Network Working Group Tom George INTERNET-DRAFT Alcatel Ram Dantu IPmobile Malleswar Kalla Telcordia Hanns Juergen Schwarzbauer Siemens Greg Sidebottom Nortel Networks Ken Morneault Cisco Systems Expires January 2001 July 14, 2000 SS7 MTP2-User Peer-to-Peer Adaptation Layer Status of This Memo This document is an Internet-Draft and is in full conformance with all provisions of Section 10 of RFC 2026. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as 'work in progress.' The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html. To learn the current status of any Internet-Draft, please check the '1id-abstracts.txt' listing contained in the Internet- Drafts Shadow Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe), munnari.oz.au (Pacific Rim), ftp.ietf.org (US East Coast), or ftp.isi.edu (US West Coast). George, et al [Page 1] Internet Draft SS7 MTP2-User Peer-to-Peer Adaptation Layer July 2000 Abstract This Internet Draft defines a protocol supporting the transport of SS7 MTP Layer 3 signaling messages over IP using the services of the Stream Control Transmission Protocol (SCTP). This protocol would be used between SS7 Signaling Points employing the MTP Level 3 protocol. The SS7 Signaling Points may also employ standard SS7 links using the SS7 Message Transfer Part (MTP) Layer 2 to provide transport of MTP Layer 3 signaling messages. George, et al [Page 2] Internet Draft SS7 MTP2-User Peer-to-Peer Adaptation Layer July 2000 TABLE OF CONTENTS 1. Introduction............................................. 4 1.1 Scope................................................. 4 1.2 Terminology........................................... 4 1.3 Abbreviations......................................... 5 1.4 Signaling Transport Architecture...................... 5 1.5 Services Provided by M2PA............................. 7 1.6 Functions Provided by M2PA............................ 8 1.7 Definition of the M2PA Boundaries..................... 8 2. Protocol Elements........................................ 8 2.1 Common Message Header................................. 8 2.2 M2PA Messages......................................... 9 3. Procedures...............................................11 3.1 Procedures to Support MTP2 Features...................11 3.2 Procedures to Support the MTP3/MTP2 Interface.........14 4. Examples of M2PA Procedures..............................17 4.1 Link Initialization (Alignment).......................17 4.2 Message Transmission and Reception....................19 4.3 Link Status Indication................................19 4.4 Link Status Message (Processor Outage)................20 4.5 Congestion Notification to Upper layer................21 4.6 Link Deactivation.....................................22 4.7 Link Changeover.......................................23 5. Security.................................................25 6. IANA Considerations......................................25 7. Acknowledgements.........................................25 8. References...............................................26 9. Author's Addresses.......................................27 George, et al [Page 3] Internet Draft SS7 MTP2-User Peer-to-Peer Adaptation Layer July 2000 1. Introduction 1.1 Scope There is a need for Switched Circuit Network (SCN) signaling protocol delivery over an IP network. This includes delivery from a Signalling Gateway (SG) to a Media Gateway Controller (MGC) or IP Signaling Point, as described in the Framework Architecture for Signalling Transport [1]. This could allow for convergence of some signaling and data networks. SCN Signaling nodes would have access to databases and other devices in the IP network domain that do not employ SS7 signaling links. There may also be operational cost and performance advantages when traditional signaling links are replaced by IP network "connections". The delivery mechanism described in this document allows for full MTP3 message handling and network management capabilities between any two SS7 nodes, communicating over an IP network. An SS7 node equipped with an IP network connection is called an IP Signaling Point (IPSP). The IPSPs function as traditional SS7 nodes using the IP network instead of SS7 links. The delivery mechanism should * Support seamless operation of MTP3 protocol peers over an IP network connection. * Support the MTP Level 2 / MTP Level 3 interface boundary. * Support management of SCTP transport associations and traffic instead of MTP2 Links. * Support asynchronous reporting of status changes to management. 