
Network Working Group M. Douglass
Internet-Draft Spherical Cow Group
Updates: 5545 (if approved) February 15, 2017
Intended status: Standards Track
Expires: August 19, 2017

Support for Series in iCalendar
draft-douglass-icalendar-series-00

Abstract
This specification updates [RFC5545] by defining a new repeating set of events known as a series. This
differs from recurrences in that each instance is a separate entity with a parent relationship to a specified
template entity.

Status of This Memo
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups
may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at
http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or
obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or
to cite them other than as "work in progress."

This Internet-Draft will expire on August 19, 2017.

Copyright Notice
Copyright (c) 2017 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these
documents carefully, as they describe your rights and restrictions with respect to this document. Code
Components extracted from this document must include Simplified BSD License text as described in Section
4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD
License.

Table of Contents
1. Introduction
2. Overrides and iCalendar recurrences

2.1. Changing the master start or the recurrence rules
2.2. Splitting recurrences

3. Series
3.1. Modifying series patterns and splitting
3.2. The series master
3.3. The series instances

4. Redefined Relation Type Value
5. New Property Parameters

5.1. Split
5.2. Lookahead count
5.3. Lookahead period

6. New Properties
6.1. Generating Series members
6.2. Series UID
6.3. Series-exception-date
6.4. Series-date
6.5. Series-id
6.6. Last series id
6.7. Series Rule

7. Redefined RELATED-TO Property
7.1. RELATED-TO

8. Backwards compatibility
9. CalDAV extensions
10. Security Considerations
11. IANA Considerations

11.1. iCalendar Property Registrations
11.2. iCalendar Property Parameter Registrations
11.3. iCalendar RELTYPE Value Registrations

12. Acknowledgements
13. Normative References
Appendix A. Points for discussion
Appendix B. Change log
Author's Address

1. Introduction
Since iCalendar was first defined there has been only one way to express a repeating set of events - the
recurrence. This defined a master event, a set of rules for computing the instances and a way of overriding
certain instances.

This approach works well enough in certain situations but has many problems which need to be addressed.

This specification introduces a new approach to repeating patterns of entities which avoids some of the
problems.

2. Overrides and iCalendar recurrences
The recurrence rules specify how instances are to be computed. These rules provide a set of keys - the
RECURRENCE-ID - and an instance can be created with the calculated start date/time and a copy of the
duration (or calculated end date/time).

The specification allows for overrides. These are handled by supplying a complete replacement for the
instance with a RECURRENCE-ID property matching that of the instance being overridden. This may change
any of the properties (except the UID) - including start, end or duration.

If a long lived recurrence is heavily overridden it becomes very cumbersome. The master plus overrides is
considered a single resource in most circumstances (iTip allows the delivery of a single instance in certain
situations).

Simple meetings can become heavily modifed recurrences through adding the weeks agenda to the
description, changing of attendees etc.

There are approaches being considered to mitigate some of these issues which mostly involve only storing
changes but recurrences are still awkward to deal with.

2.1. Changing the master start or the recurrence rules
This can lead to some very difficult problems to resolve. In the case of a heavily modified meeting it may be
difficult to impossible to determine which override applies to the newly modified event.

For example, a weekly book-reading is moved from Monday to Friday. There are weeks of scheduled events
in the future. Do we move them all forward to the next instance or skip one and move them back? If it
becomes bi-weekly rather than weekly do we drop every other or just space them out more?

To be sure - some of these problems are not totally resolved by a series approach but they become more
tractable.

2.2. Splitting recurrences
The [RFC5545] THISANDFUTURE range is poorly supported. Splitting is what a number of implementations
use to avoid changing overrrides in the past.

The recurring event is split into 2, one being the truncated original the other being a new recurring event
starting at the time of the THISANDFUTURE override.

There is left the problem of relating the two, this can be accomplished by use of the RELATED-TO property
but that is not standardized.

3. Series
A series is a, generally regularly, repeating sets of events or tasks each instance of which is usually, but not
always, different in some respect. Examples may be a library running an after-school reading program which
usually, takes place at the same time each week but always differs in the book or author being studied.

In recurrences an instances is a calculated 'virtual' object, unless overridden. It has the same UID as the
master and a RECURRENCE-ID which is always one of the calculated set.

In a series, a specified number of instances are created ahead of time each with their own unique UID. They
are all related to the master using a SERIES-MASTER relation type defined in this specification. Each
instance acts as an individual component as far as retrieval and searching is concerned.

