address into an internal IPv6
address(es).

4.2.1 Mapping

This technique is used when an IPv4 application needs to communicate
using IPv6. It internally maintains a table of the pairs of IPv4
address(es) and IPv6 address(es). The IPv4 addresses are assigned
from an IPv4 address pool. These addresses should be reserved from an
unassigned class A domain reserved by IANA to be used by BIA for
mapping purposes (see further). When the name resolver or the
function mapper requests it to assign an internal IPv4 address
corresponding to an IPv6 address, it selects and returns an IPv4
address out of the pool, and registers a new entry into the table
dynamically. As in the original BIA, the registration occurs in the
following two cases:

1. When the name resolver gets only an ’AAAA’ record for the target
host name and there is not a mapping entry for the IPv6 address.
2. When the function mapper gets a socket API function call from the
data received and there is not a mapping entry for the IPv6 source
address.
Address mappings are stored. When the address resolver is called to
map an IPv6 external address into an IPv4 internal address, it will
first look up the table to check whether there was a previous mapping
for that address. If one is found, it will reuse and return that
mapping. If not, it will create a new mapping, store that mapping and
return the newly created mapping.

4.2.2 Embedding

Unlike the original BIA, BIA also allows IPv6 only applications to
communicate over IPv4. Therefore a correspondence between external
IPv4 addresses and internal IPv6 addresses need to be established.
The proposed method is “IPv4-in-IPv6” address embedding [I-D.draft-
ietf-behave-address-format]. The address resolver is configured to
use one of the methodologies that are described in [I-D.draft-ietf-
behave-address-format] to create an IPv4-embedded IPv6 address. The
new address consists of: Network Specific Prefix (NSP) (32 bits), the
IPv4 destination address (32 bits), and finally the suffix (64 bits).
Figure 4 demonstrates the IPv4-embedded IPv6 address structure.
As the real external IPv4 address is embedded into the internal IPv6
address, no registering is required in this case, as there is always
a unique correspondence.

 Hamarsheh & Goossens Expires March 7, 2011 [Page 13]

| 32 bits | 32 bits | 64 bits |
+--------------+--------------+---------------------------+
| NSP | IPv4 Address | Suffix |
+--------------+--------------+---------------------------+
Figure 4: The structure of IPv4-embedded IPv6 address

4.3 Function Mapper

The function mapper has different behavior depending on the host
connectivity. In dual connectivity hosts (IPv4 and IPv6
connectivity) the function mapper is used to decide which API
functions to call in the current communication. It is important to
note that the BIA modules will be invoked just if there is an
incompatibility between the running application and the connectivity
type. In case of IPv6 only or IPv4 only connectivity, the main goal
of the function mapper is just like in BIA mechanism. It is used when
conversion is required from IPv4 to IPv6 or the other way around
between application layer and communication stack. In that case it
translates the API functions used by the application into the API
functions needed for the communication, and vice versa.
In dual connectivity hosts, deciding which API functions to call
depends on the address type of the remote. The following is the
behavior of the function mapper running on dual connectivity hosts:

1. IPv4 only application communicating over IPv6: in this case it
will call the equivalent IPv6 socket API functions. The application
will use the IPv4 socket API to communicate with other hosts. Since
the application needs to communicate over IPv6, the function mapper
intercepts the IPv4 socket API functions and calls the equivalent
IPv6 socket API functions instead.

2. IPv6 only application communicating over IPv4: in this case it
will call the equivalent IPv4 socket API functions. The application
will use the IPv6 socket API to communicate with other hosts. Since
the application needs to communicate over IPv4, the function mapper
intercepts the IPv6 socket API functions and calls the equivalent
IPv4 socket API functions instead.

5. Behavior Examples

The following sections will describe the behaviors of the hosts and
applications that are listed in table 1.
In the following sections, the meanings of arrows are as follows:

 ---> A DNS message for name resolving created by the
 Applications and the name resolver in the API translator.
 +++> An IPv4 or IPv4-embedded IPv6 address request to and reply
 from the address resolver for the name resolver and the
 function mapper.
 ===> Data flow by API functions created by the applications
 and the function mapper in the API translator.