1.2 Terminology MTP - The Message Transfer Part of the SS7 protocol [2]. MTP2 - MTP Level 2, the MTP signaling link layer. MTP3 - MTP Level 3, the MTP signaling network layer. MTP2-User - A protocol that normally uses the services of MTP Level 2. The only MTP2 user is MTP3. Signaling End Point (SEP) - A node in an SS7 network that originates or terminates signaling messages. One example is a central office switch. IP Signaling Point (IPSP) - An SS7 Signaling Point with an IP network connection used for SS7 over IP. George, et al [Page 4] Internet Draft SS7 MTP2-User Peer-to-Peer Adaptation Layer July 2000 Signaling Gateway (SG) - A signaling agent that receives/sends SCN native signaling at the edge of the IP network [4]. In this context, an SG is an SS7 Signaling Point that has both an IP network connection used for SS7 over IP, and a traditional (non-IP) link to an SS7 network. Signaling Transfer Point (STP) - A node in an SS7 network that routes signaling messages based on their destination point code in the SS7 network. Association - An association refers to a SCTP association [5]. The association provides the transport for MTP3 protocol data units and M2PA adaptation layer peer messages. Network Byte Order - Most significant byte first, also known as "Big Endian". Stream - A stream refers to a SCTP stream [5]. 1.3 Abbreviations SCN - Switched Circuit Network SCTP - Stream Control Transmission Protocol SLC - Signaling Link Code SS7 - Signaling System 7 SSN - Stream Sequence Number 1.4 Signaling Transport Architecture The architecture that has been defined [4] for Switched Circuit Network (SCN) signaling transport over IP uses multiple components, including an IP transport protocol, the Stream Control Transmission Protocol (SCTP), and an adaptation module to support the services expected by a particular SCN signaling protocol from its underlying protocol layer. Within this framework architecture, this document defines an SCN adaptation module that is suitable for the transport of SS7 MTP3 messages. Figure 1 shows the seamless interworking at the MTP3 layer. MTP3 is adapted to the SCTP layer using the MTP2 User Peer-to-peer Adaptation Layer (M2PA). All the primitives between MTP3 and MTP2 are supported by M2PA. The SCTP association acts as an SS7 link between the IPSPs. George, et al [Page 5] Internet Draft SS7 MTP2-User Peer-to-Peer Adaptation Layer July 2000 ******** IP ******** * IPSP *--------* IPSP * ******** ******** +------+ +------+ | MTP3 | | MTP3 | +------+ +------+ | M2PA | | M2PA | +------+ +------+ | SCTP | | SCTP | +------+ +------+ | IP | | IP | +------+ +------+ IP - Internet Protocol IPSP - IP Signaling Point SCTP - Stream Control Transmission Protocol (see Reference [5]) Figure 1: M2PA Symmetrical Peer-to-Peer Architecture An IPSP may have SCCP and other SS7 layers above MTP3. Figure 2 shows an example. The Signaling Gateway is an IPSP equipped with both traditional SS7 and IP network connections. In effect, the Signaling Gateway acts as an STP. Any of the nodes in the diagram could have SCCP or other SS7 layers. STPs may or may not be present in the SS7 path between the SEP and the SG. ******** SS7 *************** IP ******** * SEP *--------* SG *--------* IPSP * ******** *************** ******** +------+ +------+ | TCAP | | TCAP | +------+ +------+ | SCCP | | SCCP | +------+ +-------------+ +------+ | MTP3 | | MTP3 | | MTP3 | +------+ +------+------+ +------+ | MTP2 | | MTP2 | M2PA | | M2PA | +------+ +------+------+ +------+ | MTP1 | | MTP1 | SCTP | | SCTP | | | | +------+ +------+ | | | | IP | | IP | +------+ +------+------+ +------+ SEP - SS7 Signaling Endpoint Figure 2: M2PA in IP Signaling Gateway George, et al [Page 6] Internet Draft SS7 MTP2-User Peer-to-Peer Adaptation Layer July 2000 Figure 2 is only an example. Other configurations are possible. For example, IPSPs without traditional SS7 links could use the protocol layers MTP3/M2PA/SCTP/IP to route SS7 messages in a network with all IP links. Another example, related to Figure 2, is that two SGs could be connected over an IP network to form an SG mated pair similar to the way STPs are provisioned in traditional SS7 networks. 