Internet-Draft Additional LMS Signatures April 2021
Fluhrer & Dang Expires 4 October 2021 [Page]
Workgroup:
Crypto Forum Research Group
Internet-Draft:
draft-fluhrer-lms-more-parm-sets-03
Published:
Intended Status:
Informational
Expires:
Authors:
S. Fluhrer
Cisco Systems
Q. Dang
NIST

Additional Parameter sets for LMS Hash-Based Signatures

Abstract

This note extends LMS (RFC 8554) by defining parameter sets by including additional hash functions. Hese include hash functions that result in signatures with significantly smaller than the signatures using the current parameter sets, and should have sufficient security.

This document is a product of the Crypto Forum Research Group (CFRG) in the IRTF.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 3 October 2021.

Table of Contents

1. Introduction

Stateful hash based signatures have small private and public keys, are efficient to compute, and are believed to have excellent security. One disadvantage is that the signatures they produce tend to be somewhat large (possibly 1k - 4kbytes). What this draft explores are a set of parameter sets to the LMS (RFC8554) stateful hash based signature method that reduce the size of the signature significantly.

1.1. Disclaimer

This document is not intended as legal advice. Readers are advised to consult with their own legal advisers if they would like a legal interpretation of their rights.

The IETF policies and processes regarding intellectual property and patents are outlined in [RFC3979] and [RFC4879] and at https://datatracker.ietf.org/ipr/about.

2. Conventions Used In This Document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

3. Additional Hash Function Definitions

3.1. 192 bit Hash Function based on SHA256

This document defines a SHA-2 based hash function with a 192 bit output. As such, we define SHA256-192 as a truncated version of SHA256 [FIPS180]. That is, it is the result of performing a SHA256 operation to a message, and then omitting the final 64 bits of the output. It is the same procedure used to define SHA224, except that we use the SHA256 IV (rather than using one dedicated to SHA256-192), and you truncate 64 bits, rather than 32.

The following test vector may illustrate this:

  SHA256("abc")     = ba7816bf 8f01cfea 414140de 5dae2223
                      b00361a3 96177a9c b410ff61 f20015ad
  SHA256-192("abc") = ba7816bf 8f01cfea 414140de 5dae2223
                      b00361a3 96177a9c

We use the same IV as the untruncated SHA256, rather than defining a distinct one, so that we can use a standard SHA256 hash implementation without modification. In addition, the fact that you get partial knowledge of the SHA256 hash of a message by examining the SHA256-192 hash of the same message is not a concern for this application. Each message that is hashed is randomized. Any message being signed includes the C randomizer which varies per message; in addition, all hashes include the I identifier, which varies depending on the public key. Therefore, signing the same message by SHA256 and by SHA256-192 will not result in the same value being hashed, and so the latter hash value is not a prefix of the former one.

3.2. 256 bit Hash Function based on SHAKE256

This document defines a SHAKE-based hash function with a 256 bit output. As such, we define SHAKE256-256 as a hash where you submit the preimage to the SHAKE256 XOF, with the output being 256 bits, see FIPS 202 [FIPS202] for more detail.

3.3. 192 bit Hash Function based on SHAKE256

This document defines a SHAKE-based hash function with a 192 bit output. As such, we define SHAKE256-192 as a hash where you submit the preimage to the SHAKE256 XOF, with the output being 192 bits, see FIPS 202 [FIPS202] for more detail.

4. Additional LM-OTS Parameter Sets

Here is a table with the LM-OTS parameters defined that use the above hashes:

Table 1
Parameter Set Name H n w p ls id
LMOTS_SHA256_N24_W1 SHA256-192 24 1 200 8 TBD1
LMOTS_SHA256_N24_W2 SHA256-192 24 2 101 6 TBD2
LMOTS_SHA256_N24_W4 SHA256-192 24 4 51 4 TBD3
LMOTS_SHA256_N24_W8 SHA256-192 24 8 26 0 TBD4
LMOTS_SHAKE_N32_W1 SHAKE256-256 32 1 265 7 TBD5
LMOTS_SHAKE_N32_W2 SHAKE256-256 32 2 133 6 TBD6
LMOTS_SHAKE_N32_W4 SHAKE256-256 32 4 67 4 TBD7
LMOTS_SHAKE_N32_W8 SHAKE256-256 32 8 34 0 TBD8
LMOTS_SHAKE_N24_W1 SHAKE256-192 24 1 200 8 TBD9
LMOTS_SHAKE_N24_W2 SHAKE256-192 24 2 101 6 TBD10
LMOTS_SHAKE_N24_W4 SHAKE256-192 24 4 51 4 TBD11
LMOTS_SHAKE_N24_W8 SHAKE256-192 24 8 26 0 TBD12

The id is the IANA-defined identifier used to denote this specific parameter set, and which appears in both public keys and signatures.