5.1 IPv4 Only Application, IPv6 Only Connectivity with an IPv6 Only
Peer.

5.1.1 Behavior for IPv4 Only Originator Application on IPv6 Only Host
Communicating to IPv6 Only Peer

When an IPv4 application sends a DNS query to its name server, the
name resolver intercepts the query and then creates a new query to

 Hamarsheh & Goossens Expires March 7, 2011 [Page 14]

resolve both ‘A’ and ‘AAAA’ records. When only ‘AAAA’ record(s) is
(are) resolved, the name resolver requests the address resolver to
get IPv4 address(es) corresponding to the IPv6 address(es) for each
IPv6 address from the ‘AAAA’ record. The address resolver first looks
up the table of stored entries to check if the correspondence was
made previously. If yes, the stored mapping is retrieved and passed
to the name resolver. If not, the address resolver creates a new
mapping for an internal IPv4 address corresponding to the IPv6
external address, stores the mapping, and returns the mapping to the
name resolver. The name resolver, upon receiving the internal IPv4
address(es) creates ‘A’ record(s) for the assigned IPv4 address(es)
and returns these to the application. In order for the IPv4
application to send IPv4 packets over IPv6, it calls the IPv4 socket
API function. The function mapper detects the API function call from
the application. The IPv6 address is required to invoke the IPv6
socket API function, thus the function mapper requests the IPv6
address corresponding for the internal IPv4 address to the address
resolver. The address resolver selects the external destination IPv6
address corresponding to the internal IPv4 address from the mapping
table and returns it to the function mapper. Using this IPv6 address,
the function mapper will invoke the IPv6 socket API function
corresponding to the IPv4 socket API function received from the
application.
When a reply is received, this will come in through the IPv6 socket
API, and the function mapper requests the address resolver for the
IPv4 address corresponding to the received IPv6 address. This IPv4
address will be used to translate the IPv6 socket API function call
into the corresponding IPv4 socket API function call for the IPv4
application. Figure 5 illustrates the behavior described above.

 Hamarsheh & Goossens Expires March 7, 2011 [Page 15]

 +-[IPv6 Only Host]-----------------+
 | API Translator |
 | +--------+ +--------+ +--------+ |
+-----+ +---------+ | |Name | |Address | |Function| | +------+ +---+
|IPv4 | | API | | |Resolver| |Resolver| | Mapper | | |IPv6 | |DNS|
|App. | | (V4/V6) | | +----|---+ +----|---+ +----|---+ | |Host | | |
+--|--+ +----|----+ +------|----------|----------|-----+ +---|--+ +-|-+
Resolve IPv4 for host 6					
----------------------->	query ‘A’ and ‘AAAA’ for host 6				
		-->			
		Reply with ‘AAAA’ Only			
		<--			
		Req IPv4			
		+++++++++>			
		Rep IPv4	{Address Mapping}		
		<+++++++++			
Reply with ‘A’ record					
<-----------------------					
An IPv4 API function call					
===>					
			Req IPv6		
			<+++++++++		
		{Lookup}	Rep IPv6		
			+++++++++>		
			IPv6 API function Call		
				===========>	
			IPv6 API function Call		
				<===========	
			Req IPv4		
			<+++++++++		
		{Lookup}	Rep IPv4		
			+++++++++>		
An IPv4 API function call					
<===					

 Figure 5: The behavior of the originator communicates with IPv6
 Application

5.1.2 Behavior for IPv4 Only Recipient Application on IPv6 Only Host

The IPv6 originator host that started the communication to this host
has resolved the address of this IPv6 host with ‘AAAA’ record(s)
through its name server, and has sent an IPv6 packet to this IPv6
host. The function mapper requests the internal IPv4 address
corresponding to the originator’s IPv6 address. The address resolver
looks up the mapping table to check for an entry. If one is found, it
returns the internal IPv4 address corresponding to the IPv6 address.
Then the function mapper invokes the corresponding IPv4 socket API
function for the IPv4 application corresponding to the IPv6 function.
If not, the address resolver creates a new mapping for an internal
IPv4 address corresponding to the IPv6 external address, stores the
mapping, and returns the mapping to the function resolver. The
remaining part of the handling is identical to what was described in
5.1.1. Figure 6 illustrates the behavior described above.