Each instance and master is identified as a member of the full series by the SERIES-UID property. The
value of this property is the same in all members of the series even when splits have occurred.

As instances are created a LAST-SERIES-ID property is added or updated in the master to indicate which
instance was last created. When there are SXDATE properties this property value may represent an instance
which cannot be created. It merely represents the latest calculated date.

This property allows generated instances to be deleted without the addition of SXDATE properties to the

master. The SXDATE only indicates future instances which MUST NOT be created.

As time goes on more instances are created either by the server or by a client when it inspects the current
state of the series. The number of instances may be based on time or a count.

For example, an organization may allow rooms to be booked only 4 weeks ahead. Thus a series may be set
up which has that 4 week set of events in the future. Each will have the room as an attendee ensuring that at
least the room is booked at the regular time.

3.1. Modifying series patterns and splitting
If it becomes necessary to modify the series rules or the master start then the series is always split at the
point of the modification.

When a series is split the previous master is modifed to truncate the current series at the last generated
instance and a parameter SPLIT=YES is added to the series rule to indicate that this master is now split.

The split may result in a number of instances related to the old series but overlapping the new. It is up to the
implementation to decide what should be done with these but this usually requires a degree of interaction
with a human (or very intelligent robot). The application may offer to copy them into the corresponding new
instances - if these can be easily determined, offer to delete all of them or let the user manually copy
information and delete.

The new series master is related to the old master by the new series master having a RELATED-TO property
with RELTYPE=SERIES-MASTER pointing at the previous master. In that way a backwards chain of series
masters may be created

3.2. The series master
A series master is identified in much the same way as a recurrence master. It will contain an SRULE and 0
or more SDATE properties or 1 or more SDATE properties. Additionally it may contain 0 or more SXDATE
properties to exclude instances.

As noted above, if the series was split it may contain a RELATED-TO property with RELTYPE=SERIES-
MASTER and a value of the previous series master.

The master will also contain a LAST-SERIES-ID if any instances have been calculated and perhaps
generated.

It is important to note that the series master is the first member of the series. Thus the first instance always
occurs AFTER the series master.

3.3. The series instances
A series instance is identified by having a SERIES-ID property which is calculated in the same manner as a
RECURRENCE-ID. It MUST also contain a RELATED-TO property with RELTYPE=SERIES-MASTER and a
value being the UID of the series master.

As noted above, if the series was split it may contain a RELATED-TO property with RELTYPE=SERIES-
MASTER and a value being the UID of the previous series master.

4. Redefined Relation Type Value
Relationship parameter type values are defined in section 3.2.15. of [RFC5545]. This specification augments
that parameter to include the new relationship values SERIES-MASTER

This property parameter is respecified as follows:

 reltypeparam = "RELTYPE" "="
 ("PARENT" ; Parent relationship - Default
 / "CHILD" ; Child relationship
 / "SIBLING" ; Sibling relationship
 / "DEPENDS-ON" ; refers to previous task
 / "REFID" ; Relationship based on REFID
 / "STRUCTURED-CATEGORY"
 ; Relationship based on STRUCTURED-CATEGORY
 / "FINISHTOSTART" ; Temporal relationship
 / "FINISHTOFINISH" ; Temporal relationship
 / "STARTTOFINISH" ; Temporal relationship
 / "STARTTOSTART" ; Temporal relationship
 / "SERIES-MASTER" ; link to the master component
 / iana-token ; Some other IANA-registered
 ; iCalendar relationship type
 / x-name) ; A non-standard, experimental
 ; relationship type

 ============
 | Task-A |--+
 ============ |
 |
 V
 ============
 | Task-B |
 ============

Figure 1: Finish to start relationship

 ============
 | Task-A |--+
 ============ |
 |
 ============ |
 | Task-B |<-+
 ============

Figure 2: Finish to finish relationship

 ============
 +--| Task-A |
 | ============
 |
 ============ |
 | Task-B |<-+
 ============

Figure 3: Start to finish relationship

 ============
 +--| Task-A |
 | ============
 |
 | ============
 +->| Task-B |
 ============

Figure 4: Start to start relationship

Format Definition:

Description:
This parameter can be specified on a property that references another related calendar component.
The parameter may specify the hierarchical relationship type of the calendar component referenced by
the property when the value is PARENT, CHILD or SIBLING. If this parameter is not specified on an
allowable property, the default relationship type is PARENT. Applications MUST treat x-name and
iana-token values they don't recognize the same way as they would the PARENT value.