The SHA256_N24, SHAKE_N32, SHAKE_N24 in the parameter set name denote the SHA256-192, SHAKE256-256 and SHAKE256-192 hash functions defined in Section 3.

Remember that the C message randomizer (which is included in the signature) is the size of the hash n, and so it shrinks from 32 bytes to 24 bytes for those the parameter sets that use either SHA256-192 or SHAKE256-192.

5. Additional LM Parameter Sets

Here is a table with the LM parameters defined that use SHA256-192, SHAKE256-256 and SHAKE256-192 hash functions:

Table 2
Parameter Set Name H m h id
LMS_SHA256_M24_H5 SHA256-192 24 5 TBD13
LMS_SHA256_M24_H10 SHA256-192 24 10 TBD14
LMS_SHA256_M24_H15 SHA256-192 24 15 TBD15
LMS_SHA256_M24_H20 SHA256-192 24 20 TBD16
LMS_SHA256_M24_H25 SHA256-192 24 25 TBD17
LMS_SHAKE_M32_H5 SHAKE256-256 32 5 TBD18
LMS_SHAKE_M32_H10 SHAKE256-256 32 10 TBD19
LMS_SHAKE_M32_H15 SHAKE256-256 32 15 TBD20
LMS_SHAKE_M32_H20 SHAKE256-256 32 20 TBD21
LMS_SHAKE_M32_H25 SHAKE256-256 32 25 TBD22
LMS_SHAKE_M24_H5 SHAKE256-192 24 5 TBD23
LMS_SHAKE_M24_H10 SHAKE256-192 24 10 TBD24
LMS_SHAKE_M24_H15 SHAKE256-192 24 15 TBD25
LMS_SHAKE_M24_H20 SHAKE256-192 24 20 TBD26
LMS_SHAKE_M24_H25 SHAKE256-192 24 25 TBD27

The id is the IANA-defined identifier used to denote this specific parameter set, and which appears in both public keys and signatures.

The SHA256_M24, SHAKE_M32, SHAKE_M24 in the parameter set name denote the SHA256-192, SHAKE256-256 and SHAKE256-192 hash functions defined in Section 3.

6. Comparisons of 192 bit and 256 bit parameter sets

Switching to a 192 bit hash affects the signature size, the computation time, and the security strength.

The major reason for considering these truncated parameter sets is that they cause the signatures to shrink considerably.

Here is a table that gives the space used by both the 256 bit parameter sets and the 192 bit parameter sets, for a range of plausible Winternitz parameters and tree heights

Table 3
ParmSet Winternitz 256 bit hash 192 bit hash
15 4 2672 1624
15 8 1616 1024
20 4 2832 1744
20 8 1776 1144
15/10 4 5236 3172
15/10 8 3124 1972
15/15 4 5396 3292
15/15 8 3284 2092
20/10 4 5396 3292
20/10 8 3284 2092
20/15 4 5556 3412
20/15 8 3444 2212

ParmSet: this is the height of the Merkle tree(s); parameter sets listed as a single integer have L=1, and consist a single Merkle tree of that height; parameter sets with L=2 are listed as x/y, with x being the height of the top level Merkle tree, and y being the bottom level.

Winternitz: this is the Winternitz parameter used (for the tests that use multiple trees, this applies to all of them).

256 bit hash: the size in bytes of a signature, assuming that a 256 bit hash is used in the signature (either SHA256 or SHAKE256-256).

192 bit hash: the size in bytes of a signature, assuming that a 192 bit hash is used in the signature (either SHA256-192 or SHAKE256-192).

An examination of the signature sizes show that the 192 bit parameters consistently give a 35% - 40% reduction in the size of the signature in comparison with the 256 bit parameters.

In addition, for SHA256-192, there is a smaller (circa 20%) reduction in the amount of computation required for a signature operation with a 192 bit hash. The SHAKE256-192 signatures may have either a faster or slower computation, depending on the implementation speed of SHAKE versus SHA256 hashes.

