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Marker PDU Aligned Framing for TCP Specification 

1 Status of this Memo 

This document is an Internet-Draft and is subject to all provisions 
of Section 10 of RFC2026. 

Internet-Drafts are working documents of the Internet Engineering 
Task Force (IETF), its areas, and its working groups.  Note that 
other groups may also distribute working documents as Internet-
Drafts. 

Internet-Drafts are draft documents valid for a maximum of six 
months and may be updated, replaced, or obsoleted by other 
documents at any time.  It is inappropriate to use Internet-Drafts 
as reference material or to cite them other than as "work in 
progress." 

The list of current Internet-Drafts can be accessed at 
http://www.ietf.org/1id-abstracts.html. The list of Internet-Draft 
Shadow Directories can be accessed at 
http://www.ietf.org/shadow.html 

 

2 Abstract 

A framing protocol is defined for TCP that is fully compliant with 
applicable TCP RFCs and fully interoperable with existing TCP 
implementations. The framing mechanism is designed to work as an 
"adaptation layer" between TCP and the Direct Data Placement [DDP] 
protocol, preserving the reliable, in-order delivery of TCP, while 
adding the preservation of higher-level protocol record boundaries 
that DDP requires.  
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Revision history 

[02] Enhanced descriptions of how MPA is used over an unmodified 
TCP. 

[02] Removed "No Packing" text. 

[02] Made MPA an adaptation layer for DDP, instead of a generalized 
framing solution. 

[02] Added clarifications of the MPA/TCP interaction for optimized 
implementations and that any such optimizations are to be used 
only when requested by MPA. 

Note: a discussion of reasons for these changes can be found in 
[ELZER-MPA]. 
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3 Introduction 

This section discusses the reason for creating MPA on TCP and a 
general overview of the protocol.  Later sections show the MPA 
headers (see section 6 on page 11), and detailed protocol 
requirements and characteristics (see section 7 on page 14), as 
well as Connection Semantics (section 8 on page 22), Error 
Semantics (section 9 on page 26), and Security Considerations 
(section 10 on page 27). 

3.1 Motivation 

The Direct Data Placement protocol [DDP], when used with TCP 
[RFC793] requires a mechanism to detect record boundaries.  The DDP 
records are referred to as Upper Layer Protocol Data Units by this 
document.  The ability to locate the Upper Layer Protocol Data Unit 
(ULPDU) boundary is useful to a hardware network adapter that uses 
DDP to directly place the data in the application buffer based on 
the control information carried in the ULPDU header.  This may be 
done without requiring that the packets arrive in order.  Potential 
benefits of this capability are the avoidance of the memory copy 
overhead and a smaller memory requirement for handling out of order 
or dropped packets. 

Many approaches have been proposed for a generalized framing 
mechanism.  Some are probabilistic in nature and others are 
deterministic.  A probabilistic approach is characterized by a 
detectable value embedded in the octet stream.  It is probabilistic 
because under some conditions the receiver may incorrectly 
interpret application data as the detectable value.  Under these 
conditions, the protocol may fail with unacceptable frequency.  A 
deterministic approach is characterized by embedded controls at 
known locations in the octet stream.  Because the receiver can 
guarantee it will only examine the data stream at locations that 
are known to contain the embedded control, the protocol can never 
misinterpret application data as being embedded control data.  For 
unambiguous handling of an out of order packet, the deterministic 
approach is preferred. 

The MPA protocol provides a framing mechanism for DDP running over 
TCP using the deterministic approach.  It allows the location of 
the ULPDU to be determined in the TCP stream even if the TCP 
segments arrive out of order. 
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3.2 Protocol Overview 

MPA is described as an extra layer above TCP and below DDP.  The 
end-to-end data flow is: 

1. The DDP's ULP negotiates the use of DDP and MPA at both ends of 
a connection. 

2. DDP determines the Maximum ULPDU (MULPDU) size by querying MPA 
for this value.  MPA derives this information from TCP, when it 
is available, or chooses a reasonable value.  This information 
is already supported on many TCP implementations, including all 
modern flavors of BSD networking, through the TCP_MAXSEG socket 
option. 

3. DDP creates ULPDUs of MULPDU size or smaller, and hands them to 
MPA at the sender. 

4. MPA creates a Framed Protocol Data Unit (FPDU) by pre-pending a 
header, inserting markers, and appending a CRC after the ULPDU 
and PAD (if any).  MPA delivers the FPDU to TCP. 

5. The TCP sender puts the FPDUs into the TCP stream.  If the TCP 
Sender is MPA-aware, it segments the TCP stream in such a way 
that a TCP Segment boundary is also the boundary of an FPDU.  
TCP then passes each segment to the IP layer for transmission. 

6. The TCP receiver may be MPA-aware or may not be MPA-aware. If 
it is MPA-aware, it may separate passing the TCP payload to MPA 
from passing the TCP payload ordering information to MPA. In 
either case, RFC compliant TCP wire behavior is observed at 
both the sender and receiver. 

7. The MPA receiver locates and assembles complete FPDUs within 
the stream, verifies their integrity, and removes MPA markers, 
ULPDU_Length, PAD and CRC. 

8. MPA then provides the complete ULPDUs to DDP.  MPA may also 
separate passing MPA payload to DDP from passing the MPA 
payload ordering information.   

The layering of PDUs with MPA is shown in Figure 1, below. 

