
IP Performance Measurement C. Paasch

Internet-Draft R. Meyer

Intended status: Experimental S. Cheshire

Expires: February 14, 2022 O. Shapira

 Apple Inc.

 August 13, 2021

 Responsiveness under Working Conditions

 draft-cpaasch-ippm-responsiveness-00

Abstract

 Bufferbloat has been a long-standing problem on the Internet with

 more than a decade of work on standardizing technical solutions,

 implementations and testing. However, to this date, bufferbloat is

 still a very common problem for the end-users. Everyone "knows" that

 it is "normal" for a video conference to have problems when somebody

 else on the same home-network is watching a 4K movie.

 The reason for this problem is not the lack of technical solutions,

 but rather a lack of awareness of the problem-space, and a lack of

 tooling to accurately measure the problem. We believe that exposing

 the problem of bufferbloat to the end-user by measuring the end-

 users’ experience at a high level will help to create the necessary

 awareness.

 This document is a first attempt at specifying a measurement

 methodology to evaluate bufferbloat the way common users are

 experiencing it today, using today’s most frequently used protocols

 and mechanisms to accurately measure the user-experience. We also

 provide a way to express the bufferbloat as a measure of "Round-trips

 per minute" (RPM) to have a more intuitive way for the users to

 understand the notion of bufferbloat.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

Paasch, et al. Expires February 14, 2022 [Page 1]

Internet-Draft Responsiveness under Working Conditions August 2021

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 14, 2022.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info) in effect on the date of

 publication of this document. Please review these documents

 carefully, as they describe your rights and restrictions with respect

 to this document. Code Components extracted from this document must

 include Simplified BSD License text as described in Section 4.e of

 the Trust Legal Provisions and are provided without warranty as

 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2

 2. Measuring is hard . 3

 3. Goals . 4

 4. Measuring Responsiveness 5

 4.1. Working Conditions 5

 4.1.1. Parallel vs Sequential Uplink and Downlink 6

 4.1.2. From single-flow to multi-flow 7

 4.1.3. Reaching saturation 7

 4.1.4. Final algorithm 7

 4.2. Measuring Responsiveness 8

 4.2.1. Aggregating Round-trips per Minute 9

 4.2.2. Statistical Confidence 10

 5. Protocol Specification 10

 6. Security Considerations 11

 7. IANA Considerations . 11

 8. Acknowledgments . 11

 9. Informative References 11

 Authors’ Addresses . 12

1. Introduction

 For many years, bufferbloat has been known as an unfortunately common

 issue in todays networks [Bufferbloat]. Solutions like FQ-codel

 [RFC8289] or PIE [RFC8033] have been standardized and are to some

 extend widely implemented. Nevertheless, users still suffer from

 bufferbloat.

Paasch, et al. Expires February 14, 2022 [Page 2]

Internet-Draft Responsiveness under Working Conditions August 2021

 The way bufferbloat impacts the user-experience is very subtle.

 Whenever a network is actively being used at its full capacity,

 buffers are filling up and create latency for the traffic. These

 moments of a full buffer may be very brief during a medium-sized

 file-transfer, like an email-attachment. They create short-lived

 bursts of latency-spikes that users may experience. An example of

 this is lag occuring during a video-conference.

 While on one side, bufferbloat disrupts the user-experience, its

 short-lived nature makes it hard to narrow down the problem and make

 the user sensible to it. Lack of well-known measurement tools and

 popular measurement platforms add to the "obscure" nature of the

 bufferbloat problem.

 We believe that it is necessary to create a standardized way for

 measuring the extend of bufferbloat in a network and express it to

 the user in a user-friendly way. This should help existing

 measurement tools to add a bufferbloat measurement to their set of

 metrics. It will also allow to raise the awareness to the problem

 and shift the focus away from purely quantifying network quality

 through throughput and idle latency.

 In this document, we describe a methodology for measuring bufferbloat

 and its impact on the user-experience. We create the term

 "Responsiveness under working conditions" to make it more user-

 accessible. We focus on using protocols that are most commonly used

 in end-user use-cases, as performance enhancing proxies and traffic

 classification for those protocols is very common. It is thus very

 important to use those protocols for the measurements to avoid

 focusing on use-cases that are not actually affecting the end-user.

 Finally, we propose to use "round-trips per minute" as a metric to

 express the extend of bufferbloat.