The SHAKE256-256 based parameter sets give no space advantage (or disadvantage) over the existing SHA256-based parameter sets; any performance delta would depend solely on the implementation and whether they can generate SHAKE hashes faster than SHA256 ones.

7. IANA Considerations

[TO BE REMOVED: The entries from Section 4, namely LMOTS_SHA256_N24_W1 through LMOTS_SHAKE_N24_W8 , should be inserted into https://www.iana.org/assignments/leighton-micali-signatures/leighton-micali-signatures.xhtml#lm-ots-signatures ]

[TO BE REMOVED: The entries from Section 5, namely LMS_SHA256_M24_H5 through LMS_SHAKE_M24_H25 should be inserted into https://www.iana.org/assignments/leighton-micali-signatures/leighton-micali-signatures.xhtml#leighton-micali-signatures-1 ]

Until IANA assigns the codepoints, we will (for testing purposes only) use the following private use code points to do any necessary interoperability testing. Such an implementation must change to the IANA-assigned code points when they become available.

Table 4
Parameter Set Name Temporary Codepoint
LMOTS_SHA256_N24_W1 0xE0000001
LMOTS_SHA256_N24_W2 0xE0000002
LMOTS_SHA256_N24_W4 0xE0000003
LMOTS_SHA256_N24_W8 0xE0000004
LMOTS_SHAKE_N32_W1 0xE0000005
LMOTS_SHAKE_N32_W2 0xE0000006
LMOTS_SHAKE_N32_W4 0xE0000007
LMOTS_SHAKE_N32_W8 0xE0000008
LMOTS_SHAKE_N24_W1 0xE0000009
LMOTS_SHAKE_N24_W2 0xE000000A
LMOTS_SHAKE_N24_W4 0xE000000B
LMOTS_SHAKE_N24_W8 0xE000000C
LMS_SHA256_M24_H5 0xE0000001
LMS_SHA256_M24_H10 0xE0000002
LMS_SHA256_M24_H15 0xE0000003
LMS_SHA256_M24_H20 0xE0000004
LMS_SHA256_M24_H25 0xE0000005
LMS_SHAKE_M32_H5 0xE0000006
LMS_SHAKE_M32_H10 0xE0000007
LMS_SHAKE_M32_H15 0xE0000008
LMS_SHAKE_M32_H20 0xE0000009
LMS_SHAKE_M32_H25 0xE000000A
LMS_SHAKE_M24_H5 0xE000000B
LMS_SHAKE_M24_H10 0xE000000C
LMS_SHAKE_M24_H15 0xE000000D
LMS_SHAKE_M24_H20 0xE000000E
LMS_SHAKE_M24_H25 0xE000000F

8. Security Considerations

The strength of a signature that uses the SHA256-192, SHAKE256-256 and SHAKE256-192 hash functions is based on the difficultly in finding preimages or second preimages to those hash functions.

The case of SHAKE256-256 is essentially the same as the existing SHA256 based signatures; the difficultly of finding preimages is essentially the same, and so they have (barring unexpected cryptographical advances) essentially the same level of security.

The case of SHA256-192 and SHAKE256-192 requires closer analysis.

For a classical (nonquantum) computer, they have no known attack better than performing hashes of a large number of distinct preimages; as a successful attack has a high probability of requiring nearly 2**192 hash computations (for either SHA256-192 or SHAKE256-192). These can be taken as the expected work effort, and would appear to be completely infeasible in practice.

For a Quantum Computer, they could in theory use a Grover's algorithm to reduce the expected complexity required to circa 2**96 hash computations (for N=24). On the other hand, to implement Grover's algorithm with this number of hash computations would require performing circa 2**96 hash computations in succession, which will take more time than is likely to be acceptable to any attacker. To speed this up, the attacker would need to run a number of instances of Grover's algorithm in parallel. This would necessarily increase the total work effort required, and to an extent that makes it likely to be infeasible.

Hence, we expect that LMS based on these hash functions is secure against both classical and quantum computers, even though, in both cases, the expected work effort is less (for the N=24 case) than against either SHA256 or SHAKE256-256.

8.1. Note on the version of SHAKE

FIPS 202 defines both SHAKE128 and SHAKE256. This specification selects SHAKE256, even though it is, for large messages, less efficient. The reason is that SHAKE128 has a low upper bound on the difficulty of finding preimages (due to the invertibility of its internal permutation), which would limit the strength of LMS (whose strength is based on the difficulty of finding preimages). Hence, we specify the use of SHAKE256, which has a considerably stronger preimage resistance.