MPA-aware TCP is a TCP layer which potentially contains some 
additional semantics as defined in this document.  MPA is 
implemented as a data stream ULP for TCP and is therefore RFC 
compliant.  MPA-aware TCP is RFC compliant.  
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            +------------------+ 
            |     ULP client   | 
            +------------------+  <- Consumer messages 
            |        DDP       | 
            +------------------+  <- ULPDUs 
            |        MPA       | 
            +------------------+  <- FPDUs (containing ULPDUs) 
            |        TCP*      | 
            +------------------+  <- TCP Segments (containing 
FPDUs) 
            |      IP etc.     |      
            +------------------+ 
                                   * TCP or MPA-aware TCP. 
 

Figure 1 ULP MPA TCP Layering 

An MPA-aware TCP sender is able to segment the data stream such 
that TCP segments begin with FPDUs (FPDU Alignment).  This has 
significant advantages for receivers.  When segments arrive with 
aligned FPDUs the receiver usually need not buffer any portion of 
the segment, allowing DDP to place it in its destination memory 
immediately, thus avoiding copies from intermediate buffers (DDP's 
reason for existence). 

MPA with an MPA-aware TCP receiver allows a DDP on MPA 
implementation to recover ULPDUs that may be received out of order.  
This enables a DDP on MPA implementation to save a significant 
amount of intermediate storage by placing the ULPDUs in the right 
locations in the application buffers when they arrive, rather than 
waiting until full ordering can be restored. 

MPA implementations that support recovery of out of order ULPDUs 
MUST support a mechanism to indicate the ordering of ULPDUs as the 
sender transmitted them and indicate when missing intermediate 
segments arrive.  These mechanisms allow DDP to reestablish record 
ordering and report Delivery of complete messages (groups of 
records). 

MPA also addresses enhanced data integrity.  Many users of TCP have 
noted that the TCP checksum is not as strong as could be desired 
[CRCTCP].  Studies have shown that the TCP checksum indicates 
segments in error at a much higher rate than the underlying link 
characteristics would indicate.  With these higher error rates, the 
chance that an error will escape detection, when using only the TCP 
checksum for data integrity, becomes a concern.  A stronger 
integrity check can reduce the chance of data errors being missed. 

MPA includes a CRC check to increase the ULPDU data integrity to 
the level provided by other modern protocols, such as SCTP 
[RFC2960]. 
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4 Glossary 

Delivery - (Delivered, Delivers) - For MPA, Delivery is defined as 
the process of informing DDP that a particular PDU is ordered 
for use.  This is specifically different from "passing the PDU 
to DDP", which may generally occur in any order, while the 
order of "Delivery" is strictly defined. 

EMSS - Effective Maximum Segment Size.  EMSS is the smaller of the 
TCP maximum segment size (MSS) as defined in RFC 793 [RFC793], 
and the current path Maximum Transfer Unit (MTU) [RFC1191]. 

FPDU - Framing Protocol Data Unit.  The unit of data created by an 
MPA sender. 

FPDU Alignment - the property that a TCP segment begins with an 
FPDU. 

PDU - protocol data unit 

MPA - Marker-based ULP PDU Aligned Framing for TCP protocol.   This 
document defines the MPA protocol. 

MULPDU - Maximum ULPDU. The current maximum size of the record that 
is acceptable for DDP to pass to MPA for transmission. 

Node - A computing device attached to one or more links of a 
Network. A Node in this context does not refer to a specific 
application or protocol instantiation running on the computer. 
A Node may consist of one or more MPA on TCP devices installed 
in a host computer. 

Remote Peer - The MPA protocol implementation on the opposite end 
of the connection. Used to refer to the remote entity when 
describing protocol exchanges or other interactions between two 
Nodes. 

ULP - Upper Layer Protocol. The protocol layer above the protocol 
layer currently being referenced. The ULP for MPA is DDP [DDP]. 

ULPDU - Upper Layer Protocol Data Unit.  The data record defined by 
the layer above MPA (DDP).  ULPDU corresponds to DDP's "DDP 
Segment". 
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5 LLP and DDP requirements 

5.1 TCP implementation Requirements to support MPA  

The TCP implementation MUST inform MPA when the TCP connection is 
closed or has begun closing the connection (e.g. received a FIN). 

5.1.1 TCP Transmit side 

To provide optimum performance, an MPA-aware transmit side TCP 
implementation SHOULD be enabled to: 

* With an EMSS large enough to contain the FPDU(s), segment the 
outgoing TCP stream such that the first octet of every TCP 
Segment begins with an FPDU.  Multiple FPDUs MAY be packed into 
a single TCP segment as long as they are entirely contained in 
the TCP segment.  

* Report the current EMSS to the MPA transmit layer. 

An MPA-aware TCP transmit side implementation MUST continue to use 
the method of segmentation expected by non-MPA applications (and 
described in TCP RFCs) when MPA is not enabled on the connection.  
When MPA is enabled above an MPA-aware TCP, it SHOULD specifically 
enable the segmentation rules described above for the DDP segments 
(FPDUs) posted for transmission.  

If the transmit side TCP implementation is not able to segment the 
TCP stream as indicated above, MPA should make a best effort to 
achieve that result.  For example, using the TCP_NODELAY socket 
option to disable the Nagle algorithm will usually result in many 
of the segments starting with an FPDU. 

If the transmit side TCP implementation is not able to report the 
EMSS, MPA may assume that TCP will use 1460 octet segments in 
creating FPDUs.  If the implementation has reason to believe that 
the TCP segment size is actually smaller than 1460, it may instead 
use a 536 octet FPDU. 