2. Measuring is hard

 There are several challenges around measuring bufferbloat accurately

 on the Internet. These challenges are due to different factors.

 Namely the diverse and dynamic nature of the Internet, the large

 problem space, and the reproducibility of the measurement.

 It is well-known that transparent TCP proxies are widely deployed on

 port 443 and/or port 80, while less common on other ports. Thus,

 choice of the port-number to measure bufferbloat has a significant

 influence on the result. Other factors are the protocols being used.

 TCP and UDP traffic may take a largely different path on the Internet

 and be subject to entirely different QoS constraints. Again,

 bufferbloat measured on UDP vs TCP may be entirely different.

 Another aspect is the queuing configuration on the bottleneck. It

Paasch, et al. Expires February 14, 2022 [Page 3]

Internet-Draft Responsiveness under Working Conditions August 2021

 may be that fair-queuing is configured which may "hide" queuing

 latency that affects other flows.

 The Internet is not just diverse; it is changing all the time. Since

 its inception as a network that can adapt to major outages, the

 Internet has demonstrated exceptional ability to survive disruptions.

 At any given moment, the Internet routing is changing to rebalance

 the traffic, so that a particular local outage will not have a global

 effect. The cost of such resiliency is the fact that the routing is

 constantly changing. Daily fluctuations in the demand for the

 traffic make the bottlenecks ebb and flow. Because of that,

 measuring the responsiveness during the peak hours is likely to

 encounter a different bottleneck queue compared to off-peak

 measurement. It seems that it’s best to avoid extending the duration

 of the test beyond what’s needed.

 The problem space around the bufferbloat is huge. Traditionally, one

 thinks of bufferbloat happening on the routers and switches of the

 Internet. Thus, simply measuring bufferbloat at the transport layer

 would be sufficient. However, the networking stacks of the clients

 and servers can also experience huge amounts of bufferbloat. Data

 sitting in TCP sockets or waiting in the application to be scheduled

 for sending causes artificial latency, which affects user-experience

 the same way the "traditional" bufferbloat does.

 Finally, measuring bufferbloat requires us to fill the buffers of the

 bottleneck and when buffer occupancy is at its peak, the latency

 measurement needs to be done. Achieving this in a reliable and

 reproducible way is not easy. First, one needs to ensure that

 buffers are actually full for a sustained period of time to allow for

 repeated latency measurements in this particular state. Filling of

 the buffers should happen with standard transport layer traffic -

 typical for the end-user’s use of the network - and thus is subject

 to the transport’s congestion control, implying rate-reduction which

 reduces the buffering in the network. The amount of bufferbloat is

 thus constantly fluctuating and a reliable measurement requires to

 overcome these fluctuations.

3. Goals

 There are many different ways on how one can measure bufferbloat.

 The focus in this document is to capture how bufferbloat affects the

 user-experience and to provide this as a measurement-tool to non-

 expert users.

 The focus on end-user experience means a number of things:

Paasch, et al. Expires February 14, 2022 [Page 4]

Internet-Draft Responsiveness under Working Conditions August 2021

 1. Today’s user-facing Internet traffic is primarily using HTTP/2

 over TLS. Thus, the measurement should use that protocol.

 As a side-note: other types of traffic are gaining in popularity

 (HTTP/3) and/or are already being used widely (RTP). Due to

 traffic prioritization and QoS rules on the Internet, each of

 these may experience completely different path-characteristics

 and should also be measured separately.

 2. The Internet is marked by the deployment of countless middleboxes

 like transparent TCP proxies or traffic prioritization for

 certain types of traffic. The measurement methodology should

 allow us to explore all of these as they affect the user-

 experience. This means, each stage of a user’s interaction with

 the Internet (DNS-request, TCP-handshake, TLS-handshake, and

 request/response) needs to be evaluated.

 3. User-friendliness of the result means that it should be expressed

 in a non-technical way to the user. Users commonly look for a

 single "score" of their performance. This enables the goal of

 raising awareness to a large user-base on the problem of

 bufferbloat.

 4. Finally, in order for this measurement to be user-friendly to a

 wide audience it is important that such a measurement finishes

 within a short time-frame and short being anything below 20

 seconds.

4. Measuring Responsiveness

 The ability to reliably measure the responsiveness under typical

 working conditions is predicated by the ability to reliably put the

 network in a state representative of the said conditions. Once the

 network has reached the required state, its responsiveness can be

 measured. The following explains how the former and the latter are

 achieved.