9. References

9.1. Normative References

[FIPS180]
National Institute of Standards and Technology, "Secure Hash Standard (SHS)", FIPS 180-4, .
[FIPS202]
National Institute of Standards and Technology, "SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions", FIPS 202, .
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, , <https://www.rfc-editor.org/info/rfc2119>.
[RFC3979]
Bradner, S., Ed., "Intellectual Property Rights in IETF Technology", RFC 3979, DOI 10.17487/RFC3979, , <https://www.rfc-editor.org/info/rfc3979>.
[RFC4879]
Narten, T., "Clarification of the Third Party Disclosure Procedure in RFC 3979", RFC 4879, DOI 10.17487/RFC4879, , <https://www.rfc-editor.org/info/rfc4879>.
[RFC5226]
Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA Considerations Section in RFCs", RFC 5226, DOI 10.17487/RFC5226, , <https://www.rfc-editor.org/info/rfc5226>.
[RFC8554]
McGrew, D., Curcio, M., and S. Fluhrer, "Leighton-Micali Hash-Based Signatures", RFC 8554, DOI 10.17487/RFC8554, , <https://www.rfc-editor.org/info/rfc8554>.

9.2. Informative References

[Grover96]
Grover, L.K., "A fast quantum mechanical algorithm for database search", 28th ACM Symposium on the Theory of Computing p. 212, .

Appendix A. Test Cases

This section provides three test cases that can be used to verify or debug an implementation, one for each hash function. This data is formatted with the name of the elements on the left, and the value of the elements on the right, in hexadecimal. The concatenation of all of the values within a public key or signature produces that public key or signature, and values that do not fit within a single line are listed across successive lines.

Test Case 1 Private Key for SHA256-192

--------------------------------------------
(note: procedure in Appendix A of RFC8554 is used)
SEED        000102030405060708090a0b0c0d0e0f
            1011121314151617
I           202122232425262728292a2b2c2d2e2f
--------------------------------------------
--------------------------------------------

Test Case 1 Public Key for SHA256-192

--------------------------------------------
HSS public key
levels      00000001
--------------------------------------------
LMS type    0e000001                         # LMS_SHA256_M24_H5
LMOTS type  0e000004                         # LMOTS_SHA256_N24_W8
I           202122232425262728292a2b2c2d2e2f
K           2c571450aed99cfb4f4ac285da148827
            96618314508b12d2
--------------------------------------------
--------------------------------------------

Test Case 1 Message for SHA256-192

--------------------------------------------
Message     54657374206d657361676520666f7220  |Test mesage for |
            5348413235362f3139320a            |SHA256-192.|
--------------------------------------------