5.1.2 TCP Receive side 

When an MPA receive implementation and the MPA-aware receive side 
TCP implementation supports handling out of order ULPDUs, the TCP 
receive implementation SHOULD be enabled to: 

* Pass incoming TCP segments to MPA as soon as they have been 
received and validated, even if not received in order.  The TCP 
layer MUST have committed to keeping each segment before it can 
be passed to the MPA.  This means that the segment must have 
passed the TCP, IP, and lower layer data integrity validation 
(i.e., checksum), must be in the receive window, must not be a 
duplicate, must be part of the same epoch (if timestamps are 
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used to verify this) and any other checks required by TCP RFCs.  
The segment MUST NOT be passed to MPA more than once unless 
explicitly requested (see Section 9). 
 
This is not to imply that the data must be completely ordered 
before use.  An implementation may accept out of order 
segments, SACK them [RFC2018], and pass them to DDP when the 
reception of the segments needed to fill in the gaps arrive.  
Such an implementation can "commit" to the data early on, and 
will not overwrite it even if (or when) duplicate data arrives.  
MPA expects to utilize this "commit" to allow the passing of 
ULPDUs to DDP when they arrive, independent of ordering. 

* Provide a mechanism to indicate the ordering of TCP segments as 
the sender transmitted them.  One possible mechanism might be 
attaching the TCP sequence number to each segment. 

* Provide a mechanism to indicate when a given TCP segment (and 
the prior TCP stream) is complete.  One possible mechanism 
might be to utilize the leading (left) edge of the TCP Receive 
Window. 

DDP on MPA MUST utilize these two mechanisms to establish the 
Delivery semantics that DDP's consumers agree to.  These 
semantics are described fully in [DDP]. These include 
requirements on DDP's consumer to respect ownership of buffers 
prior to the time that DDP delivers them to the consumer. 

An MPA-aware TCP receive side implementation MUST continue to 
buffer TCP segments until completely ordered and then deliver them 
as expected by non-MPA applications (and described in TCP RFCs) 
when MPA is not enabled on the connection.  When MPA is enabled 
above an MPA-aware TCP, TCP SHOULD enable the in and out of order 
passing of data, and the separate ordering information as described 
above.  

When an MPA receive implementation is coupled with a TCP receive 
implementation that does not support the preceding mechanisms, TCP 
passes and Delivers incoming stream data to MPA in order. 

5.2 MPA's interactions with DDP 

DDP requires MPA to maintain DDP record boundaries from the sender 
to the receiver.  When using MPA on TCP to send data, DDP provides 
records (ULPDUs) to MPA.  MPA will use the reliable transmission 
abilities of TCP to transmit the data, and will insert appropriate 
additional information into the TCP stream to allow the MPA 
receiver to locate the record boundary information. 

As such, MPA accepts complete records (ULPDUs) from DDP at the 
sender and returns them to DDP at the receiver. 
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MPA combined with an MPA-aware TCP can only ensure FPDU Alignment 
with the TCP Header if the FPDU is less than or equal to TCP's 
EMSS.  Since FPDU alignment is generally desired by the receiver, 
DDP must cooperate with MPA to ensure FPDUs' lengths do not exceed 
the EMSS under normal conditions.  This is done with the MULPDU 
mechanism. 

MPA provides information to DDP on the current maximum size of the 
record that is acceptable to send (MULPDU).  DDP SHOULD limit each 
record size to MULPDU.  The range of MULPDU values MUST be between 
128 octets and 64768 octets, inclusive. 

The sending DDP MUST NOT post a ULPDU larger than 64768 octets to 
MPA. DDP MAY post a ULPDU of any size between one and 64768 octets, 
however MPA is NOT REQUIRED to support a ULPDU length that is 
greater than the current MULPDU.   

While the maximum theoretical length supported by the MPA header 
ULPDU_Length field is 65535, TCP over IP requires the IP datagram 
maximum length to be 65535 octets. To enable MPA to support FPDU 
Alignment, the maximum size of the FPDU must fit within an IP 
datagram. Thus the ULPDU limit of 64768 octets was derived by 
taking the maximum IP datagram length, subtracting from it the 
maximum total length of the sum of the IPv4 header, TCP header, 
IPv4 options, TCP options, and the worst case MPA overhead, and 
then rounding the result down to a 128 octet boundary. 

On receive, MPA MUST pass each ULPDU with its length to DDP when it 
has been validated. 

If an MPA implementation supports passing out of order ULPDUs to 
DDP, the MPA implementation SHOULD: 

* Pass each ULPDU with its length to DDP as soon as it has been 
fully received and validated. 

* Provide a mechanism to indicate the ordering of ULPDUs as the 
sender transmitted them.  One possible mechanism might be 
providing the TCP sequence number for each ULPDU. 

* Provide a mechanism to indicate when a given ULPDU (and prior 
ULPDUs) are complete.  One possible mechanism might be to allow 
DDP to see the current outgoing TCP Ack sequence number. 

* Provide an indication to DDP that the TCP has closed or has 
begun to close the connection (e.g. received a FIN). 
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6 FPDU Formats 

MPA senders create FPDUs out of ULPDUs.  The format of an FPDU 
shown below MUST be used for all MPA FPDUs.  For purposes of 
clarity, markers are not shown in Figure 2. 

    0                   1                   2                   3 
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
+ 
   |          ULPDU_Length         |                               
| 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               
+ 
   |                                                               
| 
   ~                                                               
~ 
   ~                            ULPDU                              
~ 
   |                                                               
| 
   |                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
+ 
   |                               |          PAD (0-3 octets)     
| 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
+ 
   |                             CRC                               
| 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
+ 

Figure 2 FPDU Format 

ULPDU_Length: 16 bits (unsigned integer).  This is the number of 
octets of the contained ULPDU.  It does not include the length of 
the FPDU header itself, the pad, the CRC, or of any markers that 
fall within the ULPDU. The 16-bit ULPDU Length field is large 
enough to support the largest IP datagrams for IPv4 or IPv6. 