This parameter defines the temporal relationship when the value is one of the project management
standard relationships FINISHTOSTART, FINISHTOFINISH, STARTTOFINISH or STARTTOSTART.
This property will be present in the predecessor entity and will refer to the successor entity. The GAP
parameter specifies the lead or lag time between the predecessor and the successor. In the
description of each temporal relationship below we refer to Task-A which contains and controls the
relationship and Task-B the target of the relationship.

RELTYPE=PARENT:
See [RFC5545] section 3.2.15.

RELTYPE=CHILD:
See [RFC5545] section 3.2.15.

RELTYPE=SIBLING:
See [RFC5545] section 3.2.15.

RELTYPE=DEPENDS-ON:
Indicates that the current calendar component depends on the referenced calendar component in
some manner. For example a task may be blocked waiting on the other, referenced, task.

RELTYPE=REFID:
Establishes a reference from the current component to components with a REFID property which
matches the value given in the associated RELATED-TO property.

RELTYPE=SERIES-MASTER:
Indicates that the current calendar component is bsed on the referenced calendar component. The
value is a UID.

RELTYPE=STRUCTURED-CATEGORY:
Establishes a reference from the current component to components with a STRUCTURED-
CATEGORY property which matches the value given in the associated RELATED-TO property.

RELTYPE=FINISHTOSTART:
Task-B cannot start until Task-A finishes. For example, when sanding is complete, painting can
begin.

RELTYPE=FINISHTOFINISH:
Task-B cannot finish before Task-A is finished, that is the end of Task-A defines the end of Task-B.
For example, we start the potatoes, then the meat then the peas but they should all be cooked at the
same time.

RELTYPE=STARTTOFINISH:
The start of Task-A (which occurs after Task-B) controls the finish of Task-B. For example, ticket

sales (Task-B) end when the game starts (Task-A).

RELTYPE=STARTTOSTART:
The start of Task-A triggers the start of Task-B, that is Task-B can start anytime after Task-A starts.

5. New Property Parameters

5.1. Split
This parameter is defined by the following notation:

 splitparam = "SPLIT" "="
 ("YES" ; The series is split
 / "NO" ; The series is not split (default)
 / x-name ; Experimental reference type
 / iana-token) ; Other IANA registered type

Parameter name:
SPLIT

Purpose:
To indicate a series has been split.

Format Definition:

Description:
This parameter MAY be specified on the SRULE property to indicate that the series has been split
with SPLIT=YES. Once split is is probably innapropriate to modify the series further.

5.2. Lookahead count
This parameter is defined by the following notation:

 lookahead-countparam = "LOOKAHEAD-COUNT" "=" 1*DIGIT

Parameter name:
LOOKAHEAD-COUNT

Purpose:
To specify the number of series instances that should be generated in advance.

Format Definition:

Description:
This parameter MAY be specified on the SRULE property to indicate how many series instances
should be generated in advance.

An implementation is free to apply its own limts but MUST NOT generate more than those defined by
this parameter and/or the LOOKAHEAD-PERIOD parameter.

If both the LOOKAHEAD-PERIOD and LOOKAHEAD-COUNT arameters are supplied the result
should be limited by both.

For example, if the LOOKAHEAD-PERIOD parameter would cause 8 instances to be generated but
LOOKAHEAD-COUNT specifies 4 then only 4 instances will be generated.

5.3. Lookahead period
This parameter is defined by the following notation:

 lookahead-periodparam = "LOOKAHEAD-PERIOD" "="
 DQUOTE dur-value DQUOTE

Parameter name:
LOOKAHEAD-PERIOD

Purpose:
To specify a maximum period for which series instances should be generated in advance.

Format Definition:

Description:
This parameter MAY be specified on the SRULE property to indicate how far in advance series
instances should be generated.

An implementation is free to apply its own limts but MUST NOT generate more than those defined by
this parameter and/or the LOOKAHEAD-COUNT parameter.

If both the LOOKAHEAD-PERIOD and LOOKAHEAD-COUNT arameters are supplied the result
should be limited by both.

For example, if the LOOKAHEAD-PERIOD parameter would cause 8 instances to be generated but
LOOKAHEAD-COUNT specifies 4 then only 4 instances will be generated.