1.4.1 Point Code Representation The MTP specification requires that each node with an MTP3 layer is represented by an SS7 point code. 1.5 Services Provided by M2PA The SS7 MTP3/MTP2 (MTP2-User) interface is retained at the termination point in the IP network. The M2PA protocol layer is required to provide the equivalent set of services to its user as provided by MTP Level 2 to MTP Level 3. These services are described in the following subsections. 1.5.1 Support for MTP Level 2 / MTP Level 3 interface boundary This interface is the same as the MTP2/MTP3 interface described in [2], with the addition of support for larger sequence numbers in [7]. Because SCTP uses larger sequence numbers than MTP, the MTP3 Changeover procedure must use the Extended Changeover Order and Extended Changeover Acknowledgment messages described in [7]. This will allow for use of the SCTP stream sequence numbers in the changeover messages. 1.5.2 Support for peer-to-peer communication In SS7, MTP Level 2 sends three types of messages, known as signal units: Message Signal Units (MSUs), Link Status Signal Units (LSSUs), and Fill-In Signal Units (FISUs). MSUs originate at a higher level than MTP2, and are destined for a peer at another node. Likewise, M2PA passes these messages from MTP3 to SCTP as data for transport across a link. These are called User Data messages in M2PA. LSSUs allow peer MTP2 layers to exchange status information. Analogous messages are needed for M2PA. The Link Status message serves this purpose. George, et al [Page 7] Internet Draft SS7 MTP2-User Peer-to-Peer Adaptation Layer July 2000 FISUs are sent when no other signal units are waiting to be sent. This purpose is served by the heartbeat messages in SCTP. FISUs also carry acknowledgment of messages. This function is performed by SCTP. Therefore, it is unnecessary for M2PA to send FISUs. 1.6 Functions Provided by M2PA 1.6.1 Mapping For each IP link, the M2PA layer must maintain a map of the SS7 link to its SCTP association and its corresponding IP destination. 1.6.2 SCTP Stream Management SCTP allows a user-specified number of streams to be opened during the initialization. It is the responsibility of the M2PA layer to ensure proper management of the streams allowed within each association. 1.6.3 Retention of MTP3 in the SS7 Network M2PA allows MTP3 to perform all of its Message Handling and Network Management functions with IPSPs as with other SS7 nodes. 1.7 Definition of the M2PA Boundaries 1.7.1 Definition of the M2PA / MTP Level 3 boundary The upper layer primitives provided by M2PA are the same as those provided by MTP2 to MTP3 [2]. 1.7.2 Definition of the Lower Layer Boundary between M2PA and SCTP The upper layer primitives provided by SCTP are described in Reference [5] Section 10 "Interface with Upper Layer". 2. Protocol Elements This section describes the format of various messages used in this protocol. All fields in an M2PA message must be transmitted in the network byte order, i.e., most significant byte first, unless otherwise stated. 2.1 Common Message Header The protocol messages for M2PA require a message header structure which contains a version, message type and message length. This message header is common among all SCN adaptation layers. The George, et al [Page 8] Internet Draft SS7 MTP2-User Peer-to-Peer Adaptation Layer July 2000 header structure is shown in Figure 3. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Version | Spare | Message Type | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Message Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | Figure 3: Common Message Header 2.1.1 Version The version field (vers) contains the version of the M2PA adapation layer. The supported versions are: 01 Release 1.0 of M2PA protocol 2.1.2 Message Type The valid message types are defined below and the message contents are described in Section 2.2. Each message can contain parameters. The following list contains the message types for the defined messages. MTP2 User Adaptatation Messages Type Value (Hex) User Data 0601 Link Status 0602 2.1.3 Message Length The Message length defines the length of the message in octets, not including the header. 