PAD: The PAD field trails the ULPDU and contains between zero and 
three octets of data.  The pad data MUST be set to zero by the 
sender and ignored by the receiver (except for CRC checking).  The 
length of the pad is set so as to make the size of the FPDU an 
integral multiple of four. 

CRC: 32 bits, this CRC is used to verify the entire contents of the 
FPDU, using CRC32C See section 7.2 CRC Calculation on page 16. 

The FPDU adds a minimum of 6 octets to the length of the ULPDU.  In 
addition, the total length of the FPDU will include the length of 
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any markers and from 0 to 3 pad octets added to round-up the ULPDU 
size. 
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6.1 Marker Format 

The format of a marker MUST be as specified in Figure 3: 

    0                   1                   2                   3 
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
+ 
   |           RESERVED            |            FPDUPTR            
| 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
+ 

Figure 3 Marker Format 

RESERVED: The Reserved field MUST be set to zero on transmit and 
ignored on receive (except for CRC calculation). 

FPDUPTR: The FPDU Pointer is a relative pointer, 16-bits long, 
interpreted as an unsigned integer, that indicates the number of 
octets in the TCP stream from the beginning of the FPDU to the 
first octet of the entire marker. 



INTERNET-DRAFT MPA Framing for TCP 20 February 2003 
 

 
P. Culley et. al. Expires: August 2003 [Page 14] 
 

7 Data Transfer Semantics 

This section discusses some characteristics and behavior of the MPA 
protocol as well as implications of that protocol. 

7.1 MPA Markers 

MPA senders MUST insert a marker into the data stream at a 512 
octet periodic interval in the TCP Sequence Number Space. The 
marker contains a 16 bit unsigned integer referred to as the 
FPDUPTR (FPDU Pointer).  

If the FPDUPTR's value is non-zero, the FPDU Pointer is a 16 bit 
relative back-pointer. FPDUPTR MUST contain the number of octets in 
the TCP stream from the beginning of the current FPDU to the first 
octet of the marker, unless the marker falls between FPDUs. Thus 
the location of the first octet of the previous FPDU header can be 
determined by subtracting the value of the given marker from the 
current octet-stream sequence number (i.e. TCP sequence number) of 
the first octet of the marker. Note that this computation must take 
into account that the TCP sequence number could have wrapped 
between the marker and the header. 

An FPDUPTR value of 0x0000 is a special case - it is used when the 
marker falls exactly between FPDUs.  In this case, the marker MUST 
be placed in the following FPDU and viewed as being part of that 
FPDU (e.g. for CRC calculation). Thus an FPDUPTR value of 0x0000 
means that immediately following the marker is an FPDU header. 

Since all FPDUs are integral multiples of 4 octets, the bottom two 
bits of the FPDUPTR as calculated by the sender are zero.  MPA 
reserves these bits so they MUST be treated as zero for computation 
at the receiver. 

The MPA markers MUST be inserted immediately following MPA 
connection establishment, and at every 512th octet of the TCP octet 
stream thereafter.  As a result, the first marker has an FPDUPTR 
value of 0x0000.  If the first marker begins at octet sequence 
number SeqStart, then markers are inserted such that the first 
octet of the marker is at octet sequence number SeqNum if the 
remainder of (SeqNum - SeqStart) mod 512 is zero.  Note that SeqNum 
can wrap. 

For example, if the TCP sequence number were used to calculate the 
insertion point of the marker, the starting TCP sequence number is 
unlikely to be zero, and 512 octet multiples are unlikely to fall 
on a modulo 512 of zero. If the MPA connection is started at TCP 
sequence number 11, then the 1st marker will begin at 11, and 
subsequent markers will begin at 523, 1035, etc.  
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If an FPDU is large enough to contain multiple markers, they MUST 
all point to the same point in the TCP stream: the first octet of 
the FPDU. 

If a marker interval contains multiple FPDUs (the FPDUs are small), 
the marker MUST point to the start of the FPDU containing the 
marker unless the marker falls between FPDUs, in which case the 
marker MUST be zero. 

The following example shows an FPDU containing a marker. 

    0                   1                   2                   3 
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
+ 
   |       ULPDU Length (0x0010)   |                               
| 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               
+ 
   |                                                               
| 
   +                                                               
+ 
   |                         ULPDU (octets 0-9)                    
| 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
+ 
   |            (0x0000)           |        FPDU ptr (0x000C)      
| 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
+ 
   |                        ULPDU (octets 10-15)                   
| 
   |                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
+ 
   |                               |          PAD (2 octets:0,0)   
| 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
+ 
   |                              CRC                              
| 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
+ 

Figure 4 Example FPDU Format with Marker 

MPA Receivers MUST preserve ULPDU boundaries when passing data to 
DDP. MPA Receivers MUST pass the ULPDU data and the ULPDU Length to 
DDP and not the markers, headers, and CRC. 
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7.2 CRC Calculation 

When sending an FPDU, the sender MUST include a valid CRC field.  
The CRC field in the MPA FPDU MUST be computed using the CRC32C 
polynomial in the manner described in the iSCSI Protocol [iSCSI] 
document for Header and Data Digests. 
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The fields which MUST be included in the CRC calculation when 
sending an FPDU are as follows: 

1) If the first octet of the FPDU is the "ULPDU Length" field, the 
CRC-32c is calculated from the first octet of the "ULPDU 
Length" header, through all the ULPDU and markers (if present), 
to the last octet of the PAD (if present), inclusive. If there 
is a marker immediately following the PAD, the marker is 
included in the CRC calculation for this FPDU. 