 Hamarsheh & Goossens Expires March 7, 2011 [Page 16]

 +-[IPv6 Only Host]-----------------+
 | API Translator |
 | +--------+ +--------+ +--------+ |
 +---------+ | |Name | |Address | |Function| | +---------+
 |IPv4 App | | |Resolver| |Resolver| |Mapper | | |IPv6 Only|
 | | | +----|---+ +----|---+ +----|---+ | |Host |
 +----|----+ +------|----------|----------|-----+ +----|----+
 | | | | IPv6 API function call
 | | | |<===================|
 | | |Req IPv4 | |
 | | |<+++++++++| |
 | {Address Mapping}|Rep IPv4 | |
 | | |+++++++++>| |
 |IPv4 API function call | | |
 |<===================================| |
 |Reply IPv4 data to host 6| | |
 |===================================>| |
 | | | | |
 | | | Req IPv6 | |
 | | |<+++++++++| |
 | {Address Lookup} | Rep IPv6 | |
 | | |+++++++++>| |
 | | | | |
 | | | |IPv6 API function call
 | | | |===================>|
 | | | | |

 Figure 6: Behavior of receiving data from IPv6 host

5.2 IPv4 Only Application, IPv6 Only Network and Dual Connectivity
Peer

5.2.1 Behavior for IPv4 Only Originator Application on IPv6 Only Host
Communicating with Dual Connectivity Host

When an IPv4 application sends a DNS query to its name server, the
name resolver intercepts the query and then creates a new query to
resolve both ‘A’ and ‘AAAA’ records. If both ‘A’ and ‘AAAA’ records
are resolved, the name resolver will only select the ‘AAAA’ records
and drop the drop the ‘A’ record(s) and requests the address resolver
to assign internal IPv4 address(es) corresponding to the IPv6
address(es). The remaining behavior is exactly like described in
5.1.1.

5.2.2 Behavior for IPv4 Only Recipient Application on IPv6 Only Host
Communicating with Dual Connectivity Host

Exactly the same as in section 5.1.2

5.3 IPv6 Only Application, IPv4 Only Connectivity with an IPv4 Only
Peer

5.3.1 Behavior for IPv6 Only Originator Application on IPv4 Only Host
Communicating with IPv4 Only Host

When an IPv6 application sends a DNS query to its name server to
resolve both ‘A’ and ‘AAAA’ records, the name resolver intercepts the
query and then creates a new query to resolve only ‘A’ record(s),
since it is a IPv4 only host. With only ‘A’ record(s) resolved, the
name resolver requests the address resolver to embed the IPv4

 Hamarsheh & Goossens Expires March 7, 2011 [Page 17]

address(es) into IPv6 address(es) using the format described in
section 4.2.2. The name resolver creates ‘AAAA’ record(s) for the
IPv4 embedded IPv6 address(es) and returns it to the application. In
order for the IPv6 application to send IPv6 packets to IPv4 only
host, it calls the IPv6 socket API function. The function mapper
detects the API function call from the application. The function
mapper requires an IPv4 address to invoke the IPv4 socket API
function, so it requests the corresponding IPv4 address to the
address resolver. The address resolver extracts the destination IPv4
address from the IPv4-embedded IPv6 address and returns it to the
function mapper. Using this IPv4 address, the function mapper will
invoke the IPv4 socket API function corresponding to the IPv6 socket
API function. We notice here the address resolver is not going to
save any new records to the mapping table.
When a reply is received, this will come in through the IPv4 socket
API, and the function mapper requests the address resolver for the
IPv6 address corresponding to the received IPv4 address. This IPv6
address will be used to translate the IPv4 socket API function call
into the corresponding IPv6 socket API function call for the IPv6
application. Figure 7 illustrates the behavior described above.