2.2 M2PA Messages The following section defines the messages and parameter contents. The M2PA messages will use the command header and the M2PA specific header. George, et al [Page 9] Internet Draft SS7 MTP2-User Peer-to-Peer Adaptation Layer July 2000 2.2.1 User Data The User Data parameter is the data sent from the MTP3 in the form of the contiguous SIO and SIF fields of the MSU ([2] Q.703, section 2.2 Signal Unit Format). The format for the Data message is as follows: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ... | User Data | ... +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ No padding is added to the MTP3 message. Note that the User Data field contains only the LI, SIF and SIO octets. The other components of the message transmitted by MTP2 (the Flag, BSN, BIB, FSN, FIB, CK) are not included in M2PA. 2.2.2 Link Status The MTP2 Link Status message can be sent between M2PA peers to indicate link status. This message performs a function similar to the the Link Status Signal Unit in MTP2. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Status | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ The valid values for State are shown in the following table. Value Description 1 In Service 2 Processor Outage 3 Processor Outage Ended George, et al [Page 10] Internet Draft SS7 MTP2-User Peer-to-Peer Adaptation Layer July 2000 3. Procedures 3.1 Procedures to Support MTP2 Features 3.1.1 Signal Unit Format, Delimitation, Acceptance Messages for transmission across the network must follow the format described in section 2. SCTP provides reliable, in-sequence delivery. Therefore the related functionality of MTP2 is not needed. SCTP does not provide functions related to Link State Control in MTP2. These functions must be provided by M2PA. 3.1.2 Link Alignment Link alignment begins when MTP3 sends the Start command to M2PA. To begin alignment in M2PA, M2PA sends the ASSOCIATE primitive to SCTP if the SCTP association is not already established. To prevent duplicate associations from being established, it must be decided in advance which endpoint initiates the establishment of the association. In a pair of endpoints, the endpoint that initiates the establishment of the association is called the client. The other endpoint is the server. An endpoint may be a client in its relationship with one endpoint, and a server in its relationship with another endpoint. The client initiates the association using the server's IP address and the M2PA well-known port number as the destination endpoint. In order to allow for multiple links between the two endpoints, the client uses a different local port number for each link. It must be decided in advance which local ports are used by the client. Each of these client ports must be known to the server. Each combination of client IP address/port and server IP address/port must be mapped to the same Signaling Link Code (SLC) in the client and server. An example of the relationships between the associations and the SLCs is shown in Figure 4 and the following table. Note that a link is an SCTP association identified by two endpoints, in this case a client and server. Each endpoint is identified by an IP address and port number. Each association corresponds to an SLC. George, et al [Page 11] Internet Draft SS7 MTP2-User Peer-to-Peer Adaptation Layer July 2000 Client Server IPA IPB +-------------+ +-------------+ | | SCTP | | | SLC = a | association | SLC = a | | port = P1 +---------------+ port = PW | | | | | | | | | | | | | | | SCTP | | | SLC = b | association | SLC = b | | port = P2 +---------------+ port = PW | | | | | | | | | +-------------+ +-------------+ IPA = IP address of Client IPB = IP address of Server P1, P2 = Pre-selected port numbers for Client PW = Well-known port number for M2PA Figure 4: Associations and SLCs +---------------------------------------+-----+ | Association | SLC | +-------------------+-------------------+ | | Client | Server | | +------------+------+------------+------+ | | IP address | Port | IP address | Port | | +============+======+============+======+=====+ | IPA | P1 | IPB | PW | a | +------------+------+------------+------+-----+ | IPA | P2 | IPB | PW | b | +------------+------+------------+------+-----+ Table 1: Associations and SLCs The association shall contain two streams in each direction. Stream 0 is designated for Link Status messages. Stream 1 is designated for User Data messages. If SCTP fails to establish the association, and M2PA had received a Start command from its MTP3, then M2PA shall report to MTP3 that the link is out of service. If M2PA has an association ID for that association, it should ABORT the association. George, et al [Page 12] Internet Draft SS7 MTP2-User Peer-to-Peer Adaptation Layer July 2000 Once the association is established, M2PA invokes the GETSRTTREPORT primitive to determine the Smooth Round Trip Time (SRTT) from