2) If the first octet of the FPDU is a marker, (i.e. the marker 
fell between FPDUs, and thus is required to be included in the 
second FPDU), the CRC-32c is calculated from the first octet of 
the marker, through the "ULPDU Length" header, through all the 
ULPDU and markers (if present), to the last octet of the PAD 
(if present), inclusive. 

3) After calculating the CRC-32c, the resultant value is placed 
into the CRC field at the end of the FPDU. 

When an FPDU is received, the receiver MUST first perform the 
following: 

1) Calculate the CRC of the incoming FPDU in the same fashion as 
defined above. 

2) Verify that the calculated CRC-32c value is the same as the 
received CRC-32c value found in the FPDU CRC field.  If not, 
the receiver MUST treat the FPDU as an invalid FPDU. 

The procedure for handling invalid FPDUs is covered in the Error 
Section (see section 9 on page 26) 

The following is an annotated hex dump of an example FPDU sent as 
the first FPDU on the stream.  As such, it starts with a marker. 
The FPDU contains 24 octets of the contained ULPDU, which are all 
zeros. The CRC32c has been correctly calculated and can be used as 
a reference.  See the [DDP] and [RDMA] specification for 
definitions of the DDP Control field, Queue, MSN, MO, and Send 
Data.  
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 Octet Contents Annotation 
 Count 
 
 0000 00 00 Marker: Reserved 
 0002 00 00         FPDUPTR 
 0004 00 2a Length 
 0006 40 03 DDP Control Field, Send with Last flag set 
 0008 00 00 Reserved (STag position with no STag) 
 000a 00 00  
 000c 00 00 Queue = 0 
 000e 00 00  
 0010 00 00 MSN = 1 
 0012 00 01  
 0014 00 00 MO = 0 
 0016 00 00  
 0018 00 00  
     Send Data (24 octets of zeros) 
 002e 00 00  
 0030 4C 86 CRC32c 
 0032 B3 84  

Figure 5 Annotated Hex Dump of an FPDU 

The following is an example sent as the second FPDU of the stream 
where the first FPDU (which is not shown here) had a length of 492 
octets and was also a Send to Queue 0 with Last Flag set.  This 
example contains a marker. 
 
 Octet Contents Annotation 
 Count  
 
 01ec 00 2a Length 
 01ee 40 03 DDP Control Field: Send with Last Flag set 
 01f0 00 00 Reserved (STag position with no STag) 
 01f2 00 00  
 01f4 00 00 Queue = 0 
 01f6 00 00  
 01f8 00 00 MSN = 2 
 01fa 00 02  
 01fc 00 00 MO = 0 
 01fe 00 00  
 0200 00 00 Marker: Reserved 
 0202 00 14         FPDUPTR 
 0204 00 00  
     Send Data (24 octets of zeros) 
 021a 00 00  
 021c A1 9C CRC32c 
 021e D1 03  

Figure 6 Annotated Hex Dump of an FPDU with Marker 
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7.3 MPA on TCP Sender Segmentation 

The various TCP RFCs allow considerable choice in segmenting a TCP 
stream.  In order to optimize FPDU recovery at the MPA receiver, 
MPA specifies additional segmentation rules. 

MPA MUST encapsulate the ULPDU such that there is exactly one ULPDU 
contained in one FPDU.   

An MPA-aware TCP sender SHOULD, when enabled for MPA, on TCP 
implementations that support this, and with an EMSS large enough to 
contain at least one FPDU, segment the outbound TCP stream such 
that each TCP segment begins with an FPDU, and fully contains all 
included FPDUs. 

Implementation note: To achieve the previous segmentation 
rule, TCP's Nagle [RFC0896] algorithm SHOULD be disabled.  

There are exceptions to the above rule.  Once an ULPDU is provided 
to MPA, the MPA on TCP sender MUST transmit it or fail the 
connection; it cannot be repudiated.  As a result, during changes 
in MTU and EMSS, or when TCP's Receive Window size (RWIN) becomes 
too small, it may be necessary to send FPDUs that do not conform to 
the segmentation rule above. 

A possible, but less desirable, alternative is to use IP 
fragmentation on accepted FPDUs to deal with MTU reductions or 
extremely small EMSS.   

The sender MUST still format the FPDU according to FPDU format as 
shown in Figure 2. 

On a retransmission, TCP does not necessarily preserve original TCP 
segmentation boundaries. This can lead to the loss of FPDU 
alignment and containment within a TCP segment during TCP 
retransmissions. An MPA-aware TCP sender SHOULD try to preserve 
original TCP segmentation boundaries on a retransmission. 

7.3.1 Effects of MPA on TCP Segmentation 

Applications expected to see strong advantages from Direct Data 
Placement include transaction-based applications and throughput 
applications. Request/response protocols typically send one FPDU 
per TCP segment and then wait for a response. Therefore, the 
application is expected to set TCP parameters such that it can 
trade off latency and wire efficiency. This is accomplished by 
setting the TCP_NODELAY socket option.  

When latency is not critical, and the application provides data in 
chunks larger than EMSS at one time,  the TCP implementation may 
"pack" any available stream data into TCP segments so that the 
segments are filled to the EMSS.  If the amount of data available 
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is not enough to fill the TCP segment when it is prepared for 
transmission, TCP can send the segment partly filled, or use the 
Nagle algorithm to wait for the ULP to post more data (discussed 
below). 