The value is a quoted duration.

6. New Properties
The SERIES-ID, LAST-SERIES-ID, SDATE and SXDATE properties are identical in form and in the
parameters they take.

All must conform in form to the DTSTART property of the master component. Only the SDATE may specify
a time which is not part of the calculated series.

The SRULE property vakue is identical in form to the RRULE property defined in [RFC5545]. The
LOOKAHEAD-COUNT and LOOKAHEAD-PERIOD parameters indicate how many instances should be
generated in advance.

6.1. Generating Series members
An agent, either the server or a client, will periodically extend the set of instances. The number of such
generated instances is limited by:

Elements of the rule:
The UNTIL or COUNT parts of the rule define when the series terminates. Thus a COUNT=100
specifies a maximum of 100 series members.

Lookahead count:
This specifies how many series memerbs can exist from the current date/time. Thus a LOOKAHEAD-
COUNT=4 means a maximum of 4 generated instances.

Lookahead period:
This specifies how far into the future series members can be generated. Thus a LOOKAHEAD-
PERIOD="PT2M" means a maximum period of 2 months.

System limits:
This client or server SHOULD also apply limits to prevent a series from generating an overlarge set of
members.

The starting point for the calculation is the DTSTART of the master component or the LAST-SERIES-ID if it
exists in the master. In both cases the instance represented by that date is NOT generated as part of the

intance set and the actual instance may have been excluded by an SXDATE property but the starting date is
still valid.

The starting date/time property defines the first instance in the next batch of series members. Note that the
starting property value MUST match the pattern of the series rule, if specified. For example, if the rule
specifies every Wednesday the starting date MUST be a Wednesday.

The end date/time of the set will be provided by the UNTIL part of the rule, the LOOKAHEAD-PERIOD or by
a system maxima.

A set of date/time values can be generated within those contraints. As each date/time value is generated it
can be ignored if it is one of the SXDATE values.

Generation of values can terminate when the size of the result exceeds that given by the COUNT rule
element, the LOOKAHEAD-COUNT value or any systm limit.

Any SDATE values that fall within the current range and are not in the set of SXDATE values can be added
and the result truncated again to match the size limits.

Finally, any date/time values that have already been generated and are present as SERIES-ID values should
be removed from the set. What remains is the new set of members to extend the current series.

The last of those values becomes the new value for the LAST-SERIES-ID property in the series master.

As noted above the "SXDATE" property can be used to exclude the value specified in the master. This leads
to a complication as the master needs to be preserved as a container for the values which define the series.
This is flagged by adding a DELETED-MASTER elemeng to the SERIES-STATUS property..

6.2. Series UID
This property is defined by the following notation:

 seruid = "SERIES-UID" seruidparam ":" text CRLF

 seruidparam = *(";" other-param)

The following is an example of this property:

 SERIES-UID:123e4567-e89b-12d3-a456-426655440000

Property name:
SERIES-UID

Purpose:
This property defines the persistent, globally unique identifier for the full series.

Value Type:
TEXT

Property Parameters:
IANA and non-standard property parameters can be specified on this property.

Conformance:
This property MUST be specified in any "VEVENT", "VTODO", and "VJOURNAL" calendar
components acting as a series master or series instance.

Description:
The SERIES-UID MUST be globally unique. This value SHOULD be generated by following the

recommendations in section 5.3 of [RFC7986].

Format Definition:

Example:

6.3. Series-exception-date
This property is defined by the following notation:

 sxdate = "SXDATE" sxdtparam ":" sxdtval *("," sxdtval) CRLF

 sxdtparam = *(
 ;
 ; The following are OPTIONAL,
 ; but MUST NOT occur more than once.
 ;
 (";" "VALUE" "=" ("DATE-TIME" / "DATE")) /
 ;
 (";" tzidparam) /
 ;
 ; The following is OPTIONAL,
 ; and MAY occur more than once.
 ;
 (";" other-param)
 ;
)

 sxdtval = date-time / date
 ;Value MUST match value type

The following is an example of this property:

 SXDATE:19960402T010000Z,19960403T010000Z,19960404T010000Z

Property name:
SXDATE

Purpose:
This property defines the list of DATE-TIME exceptions for series of events, to-dos or journal entries.

Value Type:
The default value type for this property is DATE-TIME. The value type can be set to DATE.

Property Parameters:
IANA, non-standard, value data type, and time zone identifier property parameters can be specified on
this property.