 +-[IPv4 Only Host]-----------------+
 | API Translator |
 | +--------+ +--------+ +--------+ |
+-----+ +---------+ | |Name | |Address | |Function| | +------+ +---+
|IPv6 | | API | | |Resolver| |Resolver| | Mapper | | |IPv4 | |DNS|
|App. | | (V4/V6) | | +----|---+ +----|---+ +----|---+ | |Host | | |
+--|--+ +----|----+ +------|----------|----------|-----+ +---|--+ +-|-+
Resolve IPv6 for host 4					
----------------------->	query ‘A’ and ‘AAAA’ for host 4				
		-->			
		Reply with ‘A’ Only			
		<--			
		Req IPv6			
		+++++++++>			
	{Embedding}	Rep IPv6			
		<+++++++++			
Reply with ‘AAAA’ record					
<-----------------------					
An IPv6 API function call					
===>					
			Req IPv4		
			<+++++++++		
	{Extracting}	Rep IPv4			
			+++++++++>		
			IPv4 API function Call		
				===========>	
			IPv4 API function Call		
				<===========	
			Req IPv6		
			<+++++++++		
	{Embedding}	Rep IPv6			
			+++++++++>		
An IPv6 API function call					
<===					

 Figure 7: The behavior of the originator communicates with IPv4

 Hamarsheh & Goossens Expires March 7, 2011 [Page 18]

 Application
5.3.2 Behavior for IPv6 Only Recipient Application on IPv4 Only Host
Communicating with IPv4 Only Host

The IPv4 originator host has resolved the address of this IPv4 host
with ‘A’ records through its name server, and has sent an IPv4 packet
to this IPv4 host. The function mapper requests the IPv6 address to
the address resolver in order to invoke the IPv6 socket API function
to communicate with the IPv6 application. The address resolver embeds
the IPv4 address(es) into IPv6 address(es) using the format described
in section 4.2.2, and returns this address. Then the function mapper
invokes the corresponding IPv6 socket API function for the IPv6
application corresponding to the IPv4 function.

 +-[IPv4 Only Host]-----------------+
 | API Translator |
 | +--------+ +--------+ +--------+ |
 +---------+ | |Name | |Address | |Function| | +---------+
 |IPv6 App | | |Resolver| |Resolver| |Mapper | | |IPv4 Only|
 | | | +----|---+ +----|---+ +----|---+ | |Host |
 +----|----+ +------|----------|----------|-----+ +----|----+
 | | | | IPv4 API function call
 | | | |<===================|
 | | |Req IPv6 | |
 | | |<+++++++++| |
 | {Embedding} |Rep IPv6 | |
 | | |+++++++++>| |
 |IPv6 API function call | | |
 |<===================================| |
 |Reply IPv6 data to host 4| | |
 |===================================>| |
 | | | | |
 | | | Req IPv4 | |
 | | |<+++++++++| |
 | {Extracting} | Rep IPv4 | |
 | | |+++++++++>| |
 | | | | |
 | | | |IPv4 API function call
 | | | |===================>|
 | | | | |

 Figure 8: Behavior of receiving data from IPv4 host

5.4 IPv6 Only Application, IPv4 Only Network and Dual Connectivity
Peer

5.4.1 Behavior for IPv6 Only Originator Application on IPv4 Only Host
Communicating with Dual Connectivity Host

When an IPv6 application sends a DNS query to its name server, the
name resolver intercepts the query and then creates a new query to
resolve ‘A’ record(s); no ‘AAAA’ record(s) are returned, as it is an
IPv4 only host. When ‘A’ record(s) is/are resolved, the name resolver
will request the address resolver to embed the IPv4 address(es) into
IPv6 address(es) using the format that is describes in section 4.2.2.
The remaining processing is as in 5.3.1.