DDP/MPA senders will fill TCP segments to the EMSS with a single 
FPDU when a DDP message is large enough.  Since the DDP message may 
not exactly fit into TCP segments, a "message tail" often occurs 
that results in an FPDU that is smaller than a single TCP segment.  
If a "message tail", small DDP messages, or the start of a larger 
DDP message are available, MPA MAY "pack" the resulting FPDUs into 
TCP segments.  When this is done, the TCP segments can be more 
fully utilized, but, due to the size constraints of FPDUs, segments 
may not be filled to the EMSS. 

Note that MPA receivers must do more processing of a TCP 
segment that contains multiple FPDUs, this may affect the 
performance of some receiver implementations. 

TCP implementations often utilize the "Nagle" [RFC0896] algorithm 
to ensure that segments are filled to the EMSS whenever the round 
trip latency is large enough that the source stream can fully fill 
segments before Acks arrive.  The algorithm does this by delaying 
the transmission of TCP segments until a ULP can fill a segment, or 
until an ACK arrives from the far side.  The algorithm thus allows 
for smaller segments when latencies are shorter to keep the ULP's 
end to end latency to reasonable levels. 

The Nagle algorithm is not mandatory to use [RFC1122]. 

It is up to the ULP to decide if Nagle is useful with DDP/MPA.  
Note that many of the applications expected to take advantage of 
MPA/DDP prefer to avoid the extra delays caused by Nagle. In such 
scenarios it is anticipated there will be minimal opportunity for 
packing at the transmitter and receivers may choose to optimize 
their performance for this anticipated behavior.  

7.3.2 FPDU Size Considerations 

MPA defines the Maximum Upper Layer Protocol Data Unit (MULPDU) as 
the size of the largest ULPDU fitting in an FPDU.  For an empty TCP 
Segment, MULPDU is EMSS minus the FPDU overhead (6 octets) minus 
space for markers and pad octets.   

  The maximum ULPDU Length for a single ULPDU MUST be computed as: 

MULPDU = EMSS - (6 + 4 * Ceiling(EMSS / 512) + EMSS mod 4) 

The formula above accounts for the worst-case number of markers.   

As a further optimization of the wire efficiency an MPA 
implementation MAY dynamically adjust the MULPDU (see section 



INTERNET-DRAFT MPA Framing for TCP 20 February 2003 
 

 
P. Culley et. al. Expires: August 2003 [Page 21] 
 

7.3.1. for latency and wire efficiency trade-offs). When one or 
more FPDUs are already packed into a TCP Segment, MULPDU MAY be 
reduced accordingly. 

DDP SHOULD provide ULPDUs that are as large as possible, but less 
than or equal to MULPDU. 

If the TCP implementation needs to adjust EMSS to support MTU 
changes, the MULPDU value is changed accordingly. 

In certain rare situations, the EMSS may shrink to very small 
sizes.  If this occurs, the MPA on TCP sender MUST NOT shrink the 
MULPDU below 128 octets and is not required to follow the 
segmentation rules in Section 7.3 MPA on TCP Sender Segmentation on 
page 19. 

If one or more FPDUs are already packed into a TCP segment, such 
that the remaining room is less than 128 octets, MPA MUST NOT 
provide a MULPDU smaller than 128.  In this case, MPA would 
typically provide a MULPDU for the next full sized segment, but may 
still pack the next FPDU into the small remaining room, provide 
that the next FPDU is small enough to fit. 

The value 128 is chosen as to allow DDP designers room for the DDP 
Header and some user data. 

7.4 MPA Receiver FPDU Identification 

An MPA receiver MUST first verify the FPDU before passing the ULPDU 
to DDP.  To do this, the receiver MUST: 

* locate the start of the FPDU unambiguously, 

* verify its CRC. 

If the above conditions are true, the MPA receiver passes the ULPDU 
to DDP.  

To detect the start of the FPDU unambiguously one of the following 
MUST be used: 

1: In an ordered TCP stream, the ULPDU Length field in the current 
FPDU when FPDU has a valid CRC, can be used to identify the 
beginning of the next FPDU. 

2: A Marker can always be used to locate the beginning of an FPDU 
(in FPDUs with valid CRCs).  Since the location of the marker 
is known in the octet stream (sequence number space), the 
marker can always be found. 
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3: Having found an FPDU by means of a Marker, following contiguous 
FPDUs can be found by using the ULPDU Lengths (from FPDUs with 
valid CRCs) to establish the next FPDU boundary. 

The ULPDU Length field (see section 6) MUST be used to determine if 
the entire FPDU is present before forwarding the ULPDU to DDP. 

CRC calculation is discussed in section 7.2 on page 16 above. 

7.4.1 Re-segmenting Middle boxes and non MPA-aware TCP senders 

Since MPA on MPA-aware TCP senders start FPDUs on TCP segment 
boundaries, a receiving DDP on MPA on TCP implementation may be 
able to optimize the reception of data in various ways. 

However, MPA receivers MUST NOT depend on FPDU Alignment on TCP 
segment boundaries.   

Some MPA senders may be unable to conform to the sender 
requirements because their implementation of TCP is not designed 
with MPA in mind.  Even if the sender is MPA-aware, the network may 
contain "middle boxes" which modify the TCP stream by changing the 
segmentation.  This is generally interoperable with TCP and its 
users and MPA must be no exception. 

The presence of markers in MPA allows an MPA receiver to recover 
the FPDUs despite these obstacles, although it may be necessary to 
utilize additional buffering at the receiver to do so. 

Some of the cases that a receiver may have to contend with are 
listed below as a reminder to the implementer: 

* A single Aligned and complete FPDU, either in order, or out of 
order:  This can be passed to DDP as soon as validated, and 
Delivered when ordering is established. 

* Multiple FPDUs in a TCP segment, aligned and fully contained, 
either in order, or out of order:  These can be passed to DDP 
as soon as validated, and Delivered when ordering is 
established. 