Test Case 1 Signature for SHA256-192

--------------------------------------------
HSS signature
Nspk        00000000
sig[0]:
--------------------------------------------
LMS signature
q           00000005
--------------------------------------------
LMOTS signature
LMOTS type  e0000004                         # LMOTS_SHA256_N24_W8
C           0b5040a18c1b5cabcbc85b047402ec62
            94a30dd8da8fc3da
y[0]        dcc7fa8c8d2d2a8cb41b4fb080443d82
            302d75edf5e1ab2a
y[1]        6dfc604ac2510910dd8e289eb0b43986
            f44f72156c6f5829
y[2]        25a6220a0b38dc3e518afe5b1b9b2525
            e25364c02cea0298
y[3]        1a1136b7c7263f5c64babe117bf808e4
            5299716d291b9cd7
y[4]        134667b731876d2b36170f4b4bf1dae8
            d68d46da97b4e68b
y[5]        d17d25948a09526225e1a40a55212fac
            d8e9ddbef3efe9a0
y[6]        13f4edcb07e401ba4fd42625b573e2b1
            5515769e6fc3511d
y[7]        ffbc1e12acfb9bf0c2fac322bbfaf292
            46254cfd4d497213
y[8]        1e9ad5bc6fac2e2f3c3dbd92a46c6187
            725f518b744cb9c6
y[9]        cfea0868d59cf329d0633ba5b5ae3202
            f12cedf224a656c1
y[10]       b8d9ec380b05f629ae878e6265de29bc
            171f2b0128b1da0c
y[11]       29ba727d4ec2e2fade202fc84737a9d8
            d97f52fb70dde6e2
y[12]       6eaccbfb4d5f2faacd4066aa93818533
            587e2eccedb42e41
y[13]       c9bfa602e3e973fe08c8ee35713d8580
            b10102170f207ca7
y[14]       e937f14d3ae25f6f99c307bb66d2b0da
            88ed13130bf2b89f
y[15]       696ed00415b5437628f76d11040b061f
            837c4b42900aff2f
y[16]       06d19d6870145e9b1a746673de15a02c
            74744f42db18c194
y[17]       9dccadd828483b74251d571ddec71585
            59036c5cf6709df4
y[18]       420641e1a7793544e48cab9818fb6156
            89ae83b32468093b
y[19]       f1247ed1da9ee87da408fffa366b4f2c
            6b55b5787ed14e8f
y[20]       e9c9626aedebd1c3f8d6a2c5a9e514f7
            cbf2385bbc703af3
y[21]       ecae4ad57b9de6cc58df826552bdd9d8
            6bda1e3d845786fd
y[22]       e7bb777d2cf0fedf0c31e7aee973fe18
            95ff74244193761b
y[23]       d41802eece0e8d583ab0ae1729913a1a
            d5c4837a564075ca
y[24]       d562dc2abcc212ab163bd29a2c13dae8
            2f5e966f29963eb2
y[25]       b85121440c1a6993ee2396eff407e50e
            11a98fb723b1fda7
--------------------------------------------
LMS type    e0000001                         # LMS_SHA256_M24_H5
path[0]     e9ca10eaa811b22ae07fb195e3590a33
            4ea64209942fbae3
path[1]     38d19f152182c807d3c40b189d3fcbea
            942f44682439b191
path[2]     332d33ae0b761a2a8f984b56b2ac2fd4
            ab08223a69ed1f77
path[3]     19c7aa7e9eee96504b0e60c6bb5c942d
            695f0493eb25f80a
path[4]     5871cffd131d0e04ffe5065bc7875e82
            d34b40b69dd9f3c1

Test Case 2 Private Key for SHAKE256-192

--------------------------------------------
(note: procedure in Appendix A of RFC8554 is used)
SEED        303132333435363738393a3b3c3d3e3f
            4041424344454647
I           505152535455565758595a5b5c5d5e5f
--------------------------------------------
--------------------------------------------

Test Case 2 Public Key for SHAKE256-192

--------------------------------------------
HSS public key
levels      00000001
--------------------------------------------
LMS type    0e00000b                         # LMS_SHAKE_M24_H5
LMOTS type  0e00000c                         # LMOTS_SHAKE_N24_W8
I           505152535455565758595a5b5c5d5e5f
K           db54a4509901051c01e26d9990e55034
            7986da87924ff0b1
--------------------------------------------
--------------------------------------------

Test Case 2 Message for SHAKE256-192

--------------------------------------------
Message     54657374206d657361676520666f7220  |Test mesage for |
            5348414b453235362d3139320a        |SHAKE256-192.|
--------------------------------------------