Conformance:
This property can be specified in "VEVENT", "VTODO", and "VJOURNAL" calendar components
acting as the series master.

Description:
The exception dates, if specified, are used when computing the instances of the series. They specify
date/time values which are to be removed from the set of possible series instances.

Format Definition:

Example:

6.4. Series-date
This property is defined by the following notation:

 sdate = "SDATE" sdtparam ":" sdtval *("," sdtval) CRLF

 sdtparam = *(
 ;
 ; The following are OPTIONAL,
 ; but MUST NOT occur more than once.
 ;
 (";" "VALUE" "=" ("DATE-TIME" / "DATE" / "PERIOD")) /
 (";" tzidparam) /
 ;
 ; The following is OPTIONAL,
 ; and MAY occur more than once.
 ;
 (";" other-param)
 ;
)

 sdtval = date-time / date
 ;Value MUST match value type

The following are examples of this property:

 SDATE:19970714T123000Z
 SDATE;TZID=America/New_York:19970714T083000

 SDATE;VALUE=PERIOD:19960403T020000Z/19960403T040000Z,
 19960404T010000Z/PT3H

 SDATE;VALUE=DATE:19970101,19970120,19970217,19970421
 19970526,19970704,19970901,19971014,19971128,19971129,19971225

Property name:
SDATE

Purpose:
This property defines the list of DATE-TIME values for series of events, to-dos or journal entries.

Value Type:
The default value type for this property is DATE-TIME. The value type can be set to DATE.

Property Parameters:
IANA, non-standard, value data type, and time zone identifier property parameters can be specified on
this property.

Conformance:
This property can be specified in "VEVENT", "VTODO", and "VJOURNAL" calendar components
acting as the series master.

Description:
This property can appear along with the "SRULE" property to define a extra series occurrences. When

they both appear in a series master component, the instances are defined by the union of occurrences
defined by both the "SDATE" and "SRULE".

Purpose:

Example:

6.5. Series-id
This property is defined by the following notation:

 serid = "SERIES-ID" sidparam ":" sidval CRLF

 sidparam = *(
 ;
 ; The following are OPTIONAL,
 ; but MUST NOT occur more than once.
 ;
 (";" "VALUE" "=" ("DATE-TIME" / "DATE")) /
 (";" tzidparam) /
 ;
 ; The following is OPTIONAL,
 ; and MAY occur more than once.
 ;
 (";" other-param)
 ;
)

 sidval = date-time / date
 ;Value MUST match value type

The following are examples of this property:

 SERIES-ID;VALUE=DATE:19960401

 SERIES-ID;TZID=America/New_York:20170120T120000

Property name:
SERIES-ID

Purpose:
This property is used in conjunction with the "UID" and "SEQUENCE" properties to identify a specific
instance of a "VEVENT", "VTODO", or "VJOURNAL" calendar component in a series. The property
value is the original value of the "DTSTART" property of the series instance before any changes
occur.

Value type:
The default value type is DATE-TIME. The value type can be set to a DATE value type. This property
MUST have the same value type as the "DTSTART" property contained within the series component.
Furthermore, this property MUST be specified as a date with local time if and only if the "DTSTART"
property contained within the series component is specified as a date with local time.

Property Parameters:
IANA, non-standard, value data type and time zone identifier parameters can be specified on this
property.

Conformance:
This property can be specified zero or more times in any iCalendar component.

Description:
The SERIES-ID is the originally calculated value of the DTSTART property based on the master
identified by the RELATED-TO property with a RELTYPE=SERIES-MASTER parameter.

The full series of components can only be retrieved by searching for all components with a matching
RELATED-TO property.

If the value of the "DTSTART" property is a DATE type value, then the value MUST be the calendar
date for the series instance.

The DATE-TIME value is set to the time when the original series instance would occur; meaning that
if the intent is to change a Friday meeting to Thursday, the DATE-TIME is still set to the original
Friday meeting.

The "SERIES-ID" property is used in conjunction with the "UID" and "SEQUENCE" properties to
identify a particular instance of an event, to-do, or journal in the series. For a given pair of "UID" and
"SEQUENCE" property values, the "SERIES-ID" value for a series instance is fixed.