SCTP. If the SRTT exceeds its maximum allowed value (which is implementation dependent), M2PA should use the ABORT primitive to end the association. If M2PA had received a Start command from its MTP3, then M2PA shall report to MTP3 that the link is out of service. Once M2PA has received a Start from MTP3, the association is established, the SRTT is determined to be satisfactory, and if MTP3 has not deactivated the link, then: (a) If there is no local processor outage condition, M2PA sends a Link Status of In Service to its peer. (b) If there is a local processor outage condition, M2PA sends Link Status Processor Outage to its peer. When MTP3 sends Local Processor Recovered, then M2PA sends Link Status Processor Outage Ended to its peer, followed by Link Status In Service. If M2PA has not received a Link Status In Service from its peer at the time it sends the Link Status In Service, M2PA starts timer T1. Timer T1 is stopped when M2PA receives Link Status In Service from its peer. If M2PA does not receive Link Status In Service from its peer before T1 expires, then M2PA reports to MTP3 that the link is out of service. Then M2PA uses the ABORT primitive to end the association. Recommended value of T1 is 5-150 seconds. When the association is established, M2PA has sent Link Status In Service to its peer, and has received Link Status In Service from its peer, and there is no local processor outage condition, then M2PA sends Link In Service to its MTP3. If M2PA receives a Link Status of Processor Outage during alignment, and M2PA had received a Start command from its MTP3, M2PA shall report Remote Processor Outage to MTP3. M2PA shall ignore the Emergency and Emergency Ceases commands from MTP3. George, et al [Page 13] Internet Draft SS7 MTP2-User Peer-to-Peer Adaptation Layer July 2000 3.1.3 Processor Outage A processor outage occurs when M2PA cannot transfer messages because of a condition at a higher layer than M2PA. When M2PA detects a local processor outage, it sends a Link Status message to its peer with status Processor Outage. M2PA discards any messages received. The peer M2PA, upon receiving the Link Status Processor Outage message, shall report Remote Processor Outage to its MTP3. M2PA ceases sending Data messages. When the processor outage ceases, MTP3 sends a Local Processor Recovered indication to M2PA. The local M2PA notifies its peer by sending a Link Status message with status Processor Outage Ended. The peer notifies its MTP3 that the remote processor outage has ceased. 3.1.4 Level 2 Flow Control Notification of receive congestion from M2PA to MTP3 is implementation dependent. 3.1.5 Error monitoring If M2PA loses the SCTP association for a link, M2PA shall report to MTP3 that the link is out of service. 3.1.6 Transmission Priorities In MTP, Link Status messages have priority over User Data messages ([2] Q.703, section 11.2). To achieve this in M2PA, Link Status and User Data messages shall be sent via SCTP on separate streams. All messages are sent using the ordered delivery option. M2PA should give higher priority to reading the Link Status stream over the User Data stream. 3.2 Procedures to Support the MTP3/MTP2 Interface 3.2.1 Sending/receiving messages When MTP3 sends a message for transmission to M2PA, M2PA adds the M2PA header to the message, then passes the message to SCTP using the SEND primitive. When M2PA receives a Data message from SCTP, M2PA removes the M2PA header and passes the message to MTP3. Link Status and User Data messages shall be sent via SCTP on separate streams. George, et al [Page 14] Internet Draft SS7 MTP2-User Peer-to-Peer Adaptation Layer July 2000 3.2.2 Link activation and restoration When MTP3 requests that M2PA activate or restore a link by a Start command, M2PA shall follow the alignment procedure in section 3.1.2. 3.2.3 Link deactivation When MTP3 requests that M2PA deactivate a link by a Stop command, M2PA shall send an ABORT primitive to SCTP. 3.2.4 Flush buffers Processing of the Flush Buffers request from MTP3 is implementation dependent. 3.2.5 Signaling Link Congestion Notification of transmit congestion from SCTP to its upper layer (M2PA) is implementation dependent. Nevertheless, M2PA should receive notification from SCTP adequate to allow MTP3 to meet its requirements for signaling link transmit congestion in [2] Q.704, section 3.8. The US National version of SS7 has congestion levels. For US National SS7, the Indication primitive for Congestion Onset should report the congestion level. 