5.4.2 Behavior for IPv6 Only Recipient Application on IPv4 Only Host
Communicating with Dual Connectivity Host

 Hamarsheh & Goossens Expires March 7, 2011 [Page 19]

Exactly the same as in section 5.3.2
5.5 IPv4 Only Application on Dual Connectivity Host Communicating to
IPv6 Only Peer

5.5.1 IPv4 Only Originator Application on Dual Connectivity Host
Communicating to IPv6 Only Peer

Exactly the same as in section 5.1.1

5.5.2 IPv4 Only Recipient Application on Dual Connectivity Host
Communicating to IPv6 Only Peer

Exactly the same as in section 5.1.2
5.6 IPv6 Only Application on Dual Connectivity Host Communicating to
IPv4 Only Peer

5.6.1 IPv6 Only Originator Application on Dual Connectivity Host
Communicating to IPv4 Only Peer

Exactly the same as in section 5.3.1

5.6.2 IPv4 Only Recipient Application on Dual Connectivity Host
Communicating to IPv4 Only Peer

Exactly the same as in section 5.3.2

6. Considerations

6.1 Socket API Conversion

IPv4 socket API functions are translated into semantically the same
IPv6 socket API functions and vice versa. See Appendix A for the API
list intercepted by BIA. IP addresses embedded in application layer
protocols (e.g., FTP) can be translated in API functions. Its
implementation depends on operating systems.

NOTE: Basically, IPv4 socket API functions are not fully compatible
with IPv6 since the IPv6 has new advanced features.

6.2 Address Mapping and Embedding

There are some considerations as to the choice and management of the
internal addresses:

- For a diversity of reasons, several applications store the addresses
of machines they have been communicating with, and check these
addresses on next contact. It is hence important that each mapping of
external IPv6 to internal IPv4 addresses is being stored by BIA, so
as to always use the same internal address for a particular external
address at the next communication. This implies a very wide IPv4
address range available for mapping. The authors propose a Class A
range, making approximately 16Mega addresses available. Even that can
get exhausted in some cases, so this range should be supplemented by
a round-robin scheme where, in case of exhaustion, the mappings that
remain unused for the longest time can be reused for new mappings
(not the creation time, but the last time that mapping was actively
used is important). It is considered that this would be sufficient in
about all operational situations. As this mapping list potentially
can become very large, the store/retrieval mechanism implementation
should be optimized for speed or it may introduce unacceptable long
delays. This is an implementation issue however, and will not be
dealt with here.

 Hamarsheh & Goossens Expires March 7, 2011 [Page 20]

- It is obvious that an IPv4/IPv6 correspondence while be frequently
required in the course of a communication; short time caching seems
essential to avoid having to look up the correspondence again during
the course of a communication.

- A machine having both IPv4 and IPv6 connectivity will be using both
IPv4 and IPv6 addresses. To avoid conflicts, it is essential that the
internal addresses used will never be used as an external address.
Original BIA proposed the use of a limited (256 addresses) range as a
“pool” in an “unassigned” IPv4 address range. The limited size (256)
is much too small for operational purposes, even not considering the
requirement for storing the mappings as described in the previous
paragraph, as a machine may have more than this number of mappings
active concurrently. Taking into account the requirement for storing
the mappings, a very large range of unassigned addresses is required.
Please refer to section 8 of this document.

6.3 ICMP Message Handling

When an application needs ICMP messages values (e.g., Type, Code,
etc.) sent from a network layer, ICMPv4 message values MAY be
translated into ICMPv6 message values based on SIIT [RFC2765], and
vice
versa. It can be implemented using raw socket.

6.4 Implementation Issues

Some operating systems support the preload library functions, so it
is easy to implement the API translator by using it. For example,
the user can replace all existing socket API functions with user-
defined socket API functions which translate the socket API function.
In this case, every IPv4 application has its own translation library
using a preloaded library which will be bound into the application
before executing it dynamically.