Format Definition:

Example:

6.6. Last series id
This property is defined by the following notation:

 last-series-i = "LAST-SERIES-ID" lastseriesidparam /
 (
 ";" "VALUE" "=" "TEXT"
 ":" text
)
 (
 ";" "VALUE" "=" "REFERENCE"
 ":" text
)
 (
 ";" "VALUE" "=" "URI"
 ":" uri
)
 CRLF

 lastseriesidparam = *(

 ; the following is MANDATORY
 ; and MAY occur more than once

 (";" relparam) /

 ; the following are MANDATORY
 ; but MUST NOT occur more than once

 (";" fmttypeparam) /
 (";" labelparam) /
 ; labelparam is defined in ...

 ; the following is OPTIONAL
 ; and MAY occur more than once

 (";" xparam)

)

The following is an example of this property. It points to a server acting as the source for the calendar object.

 LINK;REL=SOURCE;LABEL=The Egg:http://example.com/events

Property name:
LAST-SERIES-ID

Purpose:
To specify the last calculated instance of the series. When new instances are created they MUST
have a SERIES-ID after the value of this property.

In all respects this property is identical to SERIES-ID and is in fact a copy of the SERIES-ID which
would be present in the last created instance (assuming it is not suppressed by an SXDATE).

Value type:
DATE or DATE_TIME (the default). This has the same requirements as SERIES-ID.

Property Parameters:
IANA, non-standard, value data type and time zone identifier parameters can be specified on this
property.

Conformance:
This property MAY be specified in any iCalendar component.

Description:
When used in a component the value of this property points to additional information related to the
component. For example, it may reference the originating web server.

Format Definition:

Example:

6.7. Series Rule
This property is defined by the following notation:

 srule = "SRULE" srulparam ":" recur CRLF

 sruleparam = *(
 ; the following are OPTIONAL
 ; but MUST NOT occur more than once

 (";" lookahead-countparam) /
 (";" lookahead-periodparam) /

 ; the following is OPTIONAL
 ; and MAY occur more than once

 (";" xparam)

)

Property name:
RRULE

Purpose:
This property defines a rule or repeating pattern for a series of events, to-dos or journal entries.

Value Type:
RECUR

Property Parameters:
IANA, non-standard, look-ahead count or date property parameters can be specified on this property.

Conformance:
This property can be specified in any "VEVENT", "VTODO", and "VJOURNAL" calendar component,
but it SHOULD NOT be specified more than once.

Description:
The series rule, if specified, is used in computing the instances to be generated for the series. These
are generated by considering the master "DTSTART" property along with the "SRULE", "SDATE", and
"SXDATE" properties contained within the series master. The "DTSTART" property defines the first
instance in the recurrence set which is represented by that master event.

Unlike the RRULE the "DTSTART" property MUST be synchronized with the series rule, if specified.
For example, if the DTSTARTS species a date on Wednesday but the SRULE speciee every Tuesday
then a server or client MUSt reject the component.

The final series is represented by gathering all of the start DATE-TIME values generated by any of the
specified "SRULE" and "SDATE" properties, and then excluding any start DATE-TIME values
specified by "SXDATE" properties. This implies that start DATE- TIME values specified by
"SXDATE" properties take precedence over those specified by inclusion properties (i.e., "SDATE" and
"SRULE"). Where duplicate instances are generated by the "SRULE" and "SDATE" properties, only
one imstance is considered. Duplicate instances are ignored.

The "DTSTART" property specified within the master iCalendar object defines the first instance of the
recurrence. In most cases, a "DTSTART" property of DATE-TIME value type used with a series rule,
should be specified as a date with local time and time zone reference to make sure all the recurrence
instances start at the same local time regardless of time zone changes.

If the duration of the series component is specified with the "DTEND" or "DUE" property, then the
same exact duration will apply to all the members of the generated series. Else, if the duration of the
series master component is specified with the "DURATION" property, then the same nominal duration
will apply to all the members of the generated series and the exact duration of each instance will
depend on its specific start time. For example, series instances of a nominal duration of one day will
have an exact duration of more or less than 24 hours on a day where a time zone shift occurs. The
duration of a specific instance may be modified in an exception component or simply by using an
"SDATE" property of PERIOD value type.