Test Case 2 Signature for SHAKE256-192

--------------------------------------------
HSS signature
Nspk        00000000
sig[0]:
--------------------------------------------
LMS signature
q           00000006
--------------------------------------------
LMOTS signature
LMOTS type  e000000c                         # LMOTS_SHAKE_N24_W8
C           bbf8b68bac9e1d2fa970a094bc4fedb7
            3ea78940cdd522ff
y[0]        124f566f03b8949c17d8bb078b16c8cf
            8b56f23f67b07cea
y[1]        98d8ee389efd08795a2864c51e267e7f
            14fed4e894e0121d
y[2]        0490e090b0295f97faa80f322a77d839
            2d8d307421f3e968
y[3]        ec8bbe764563d7099be23bc155a809de
            5b6ad6f2cb56c417
y[4]        b5f07e1c7b389f0eb0e26d6b61c4228e
            fdbf00b631e27ae4
y[5]        76c45c4f9e0c10adf0af1f54715c8254
            e92cd8abae422020
y[6]        e7c17c1455e55754f32e7bebf6b17a18
            1c67b57c97b84ec9
y[7]        fa3dc68df1b3ae000a30722ced785e53
            866c68a359a964dd
y[8]        37afbf185f61cf86bb688965c736e359
            bad70d8e9e594679
y[9]        0017a5ae6f891b59f41c94e5b217b621
            8172e8db59f224b8
y[10]       1ecb389899d17ee22b2e5112846855db
            e955e6e8fc4f4c4b
y[11]       bb36d30da85bcbfd25b6d45d6820cbff
            054abe31db02604e
y[12]       3340cbcf9ccf1dd756f75c250460467a
            daa18d60a994455b
y[13]       20172d8ebab81ee66c415dc9d226f193
            2f4e049628d89a1a
y[14]       154cbea8e3bb0e37f0cee83e8a1a4492
            a99633496f59694f
y[15]       54b48a63c8f1c8ae9460039423942e10
            8e977c415087674e
y[16]       59baabff86aa9d26e361da998b0924cc
            8b78912aeb54e83f
y[17]       11d1843b74c7a8151c32125f46bd61d5
            635bab6154c67fce
y[18]       3b7e82c150a738cffdb6a537ba60fcd5
            6eb1d8a69f52b1bf
y[19]       d8726006e96fb89c429e975129870650
            4040e1ee5bbd0a53
y[20]       3dfea6e2f369b79fa746ac77d09c54e6
            c249d3864b7af264
y[21]       fe58d8442eba0ae8a9b3bd5d4c6a564e
            aed2506e68c2c44a
y[22]       2c2dd72df1144b8b1ceff9f6ff84a547
            1552a090c86cfaef
y[23]       78d309c632432e1f7f16a6cd15057327
            1e4c76c638af0562
y[24]       82825de35a40e9aa8711b305306fc3ce
            c2eff373c8013b7a
y[25]       eaabd5ebf6edbe5bf50978507489d66d
            6ef6e3601be84bab
--------------------------------------------
LMS type    e000000b                         # MS_SHAKE_M24_H5
path[0]     f756d0b3277dbcecfa7c007eaef9c068
            83b987845492c384
path[1]     478f397cf71f7859d406aa93129d6448
            04ffd60ffe9a2917
path[2]     5589b9893128c82ad6d2299eebfdb038
            d2e6b64780f5119b
path[3]     29e03883c0df124495ac5ede5d53da77
            541abebaee9dbc93
path[4]     6b8892b7556f7ab3831f528e80bf6b95
            41e6d5099c7006e4

Test Case 3 Private Key for SHAKE256-256

--------------------------------------------
(note: procedure in Appendix A of RFC8554 is used)
SEED        606162636465666768696a6b6c6d6e6f
            707172737475767778797a7b7c7d7e7f
I           808182838485868788898a8b8c8d8e8f
--------------------------------------------
--------------------------------------------

Test Case 3 Public Key for SHAKE256-256

--------------------------------------------
HSS public key
levels      00000001
--------------------------------------------
LMS type    0e000006                         # LMS_SHAKE_M32_H5
LMOTS type  0e000008                         # LMOTS_SHAKE_N32_W8
I           808182838485868788898a8b8c8d8e8f
K           9bb7faee411cae806c16a466c3191a8b
            65d0ac31932bbf0c2d07c7a4a36379fe
--------------------------------------------
--------------------------------------------

Test Case 3 Message for SHAKE256-256

--------------------------------------------
Message     54657374206d657361676520666f7220  |Test mesage for |
            5348414b453235362d3235360a        |SHAKE256-256.|
--------------------------------------------