3.2.6 Changeover The objective of the changeover is to ensure that signaling traffic carried by the unavailable signaling link is diverted to the alternative signaling link as quickly as possible while avoiding message loss, duplication, or mis-sequencing. For this purpose, the changeover procedure includes data retrieval, which is performed before opening the alternative signaling links to the diverted traffic. Data retrieval consists of these steps: (1) buffer updating, i.e., identifying all those User Data messages in the retransmission buffer of the unavailable signaling link which have not been received by the far end SCTP, as well as untransmitted messages, and (2) transferring those messages to the transmission buffers of the alternate links. Note that only User Data messages are retrieved and transmitted over the alternate links. Link Status messages shall not be transmitted over the alternate links. References to stream sequence numbers in this section refer only to the User Data stream's stream sequence numbers. George, et al [Page 15] Internet Draft SS7 MTP2-User Peer-to-Peer Adaptation Layer July 2000 In order to support changeover in M2PA, the SCTP Stream Sequence Numbers must be used in place of the Forward and Backward Sequence Numbers (FSN/BSN) of SS7. Stream Sequence Numbers used by SCTP are 16 bits long. MTP2's Forward and Backward Sequence Numbers are only seven bits long. Hence it is necessary for MTP3 to accomodate the larger SSNs. This is done through the use of the Extended Changeover Order (XCO) and Extended Changeover Acknowledgement (XCA) messages instead of the Changeover Order (COO) and Changeover Acknowledgement (COA) messages. The XCO and XCA messages are specified in Reference [7] section 9.8.1. Only the XCO and XCA messages from [7] are used. These messages have a 24-bit field for the sequence number. The upper 8 bits of the 24 bit field should be set to 0, and the SSN placed in the lower 16 bits. (Note that the Stream Sequence Numbers are used instead of the Transmission Sequence Numbers. The Transmission Sequence Numbers are 32 bits long, and therefore would not fit in the XCO and XCA messages.) For data retrieval, MTP3 requests Backward Sequence Number (BSN) from M2PA. This is the sequence number of the last message received by the local end. Normally, SCTP delivers ordered messages to the application. However, during congestion or failure condition, the sequence numbers of the acknowledged messages may have gaps. In particular, the SACK (selective acknowledgement message) message can have several of these gaps. Hence, it is important to scan through these gaps and find the sequence number before the first gap. This is the number from which the remote end has to transmit the messages. So this is the number considered as the Backward Sequence Number and communicated to the remote end. In a similar way, the remote end also detects the BSN and indicates to the local end. As soon as the MTP3 of the local end receives this BSN, MTP3 retrieves all the unacknowledged messages starting from BSN. This is accomplished through a Retrieval Request and FSNC request. After all the messages are sent from M2PA to MTP3, a Retrieval Complete indication is sent. Note that the sequence numbers and messages requested by MTP3 may be obtained by M2PA from SCTP via the Communication Lost primitive [5]. Retrieval of messages is an optional feature in SCTP. To perform data retrieval, it is necessary that this option be implemented, and that the SSNs of the messages are identified. SCTP must retain the messages for retrieval by MTP3/M2PA whenever an association is aborted. SCTP must be able to return messages to its upper layer by stream, and based on SSNs. If M2PA receives a Retrieve BSNT request from MTP3, M2PA responds with the BSNT indication. The BSNT value is the SCTP stream sequence number of the last message received by SCTP User Data stream before any gaps in the stream sequence numbers. George, et al [Page 16] Internet Draft SS7 MTP2-User Peer-to-Peer Adaptation Layer July 2000 (Note that any messages with stream sequence number greater than this BSNT value have been acknowledged by SCTP, but have not been passed up to M2PA. Therefore these messages should be retransmitted by the far end on the alternate link.) If M2PA receives a Retrieval Request and FSNC request from MTP3, M2PA retrieves from SCTP: (a) any