Format Definition:

Examples:
Say they are pretty much the same as RRULE but extra params

7. Redefined RELATED-TO Property

7.1. RELATED-TO

This property is defined by the following notation:

 related = "RELATED-TO" relparam (":" text) /
 (
 ";" "VALUE" "=" "UID"
 ":" uid
)
 (
 ";" "VALUE" "=" "URI"
 ":" uri
)
 CRLF

 relparam = *(
 ;
 ; The following are OPTIONAL,
 ; but MUST NOT occur more than once.
 ;
 (";" reltypeparam) /
 (";" gapparam) /
 ;
 ; The following is OPTIONAL,
 ; and MAY occur more than once.
 ;
 (";" other-param)
 ;
)

The following are examples of this property.

 RELATED-TO;RELTYPE=SERIES-MASTER:19960401-080045-4000F192713

Property name:
RELATED-TO

Purpose:
This property is used to represent a relationship or reference between one calendar component and
others. The definition here extends the definition in Section 3.8.4.5. of [RFC5545] by including a
section on RELTYPE=SERIES-MASTER.

Value type:
URI, UID or TEXT

Property Parameters:
Relationship type, IANA and non-standard property parameters can be specified on this property.

Conformance:
This property MAY be specified in any iCalendar component.

Description:
By default or when VALUE=UID is specified, the property value consists of the persistent, globally
unique identifier of another calendar component. This value would be represented in a calendar
component by the "UID" property.

By default, the property value points to another calendar component that has a PARENT relationship
to the referencing object. The "RELTYPE" property parameter is used to either explicitly state the

default PARENT relationship type to the referenced calendar component or to override the default
PARENT relationship type and specify either a CHILD or SIBLING relationship or a temporal
relationship.

The PARENT relationship indicates that the calendar component is a subordinate of the referenced
calendar component. The CHILD relationship indicates that the calendar component is a superior of
the referenced calendar component. The SIBLING relationship indicates that the calendar component
is a peer of the referenced calendar component.

The FINISHTOSTART, FINISHTOFINISH, STARTTOFINISH or STARTTOSTART relationships
define temporal relationships as specified in the reltype parameter definition.

The SERIES-MASTER relationship when included in a series instance refers to the master of that
series. When included in a series master it refers to a previous master in a chain of spilt series.

Changes to a calendar component referenced by this property can have an implicit impact on the
related calendar component. For example, if a group event changes its start or end date or time, then
the related, dependent events will need to have their start and end dates changed in a corresponding
way. Similarly, if a PARENT calendar component is cancelled or deleted, then there is an implied
impact to the related CHILD calendar components. This property is intended only to provide
information on the relationship of calendar components. It is up to the target calendar system to
maintain any property implications of this relationship.

Format Definition:

Example:

8. Backwards compatibility
Any clients following the approach specified in [RFC5545] are expected to ignore any properties or
parameters they don't recognize.

For such clients the series appears to be an unconnected set of components. They all have their own unique
UIDS. If the client updates an instance this should be identical in effect to an update carried out by a client
aware of the new properties.

Updates MUST preserve the SERIES-ID, LAST-SERIES-ID, SRULE, SDATE and SXDATE properties. A
client which does not do so is in violation of [RFC5545].

More text needed here...

9. CalDAV extensions
This specification may extend Caldav by adding reports to return all members of a series given the series
master UID. This could be handled by the current query mechganism but it is likely to be sufficiently
frequently used that a special query is appropriate.

It is also likely we will want a CalDAV operation to split a series and generate the additional members of the
series as a single atomic operation.

10. Security Considerations
Clients and servers should take care to limit the number of generated instances to a reasonable value. This
can be a relatively small value.

11. IANA Considerations

11.1. iCalendar Property Registrations

The following iCalendar property names have been added to the iCalendar Properties Registry defined in
Section 8.3.2 of [RFC5545]

Property Status Reference

LAST-SERIES-ID Current Section 6.6

SERIES-ID Current Section 6.5

SERIES-UID Current Section 6.2

SDATE Current Section 6.4

SRULE Current Section 6.7

SXDATE Current Section 6.3

11.2. iCalendar Property Parameter Registrations
The following iCalendar property parameter names have been added to the iCalendar Parameters Registry
defined in Section 8.3.3 of [RFC5545]

Parameter Status Reference

LOOKAHEAD-COUNT Current Section 5.2

LOOKAHEAD-PERIOD Current Section 5.3

SPLIT Current Section 5.1

11.3. iCalendar RELTYPE Value Registrations
The following iCalendar "RELTYPE" values have been added to the iCalendar Relationship Types Registry
defined in Section 8.3.8 of [RFC5545]

Relationship Type Status Reference

SERIES-ID Current Section 4

12. Acknowledgements
The author would like to thank the members of the Calendaring and Scheduling Consortium technical
committees and the following individuals for contributing their ideas, support and comments:

The author would also like to thank the Calendaring and Scheduling Consortium for advice with this
specification.