Some other operating systems support the user-defined layered
protocol allowing a user to develop some additional protocols and put
them in the existing protocol stack. In this case, the API
translator can be implemented as a layered protocol module.

In the above two approaches, it is assumed that there exists both
TCP(UDP)/IPv4 and TCP(UDP)/IPv6 stacks and there is no need to modify
or to add a new TCP-UDP/IPv6 stack.

7. Limitations

This mechanism supports unicast communications only. In order to
support multicast functions, some other additional functionalities
must be considered in the function mapper module.
Since the IPv6 socket API has new advanced features, it is difficult
to translate such kinds of IPv6 socket APIs into IPv4 socket APIs.
Thus, IPv6 inbound communication with advanced features may be
discarded.

It should be noted that the original BIA assumes the hosts have
compatible network connectivity. The new version of the BIA is
developed to support the heterogeneity between connectivity and
applications only, NOT incompatible network connectivity.
Communication between hosts with incompatible connectivity (IPv4 only
connectivity to IPv6 only connectivity, or the other way around)
cannot be handled by BIA, and other solutions need to be applied,
e.g. protocol translation mechanisms PNAT [I-D.draft-huang-behave-

 Hamarsheh & Goossens Expires March 7, 2011 [Page 21]

pnat], NAT64 [I-D.ietf-behave-v6v4-xlate-stateful], NAT-PT [RFC2766],
or [I-D.draft-ietf-behave-v6v4-framework].

8. IANA Considerations

The authors propose that IANA reserves one of the few remaining
reserved IPv4 Class A ranges specifically to be used in the internal
mapping, and making sure this range will never be used for external
addressing. While giving up one of the precious last remaining IPv4
Class A ranges for this purpose seems a big demand, the authors feel
that unblocking one of the main obstacles in IPv6 deployment warrants
this.

Similarly, a NSP for the embedding of IPv4 in internal IPv6 addresses
should be reserved by IANA for BIA use, in order to avoid conflicts
with other types of embedded IPv6 addresses being used as external
addresses. This assignment should not be a big problem however.

9. Security Considerations

The security consideration of BIA mostly relies on that of NAT-PT
[RFC2766].
The differences are due to the address translation occurring at the
API and not in the network layer. That is, since the mechanism uses
the API translator at the socket API level, hosts can utilize the
security of the network layer (e.g., IPsec) when they communicate
with IPv6 hosts using IPv4 applications via the mechanism. As well,
there isn't a DNS ALG as in NAT-PT, so there is no interference with
DNSSEC.

The use of address pooling may open a denial of service attack
vulnerability. So BIA should employ the same sort of protection
techniques as NAT-PT [RFC2766] does.

 Hamarsheh & Goossens Expires March 7, 2011 [Page 22]

10. References

[RFC3338] Lee, S., Shin, M-K., Kim, Y-J., Nordmark, E., and A.
 Durand, "Dual Stack Hosts Using "Bump-in-the-API" (BIA)",
 RFC 3338, October 2002.

[RFC2460] Deering, S., and R., Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, December 1998.

[RFC1631] Egevang, K., and P., Francis, "The IP Network Address
 Translator (NAT)", RFC 1631, May 1994.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2893] Gilligan, R., and E., Nordmark, "Transition Mechanisms for
 IPv6 Hosts and Routers", RFC 2893, August 2000.

[RFC2767] Tsuchiya, K., HIGUCHI, H., and Y. Atarashi, "Dual Stack
 Hosts using the "Bump-In-the-Stack" Technique (BIS)",
 RFC 2767, February 2000.

[I-D.huang-behave-rfc3338bis]
 Huang, B., Deng, H., and T. Savolainen, "Dual Stack Hosts
 Using "Bump-in-the-API" (BIA)",
 draft-huang-behave-rfc3338bis-02 (work in progress),
 March 2010.

[RFC2765] Nordmark, E., "Stateless IP/ICMP Translation Algorithm
 (SIIT)", RFC 2765, February 2000.