transmitted messages beginning with the first unacknowledged message with stream sequence number greater than FSNC, and (b) any untransmitted messages in SCTP. Each of these messages is sent to MTP3, first (a), then (b). Then M2PA sends the Retrieval Complete indication to MTP3. Note: The changeover procedure makes it impossible for M2PA to have multiple User Data streams in a direction for one link. Buffer updating would have to be done for each User Data stream separately to avoid duplication of messages. But MTP3 provides for only one XCO message for sending the last-received SSN. 4. Examples of M2PA Procedures In general, messages passed between MTP3 and M2PA are the same as those passed between MTP3 and MTP2. M2PA interprets messages from MTP3 and sends the appropriate message to SCTP. Likewise, messages from SCTP are used to generate a meaningful message to MTP3. Note that throughout this section, the primitives between MTP3 and M2PA are named using the MTP terminology [1][2]. Communications between M2PA and SCTP are named using SCTP terminology. 4.1 Link Initialization (Alignment) An example of the message flow to bring an SS7 link in service is shown below. Proving is done by both ends of the link. To simplify the diagram, proving is shown on one end only. It is assumed in this example that SCTP has been initialized. George, et al [Page 17] Internet Draft SS7 MTP2-User Peer-to-Peer Adaptation Layer July 2000 MTP3 M2PA SCTP SCTP M2PA MTP3 ---- ---- ---- ---- ---- ---- Out of Service <------------ Emergency OR Emergency Ceases ------------> Start ------------> Associate ------------> (SCTP Association procedure) Communication Up Communication Up <------------ ------------> Even though the SCTP association is established, it is important that M2PA not send MTP3 data at this point. It must be confirmed that both ends of the link are ready for traffic. Otherwise, messages could be lost. The endpoints must exchange In Service messages. MTP3 M2PA SCTP SCTP M2PA MTP3 ---- ---- ---- ---- ---- ---- Get SRTT Report ------------> Link Status In Service ------------------------------------> Link Status In Service <------------------------------------ In Service <------------ At this point, MTP3 may begin sending data messages. George, et al [Page 18] Internet Draft SS7 MTP2-User Peer-to-Peer Adaptation Layer July 2000 4.2 Message Transmission and Reception Messages are transmitted using the Data Request primitive from MTP3 to M2PA. The diagram shows the case where the Link is In Service. The message is passed from MTP3 of the source to MTP3 of the destination. MTP3 M2PA SCTP SCTP M2PA MTP3 ---- ---- ---- ---- ---- ---- Message for transmission ------------> Send (Data Message) ------------> (SCTP sends message) Receive ------------> Received message ------------> 4.3 Link Status Indication If SCTP sends a Communication Lost primitive to M2PA, M2PA notifies MTP3 that the link is out of service. MTP3 responds in its usual way. MTP3 M2PA SCTP SCTP M2PA MTP3 ---- ---- ---- ---- ---- ---- Communication Lost <------------ Out of Service <------------ George, et al [Page 19] Internet Draft SS7 MTP2-User Peer-to-Peer Adaptation Layer July 2000 4.4 Link Status Message (Processor Outage) This example shows how M2PA responds to a local processor outage. M2PA sends a Link Status message to its peer. The peer M2PA notifies MTP3 of the outage. MTP3 can then follow the processor outage procedures in [2]. MTP3 M2PA SCTP SCTP M2PA MTP3 ---- ---- ---- ---- ---- ---- M2PA detects Local Processor Outage Link Status Processor Outage ------------> (SCTP sends message) Receive ------------> Remote Processor Outage ------------> Link Status Processor Outage Ended ------------> (SCTP sends message) Receive ------------> Remote Processor Outage Ceases ------------> George, et al [Page 20] Internet Draft SS7 MTP2-User Peer-to-Peer Adaptation Layer July 2000 4.5 Congestion Notification to Upper layer MTP3 expects notification of link congestion. In this example, it is assumed that SCTP notifies M2PA of congestion onset and abatement. If the congestion condition should continue long enough, MTP3 takes the link out of service. In this case, it is possible to start the link changeover procedure. MTP3 M2PA SCTP SCTP M2PA MTP3 ---- ---- ---- ---- ---- ---- Implementation dependent indication of congestion onset <------------ Congestion Onset <------------ Implementation dependent indication of congestion abatement <------------ Congestion Abatement <------------ George, et al [Page 21] Internet Draft SS7 MTP2-User Peer-to-Peer Adaptation Layer July 2000 4.6 Link Deactivation The MTP3 can request that a SS7-IP link be taken out-of-service. M2PA uses the Abort message as shown below. MTP3 M2PA SCTP SCTP M2PA MTP3 ---- ---- ---- ---- ---- ---- Stop ------------> Abort ------------> (SCTP performs its termination procedure) Communication Lost <------------ Out of Service <------------ George, et al [Page 22] Internet Draft SS7 MTP2-User Peer-to-Peer Adaptation Layer July 2000 4.7 Link Changeover In this example, MTP3 performs a changeover because the link went out of service. MTP3 selects a different link for retransmitting the unacknowledged messages. Note that in this example, the sequence numbers and messages requested by MTP3 are sent from SCTP to M2PA in the Communication Lost primitive. In general, the retrieval of sequence numbers and messages is implementation-dependent. George, et al [Page 23] Internet Draft SS7 MTP2-User Peer-to-Peer Adaptation Layer July 2000 MTP3 M2PA SCTP SCTP M2PA MTP3 ---- ---- ---- ---- ---- ---- Communication Lost <------------ Out of Service <------------ Retrieve BSN ------------> (M2PA locates first gap in received messages) Indicate BSN <------------ XCO (BSN) on another link ------------------------------------------------------------> Retrieve BSN <------------ Indicate BSN ------------> XCA (BSN) <------------------------------------------------------------ Retrieval Request and FSNC (FSNC = BSN from XCA message) ------------> (M2PA locates first gap in acknowledgements) Retrieved Message <------------ Retrieved Message <------------ Retrieval Complete <------------ Send messages on another link. George, et al [Page 24] Internet Draft SS7 MTP2-User Peer-to-Peer Adaptation Layer July 2000 5. Security SCN adaptation layers rely on SCTP to provide security. 6. IANA Considerations The SCTP (and UDP/TCP) Registered User Port Number Assignment for M2PA is TBD. The value assigned by IANA for the Payload Protocol Identifier in the SCTP Payload Data chunk is M2PA TBD The SCTP Payload Protocol Identifier is included in each SCTP Data chunk, to indicate which protocol the SCTP is carrying. This Payload Protocol Identifier is not directly used by SCTP but may be used by certain network entities to identify the type of information being carried in a Data chunk. The User Adaptation peer may use the Payload Protocol Identifier as a way of determining additional information about the data being presented to it by SCTP. 7. Acknowledgements The authors would like to thank Ian Rytina for his valuable comments and suggestions. George, et al [Page 25] Internet Draft SS7 MTP2-User Peer-to-Peer Adaptation Layer July 2000 8. References [1] ITU-T Recommendation Q.700, 'Introduction To ITU-T Signalling System No. 7 (SS7)' [2] ITU-T Recommendation Q.701-Q.705, 'Signalling System No. 7 (SS7) - Message Transfer Part (MTP)' [3] Bellcore GR-246-CORE 'Bell Communications Research Specification of Signaling System Number 7', Volume 1, December 1995 [4] RFC 2719, Framework Architecture for Signaling Transport, October 1999 [5] Stream Control Transmission Protocol, draft-ietf-sigtran-sctp-12.txt, July 12, 2000 [6] SS7 MTP2-User Adaptation Layer, draft-ietf-sigtran-m2ua-00.txt, March 2000 [7] ITU-T Recommendation Q.2210, 'Message transfer part level 3 functions and messages using the services of ITU-T Recommendation Q.2140' George, et al [Page 26] Internet Draft SS7 MTP2-User Peer-to-Peer Adaptation Layer July 2000 9. Author's Addresses Tom George Tel: +1-972-519-3168 Alcatel USA EMail: tom.george@usa.alcatel.com 1000 Coit Road Plano, TX 75075 USA Ram Dantu, Ph.D. Tel: +1-972-234-6070 extension 211 IPmobile EMail: rdantu@ipmobile.com 1651 North Glenville, Suite 216 Richardson, TX 75081 USA Malleswar Kalla Tel: +1-973-829-5212 Telcordia Technologies EMail: kalla@research.telcordia.com MCC 1J211R 445 South Street Morristown, NJ 07960 USA Hanns Juergen Schwarzbauer Tel: +49-89-722-24236 SIEMENS AG HannsJuergen.Schwarzbauer@icn.siemens.de Hofmannstr. 51 81359 Munich Germany Greg Sidebottom Tel: +1-613-763-7305 Nortel Networks EMail: gregside@nortelnetworks.com 3685 Richmond Rd, Nepean, Ontario Canada K2H5B7 Ken Morneault Tel: +1-703-484-3323 Cisco Systems Inc. EMail: kmorneau@cisco.com 13615 Dulles Technology Drive Herndon, VA. 20171 USA This Internet Draft expires January 2001. George, et al [Page 27]