13. Normative References

[I-D.daboo-caldav-attachments] Daboo, C. and A. Quillaud, "CalDAV Managed Attachments", Internet-
Draft draft-daboo-caldav-attachments-03, February 2014.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels",
BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997.

[RFC3986] Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform Resource Identifier
(URI): Generic Syntax", STD 66, RFC 3986, DOI 10.17487/RFC3986,
January 2005.

[RFC5545] Desruisseaux, B., "Internet Calendaring and Scheduling Core Object
Specification (iCalendar)", RFC 5545, DOI 10.17487/RFC5545, September
2009.

http://tools.ietf.org/html/draft-daboo-caldav-attachments-03
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc5545

[RFC5988] Nottingham, M., "Web Linking", RFC 5988, DOI 10.17487/RFC5988,
October 2010.

[RFC7986] Daboo, C., "New Properties for iCalendar", RFC 7986, DOI
10.17487/RFC7986, October 2016.

[W3C.REC-xml-20060816] Bray, T., Paoli, J., Sperberg-McQueen, M., Maler, E. and F. Yergeau,
"Extensible Markup Language (XML) 1.0 (Fourth Edition)", World Wide
Web Consortium Recommendation REC-xml-20060816, August 2006.

[W3C.WD-xptr-xpointer-20021219] DeRose, S., Daniel, R. and E. Maler, "XPointer xpointer() Scheme", World
Wide Web Consortium WD WD-xptr-xpointer-20021219, December 2002.

Appendix A. Points for discussion
Detecting changes from old clients:

If such a client updates properties in the master ... what do we say here? Is there a way we can
determine that the client doesn't realize that it's a series? If it doesn't then updating the dtstart is a big
deal - maybe we add a parameter to a dtstart update to indicate the client knows it's a series but
wants to do so anyway.

Or perhaps we add a new operation - or extend patch. Simple update returns FORBIDDEN if you try to
change any of the important properties (should do that for recurrences) and requires an explicit flag to
say you (think you) know what you're doing.

Splitting and linking:
The spec currently only allows for backward linking to previous masters. There is a parameter added
to the rule SPLIT=YES to indicate that the series was split

It makes sense to have a forward link to the new(er) series. However, a client/server may not know
what the UID is until after data is stored. The new chain can be determined vis a query so perhaps we
can leave it up to the protocols to figure out that mechanism.

CalDAV queries:
if there were a better more generalised query language such an extensions might be unnecessary.
Should we define a query language specifically for calendaring?

Appendix B. Change log
2017-02-12 MD Initial version

Author's Address
Michael Douglass
Spherical Cow Group
226 3rd Street
Troy, NY 12180
USA
EMail: mdouglass@sphericalcowgroup.com
URI: http://sphericalcowgroup.com

http://tools.ietf.org/html/rfc5988
http://tools.ietf.org/html/rfc7986
http://www.w3.org/TR/2006/REC-xml-20060816
http://www.w3.org/TR/2002/WD-xptr-xpointer-20021219
mailto:mdouglass@sphericalcowgroup.com
http://sphericalcowgroup.com

	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Overrides and iCalendar recurrences
	2.1. Changing the master start or the recurrence rules
	2.2. Splitting recurrences
	3. Series
	3.1. Modifying series patterns and splitting
	3.2. The series master
	3.3. The series instances
	4. Redefined Relation Type Value
	5. New Property Parameters
	5.1. Split
	5.2. Lookahead count
	5.3. Lookahead period
	6. New Properties
	6.1. Generating Series members
	6.2. Series UID
	6.3. Series-exception-date
	6.4. Series-date
	6.5. Series-id
	6.6. Last series id
	6.7. Series Rule
	7. Redefined RELATED-TO Property
	7.1. RELATED-TO
	8. Backwards compatibility
	9. CalDAV extensions
	10. Security Considerations
	11. IANA Considerations
	11.1. iCalendar Property Registrations
	11.2. iCalendar Property Parameter Registrations
	11.3. iCalendar RELTYPE Value Registrations
	12. Acknowledgements
	13. Normative References
	Appendix A. Points for discussion
	Appendix B. Change log
	Author's Address