Test Case 2 Signature for SHAKE256-256

--------------------------------------------
HSS signature
Nspk        00000000
sig[0]:
--------------------------------------------
LMS signature
q           00000007
--------------------------------------------
LMOTS signature
LMOTS type  e0000008                         # LMOTS_SHAKE_N32_W8
C           b82709f0f00e83759190996233d1ee4f
            4ec50534473c02ffa145e8ca2874e32b
y[0]        16b228118c62b96c9c77678b33183730
            debaade8fe607f05c6697bc971519a34
y[1]        1d69c00129680b67e75b3bd7d8aa5c8b
            71f02669d177a2a0eea896dcd1660f16
y[2]        864b302ff321f9c4b8354408d0676050
            4f768ebd4e545a9b0ac058c575078e6c
y[3]        1403160fb45450d61a9c8c81f6bd69bd
            fa26a16e12a265baf79e9e233eb71af6
y[4]        34ecc66dc88e10c6e0142942d4843f70
            a0242727bc5a2aabf7b0ec12a99090d8
y[5]        caeef21303f8ac58b9f200371dc9e41a
            b956e1a3efed9d4bbb38975b46c28d5f
y[6]        5b3ed19d847bd0a737177263cbc1a226
            2d40e80815ee149b6cce2714384c9b7f
y[7]        ceb3bbcbd25228dda8306536376f8793
            ecadd6020265dab9075f64c773ef97d0
y[8]        7352919995b74404cc69a6f3b469445c
            9286a6b2c9f6dc839be76618f053de76
y[9]        3da3571ef70f805c9cc54b8e501a98b9
            8c70785eeb61737eced78b0e380ded4f
y[10]       769a9d422786def59700eef3278017ba
            bbe5f9063b468ae0dd61d94f9f99d5cc
y[11]       36fbec4178d2bda3ad31e1644a2bcce2
            08d72d50a7637851aa908b94dc437612
y[12]       0d5beab0fb805e1945c41834dd6085e6
            db1a3aa78fcb59f62bde68236a10618c
y[13]       ff123abe64dae8dabb2e84ca705309c2
            ab986d4f8326ba0642272cb3904eb96f
y[14]       6f5e3bb8813997881b6a33cac0714e4b
            5e7a882ad87e141931f97d612b84e903
y[15]       e773139ae377f5ba19ac86198d485fca
            97742568f6ff758120a89bf19059b8a6
y[16]       bfe2d86b12778164436ab2659ba86676
            7fcc435584125fb7924201ee67b535da
y[17]       f72c5cb31f5a0b1d926324c26e67d4c3
            836e301aa09bae8fb3f91f1622b1818c
y[18]       cf440f52ca9b5b9b99aba8a6754aae2b
            967c4954fa85298ad9b1e74f27a46127
y[19]       c36131c8991f0cc2ba57a15d35c91cf8
            bc48e8e20d625af4e85d8f9402ec44af
y[20]       bd4792b924b839332a64788a7701a300
            94b9ec4b9f4b648f168bf457fbb3c959
y[21]       4fa87920b645e42aa2fecc9e21e000ca
            7d3ff914e15c40a8bc533129a7fd3952
y[22]       9376430f355aaf96a0a13d13f2419141
            b3cc25843e8c90d0e551a355dd90ad77
y[23]       0ea7255214ce11238605de2f000d2001
            04d0c3a3e35ae64ea10a3eff37ac7e95
y[24]       49217cdf52f307172e2f6c7a2a4543e1
            4314036525b1ad53eeaddf0e24b1f369
y[25]       14ed22483f2889f61e62b6fb78f5645b
            dbb02c9e5bf97db7a0004e87c2a55399
y[26]       b61958786c97bd52fa199c27f6bb4d68
            c4907933562755bfec5d4fb52f06c289
y[27]       d6e852cf6bc773ffd4c07ee2d6cc55f5
            7edcfbc8e8692a49ad47a121fe3c1b16
y[28]       cab1cc285faf6793ffad7a8c341a49c5
            d2dce7069e464cb90a00b2903648b23c
y[29]       81a68e21d748a7e7b1df8a593f3894b2
            477e8316947ca725d141135202a9442e
y[30]       1db33bbd390d2c04401c39b253b78ce2
            97b0e14755e46ec08a146d279c67af70
y[31]       de256890804d83d6ec5ca3286f1fca9c
            72abf6ef868e7f6eb0fddda1b040ecec
y[32]       9bbc69e2fd8618e9db3bdb0af13dda06
            c6617e95afa522d6a2552de15324d991
y[33]       19f55e9af11ae3d5614b564c642dbfec
            6c644198ce80d2433ac8ee738f9d825e
--------------------------------------------
LMS type    e0000006                         # MS_SHAKE_M32_H5
path[0]     71d585a35c3a908379f4072d070311db
            5d65b242b714bc5a756ba5e228abfa0d
path[1]     1329978a05d5e815cf4d74c1e547ec4a
            a3ca956ae927df8b29fb9fab3917a7a4
path[2]     ae61ba57e5342e9db12caf6f6dbc5253
            de5268d4b0c4ce4ebe6852f012b162fc
path[3]     1c12b9ffc3bcb1d3ac8589777655e22c
            d9b99ff1e4346fd0efeaa1da044692e7
path[4]     ad6bfc337db69849e54411df8920c228
            a2b7762c11e4b1c49efb74486d3931ea

Authors' Addresses

Scott Fluhrer
Cisco Systems
170 West Tasman Drive
San Jose, CA
United States of America
Quynh Dang
NIST
100 Bureau Drive
Gaithersburg, MD
United States of America