[RFC2893] Gilligan, R., and E., Nordmark, "Transition Mechanisms for
 IPv6 Hosts and Routers", RFC 2893, August 2000.

[I-D.draft-ietf-behave-address-format]
 Huitema, C., "IPv6 Addressing of IPv4/IPv6 Translators",
 draft-ietf-behave-address-format-10 (work in progress),
 August 2010.

[I-D.draft-huang-behave-pnat]
 Huang, B., and H., Deng, "Prefix NAT: Host based IPv6
 translation", draft-huang-behave-pnat-01 (work in
 progress), February 2010.

[I-D.ietf-behave-v6v4-xlate-stateful]
 Bagnulo, M., Matthews, P., and I. Beijnum, "Stateful
 NAT64: Network Address and Protocol Translation from IPv6
 Clients to IPv4 Servers", draft-ietf-behave-v6v4-xlate-
 stateful-12 (work in progress), July 2010.

[RFC2766] Tsirtsis, G., and P., Srisuresh, "Network Address
 Translation - Protocol Translation (NAT-PT)", RFC 2766,
 February 2000.

[I-D.draft-ietf-behave-v6v4-framework]
 Baker, F., Li, X., Bao, C., and K. Yin, "Framework for
 IPv4/IPv6 Translation",
 draft-ietf-behave-v6v4-framework-10(work in progress),
 August 17, 2010.

 Hamarsheh & Goossens Expires March 7, 2011 [Page 23]

Appendix A : API list intercepted by BIA

The following functions are the API list which SHOULD be intercepted
by BIA module.

The functions that the application uses to pass addresses into the
system are:

 bind()
 connect()
 sendmsg()
 sendto()

The functions that return an address from the system to an
application are:

 accept()
 recvfrom()
 recvmsg()
 getpeername()
 getsockname()

The functions that are related to socket options are:

 getsocketopt()
 setsocketopt()

The functions that are used for conversion of IP addresses embedded
in application layer protocol (e.g., FTP, DNS, etc.) are:

 recv()
 send()
 read()
 write()

As well, raw sockets for IPv4 and IPv6 MAY be intercepted.

Most of the socket functions require a pointer to the socket address
structure as an argument. Each IPv4 argument is mapped into
corresponding an IPv6 argument, and vice versa.

According to [RFC2553], the following new IPv6 basic APIs and
structures are required.

IPv4 new IPv6
--
 AF_INET AF_INET6
 sockaddr_in sockaddr_in6
 gethostbyname() getaddrinfo()
 gethostbyaddr() getnameinfo()
 inet_ntoa()/inet_addr() inet_pton()/inet_ntop()
 INADDR_ANY in6addr_any

BIA MAY intercept inet_ntoa() and inet_addr() and use the address
mapper for those. Doing that enables BIA to support literal IP
addresses.

The gethostbyname() call return a list of addresses. When the name
resolver function invokes getaddrinfo() and getaddrinfo() returns
multiple IP addresses, whether IPv4 or IPv6, they SHOULD all be
represented in the addresses returned by gethostbyname(). Thus if

 Hamarsheh & Goossens Expires March 7, 2011 [Page 24]

getaddrinfo() returns multiple IPv6 addresses, this implies that
multiple address mappings will be created; one for each IPv6 address.

 Hamarsheh & Goossens Expires March 7, 2011 [Page 25]

Authors' Addresses

Ala Hamarsheh
Electronics and Informatics Department ETRO/Vrije Universiteit
Brussel
Pleinlaan 2, 1050 Elsene, Brussels, Belgium
Tel: +32 2 629 2930
Fax: +32 2 629 2883
Email: ala.hamarsheh@vub.ac.be

Prof. Marnix Goossens
Electronics and Informatics Department ETRO/Vrije Universiteit
Brussel
Pleinlaan 2, 1050 Elsene, Brussels, Belgium
Tel: +32 2 629 2987
Fax: +32 2 629 2883
Email: marnix.goossens@vub.ac.be