* Incomplete FPDU: The receiver should buffer until the remainder 
of the FPDU arrives.  If the remainder of the FPDU is already 
available, this can be passed to DDP as soon as validated, and 
Delivered when ordering is established.   

* Unaligned FPDU start: The partial FPDU must be combined with 
its preceding portion(s).  If the preceding parts are already 
available, and the whole FPDU is present, this can be passed to 
DDP as soon as validated, and Delivered when ordering is 
established.  If the whole FPDU is not available, the receiver 
should buffer until the remainder of the FPDU arrives. 
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* Combinations of Unaligned or incomplete FPDUs (and potentially 
other complete FPDUs) in the same TCP segment:  If any FPDU is 
present in its entirety, or can be completed with portions 
already available, it can be passed to DDP as soon as 
validated, and Delivered when ordering is established. 
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8 Connection Semantics 

8.1 Connection setup 

DDP on MPA requires that DDP's consumer MUST activate DDP, MPA, and 
any TCP enhancements for MPA, on a TCP half connection at the same 
location in the octet stream at both the sender and the receiver. 
This is required in order for the marker scheme to correctly locate 
the markers. 

DDP, MPA, and any TCP enhancements for MPA, MAY be started 
separately in each direction, or enabled in both directions at 
once. 

This can be accomplished several ways, and is left up to DDP's ULP: 

* DDP's ULP MAY require DDP on MPA startup immediately after TCP 
connection setup.  This has the advantage that no additional 
negotiation is needed (at least for MPA).  In this case the 
marker MUST be the first four octets sent (this marker has the 
special value 0x0000, meaning it belongs to the FPDU that 
follows). 

This may be accomplished by using a well-known port, or a 
service locator protocol to locate an appropriate port on which 
DDP on MPA is expected to operate. 

* DDP's ULP MAY negotiate the start of DDP on MPA sometime after 
a normal TCP startup, using TCP streaming data exchanges on the 
same connection.  The exchange establishes that DDP on MPA (as 
well as other ULPs) will be used, and exactly locates the point 
in the octet stream where MPA is to begin operation.  Again, 
the marker is the first four octets sent when operation begins 
(this marker has the special value 0x0000, meaning it belongs 
to the FPDU that follows).  Note that such a negotiation 
protocol is outside the scope of this specification.  A 
simplified example of such a protocol is shown below. 
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  +-------------------------+ 
  |ULP streaming mode       | 
  | <Hello> request to      | 
  | transition to DDP/MPA   |           +--------------------------
+ 
  | mode                    | --------> |ULP gets request;         
| 
  +-------------------------+           |sets its receiver to      
| 
                                        |DDP/MPA mode; sends       
| 
                                        |streaming mode DDP/MPA    
| 
  +-------------------------+           |<Hello Acknowledgement>   
| 
  |ULP receives DDP/MPA     | <-------- |                          
| 
  |<Hello Acknowledgement>; |           +--------------------------
+ 
  |Sets transmitter and     | 
  |receiver to DDP/MPA mode;| 
  |                         | 
  |The First DDP/MPA message|           +--------------------------
+ 
  |Is then sent.            | --------> |When the DDP/MPA mode     
| 
  +-------------------------+           |message arrives, the ULP  
| 
                                        |sets its Transmit side to 
| 
                                        |DDP/MPA mode and begins   
| 
                                        |full operation.           
| 
                                        +--------------------------
+ 

Figure 7: Example Startup negotiation 

 
8.2 Normal Connection Teardown 

Each half connection of MPA terminates when DDP closes the 
corresponding TCP half connection. 

A mechanism SHOULD be provided by MPA to DDP for DDP to be made 
aware that a graceful close of the LLP connection has been received 
by the LLP (e.g. FIN is received). 
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9 Error Semantics 

The following errors MUST be detected by MPA and the codes SHOULD 
be provided to DDP: 

Code Error 

1 TCP connection closed, terminated or lost.  This includes 
lost by timeout, too many retries, RST received or FIN 
received. 

2 Received MPA CRC does not match the calculated value for 
the FPDU. 

3 In the event that the CRC is valid, received MPA marker 
and 'ULPDU Length' fields do not agree on the start of a 
FPDU.  If the FPDU start determined from previous ULPDU 
Length fields does not match with the MPA marker position, 
MPA SHOULD deliver an error to DDP.  It may not be 
possible to make this check as a segment arrives, but the 
check SHOULD be made when a gap creating an out of order 
sequence is closed and any time a marker points to an 
already identified FPDU.  It is OPTIONAL for a receiver to 
check each marker, if multiple markers are present in an 
FPDU, or if the segment is received in order. 

When conditions 2 or 3 above are detected, an MPA-aware TCP 
implementation MAY choose to silently drop the TCP segment rather 
than reporting the error to DDP.  In this case, the sending TCP 
will retry the segment, usually correcting the error, unless the 
problem was at the source.  In that case, the source will usually 
exceed the number of retries and terminate the connection. 

Once MPA delivers an error of any type, it MUST NOT pass or deliver 
any additional FPDUs on that half connection. 

MPA MUST NOT close the TCP connection following a reported error.  
Closing the connection is the responsibility of DDP's ULP. 

Note that since MPA will not deliver any FPDUs on a half 
connection following an error detected on the receive side of 
that connection, DDP's ULP is expected to tear down the 
connection.  This may not occur until after one or more last 
messages are transmitted on the opposite half connection.  
This allows a diagnostic error message to be sent. 
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10 Security Considerations 

This section discusses the security considerations for MPA. 

10.1 Protocol-specific Security Considerations 

The vulnerabilities of MPA to third-party attacks are no greater 
than any other protocol running over TCP.  A third party, by 
sending packets into the network that are delivered to an MPA 
receiver, could launch a variety of attacks that take advantage of 
how MPA operates.  For example, a third party could send random 
packets that are valid for TCP, but contain no FPDU headers.  An 
MPA receiver reports an error to DDP when any packet arrives that 
cannot be validated as an FPDU when properly located on an FPDU 
boundary.  This would have a severe impact on performance.  
Communication security mechanisms such as IPsec [RFC2401] may be 
used to prevent such attacks.  Independent of how MPA operates, a 
third party could use ICMP messages to reduce the path MTU to such 
a small size that performance would likewise be severely impacted.  
Range checking on path MTU sizes in ICMP packets may be used to 
prevent such attacks. 

10.2 Using IPsec With MPA 

IPsec can be used to protect against the packet injection attacks 
outlined above.  Because IPsec is designed to secure individual IP 
packets, MPA can run above IPsec without change.  IPsec packets are 
processed (e.g., integrity checked and decrypted) in the order they 
are received, and an MPA receiver will process the decrypted FPDUs 
contained in these packets in the same manner as FPDUs contained in 
unsecured IP packets. 
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11 IANA Considerations 

If a well-known port is chosen as the mechanism to identify a DDP 
on MPA on TCP, the well-known port must be registered with IANA.  
Because the use of the port is DDP specific, registration of the 
port with IANA is left to DDP. 
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13 Appendix  

This appendix is for information only and is NOT part of the 
standard. 

13.1 Receiver implementation 

13.1.1 Transport & Network Layer Reassembly Buffers 

The use of reassembly buffers (either TCP reassembly buffers or IP 
fragmentation reassembly buffers) is implementation dependent. When 
MPA is enabled, reassembly buffers are needed if FPDU Alignment is 
lost or if IP fragmentation occurs. This is because the incoming 
out of order segment may not contain enough information for MPA to 
process all of the FPDU. For cases where a re-segmenting middle box 
is present, or where the TCP sender is not MPA-aware, the presence 
of markers significantly reduces the amount of buffering needed. 

Recovery from IP Fragmentation must be transparent to the MPA 
Consumers. 

13.1.1.1 Network Layer Reassembly Buffers 

Most IP implementations set the IP Don't Fragment bit. Thus upon a 
path MTU change, intermediate devices drop the IP datagram if it is 
too large and reply with an ICMP message which tells the source TCP 
that the path MTU has changed. This causes TCP to emit segments 
conformant with the new path MTU size. Thus IP fragments under most 
conditions should never occur at the receiver. But it is possible. 

There are several options for implementation of network layer 
reassembly buffers: 

1. drop any IP fragments, and reply with an ICMP message according 
to [RFC792] (fragmentation needed and DF set) to tell the 
Remote Peer to resize its TCP segment 

2. support an IP reassembly buffer, but have it of limited size 
(possibly the same size as the local link's MTU). The end Node 
would normally never advertise a path MTU larger than the local 
link MTU. It is recommended that a dropped IP fragment cause an 
ICMP message to be generated according to RFC792. 

3. multiple IP reassembly buffers, of effectively unlimited size. 

4. support an IP reassembly buffer for the largest IP datagram (64 
KB). 

5. support for a large IP reassembly buffer which could span 
multiple IP datagrams. 
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An implementation should support at least 2 or 3 above, to avoid 
dropping packets that have traversed the entire fabric.  

There is no end-to-end ACK for IP reassembly buffers, so there is 
no flow control on the buffer. The only end-to-end ACK is a TCP 
ACK, which can only occur when a complete IP datagram is delivered 
to TCP. Because of this, under worst case, pathological scenarios, 
the largest IP reassembly buffer is the TCP receive window (to 
buffer multiple IP datagrams that have all been fragmented).  

Note that if the Remote Peer does not implement re-segmentation of 
the data stream upon receiving the ICMP reply updating the path 
MTU, it is possible to halt forward progress because the opposite 
peer would continue to retransmit using a transport segment size 
that is too large. This deadlock scenario is no different than if 
the fabric MTU (not last hop MTU) was reduced after connection 
setup, and the remote Node's behavior is not compliant with 
[RFC1122]. 

13.1.1.2 TCP Reassembly buffers 

A TCP reassembly buffer is also needed. TCP reassembly buffers are 
needed if FPDU Alignment is lost when using TCP with MPA or when 
the MPA FPDU spans multiple TCP segments.  

Since lost FPDU Alignment often means that FPDUs are incomplete, an 
MPA on TCP implementation must have a reassembly buffer large 
enough to recover an FPDU that is less than or equal to the MTU of 
the locally attached link (this should be the largest possible 
advertised TCP path MTU). If the MTU is smaller than 140 octets, 
the buffer MUST be at least 140 octets long to support the minimum 
FPDU size.  The 140 octets allows for the minimum MULPDU of 128, 2 
octets of pad, 2 of ULPDU_Length, 4 of CRC, and space for a 
possible marker. As usual, additional buffering may provide better 
performance. 

Note that if the TCP segment were not stored, it is possible to 
deadlock the MPA algorithm. If the path MTU is reduced, FPDU 
Alignment requires the source TCP to re-segment the data stream to 
the new path MTU. The source MPA will detect this condition and 
reduce the MPA segment size, but any FPDUs already posted to the 
source TCP will be re-segmented and lose FPDU Alignment. If the 
destination does not support a TCP reassembly buffer, these 
segments can never be successfully transmitted and the protocol 
deadlocks. 

When a complete FPDU is received, processing continues normally. 
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