4.1. Working Conditions

 For the purpose of this methodology, "typical working conditions"

 represent a state of the network, in which the bottleneck node is

 experiencing ingress and egress flows that are similar to those when

 used by humans in the typical day-to-day pattern.

 While any network can be put momentarily into working condition by

 the means of a single HTTP transaction, taking measurements requires

 maintaining such conditions over sufficient time. Thus, measuring

 the network responsiveness in a consistent way depends on our ability

Paasch, et al. Expires February 14, 2022 [Page 5]

Internet-Draft Responsiveness under Working Conditions August 2021

 to recreate typical working conditions on demand. The most reliable

 way to achieve this is by creating multiple large bulk data-transfers

 in either downstream or upstream direction. Similar to conventional

 speed-test applications that also create a varying number of streams

 to measure throughput. Working-conditions does the same. It also

 requires a way to detect when the network is in a persistent working

 condition, called "saturation". This can be achieved by monitoring

 the instantaneous goodput over time. When the goodput stops

 increasing, it means that a saturation has been reached and that

 responsiveness can be measured.

 Desired properties of the "working condition actuation"

 o Should not waste traffic, since the user may be paying for it

 o Should finish within a short time-frame to avoid impacting other

 users on the same network and/or experience varying conditions

4.1.1. Parallel vs Sequential Uplink and Downlink

 From an end-user perspective, bufferbloat can happen in both the

 upstream and the downstream direction. Both paths can be hugely

 different due to access-link conditions (e.g., 5G downstream and LTE

 upstream) or the routing in the ISPs. Users sending data to an

 Internet service will fill the bottleneck on the upstream path to the

 server and thus expose a potential for bufferbloat to happen at this

 bottleneck. On the downlink direction any download from an Internet

 service will encounter a bottleneck and thus exposes another

 potential for bufferbloat. Thus, when measuring responsiveness under

 working conditions it is important to consider both, the upstream and

 the downstream bufferbloat. This opens the door to measure both

 uplink and downlink in parallel.

 Measuring in parallel allows to achieve higher overall confidence in

 the results within the time constraint of the entire test. For

 example, if the overall time constraint for the test is 20 seconds,

 running uplink and downlink sequentially would allow for only 10

 seconds of test per direction, while parallel measurement will allow

 for 20 seconds of testing in both directions.

 However, a number caveats come with measuring in parallel: - Half-

 duplex links may not expose uplink and downlink bufferbloat: A half-

 duplex link may not allow during parallel measurement to saturate

 both the uplink and the downlink direction. Thus, bufferbloat in

 either of the directions may not be exposed during parallel

 measurement. - Debuggability of the results becomes more obscure:

 During parallel measurement it is impossible to differentiate on

Paasch, et al. Expires February 14, 2022 [Page 6]

Internet-Draft Responsiveness under Working Conditions August 2021

 whether the bufferbloat happens in the uplink or the downlink

 direction.

4.1.2. From single-flow to multi-flow

 As described in RFC 6349, a single TCP connection may not be

 sufficient to saturate a path between a client and a server. On a

 high-BDP network, traditional TCP window-size constraints of 4MB are

 often not sufficient to fill the pipe. Additionally, traditional

 loss-based TCP congestion control algorithms aggressively reacts to

 packet-loss by reducing the congestion window. This reaction will

 reduce the queuing in the network, and thus "artificially" make the

 bufferbloat appear lesser.

 The goal of the measurement is to keep the network as busy as

 possible in a sustained and persistent way. Thus, using multiple TCP

 connections is needed for a sustained bufferbloat by gradually adding

 TCP flows until saturation is needed.

4.1.3. Reaching saturation

 It is best to detect when saturation has been reached so that the

 measurement of responsiveness can start with the confidence that the

 network is sufficiently saturated. For this, we first need to define

 what "saturation" means. Saturation means not only that the load-

 bearing connections are utilizing all the capacity, but also that the

 buffers are completely filled. Thus, this depends highly on the

 congestion control that is being deployed on the sender-side.

 Congestion control algorithms like BBR may reach high throughput

 without causing bufferbloat. (because the bandwidth-detection portion

 of BBR is effectively seeking the bottleneck capacity)

 It is advised to rather use loss-based congestion controls like Cubic

 to "reliably" ensure that the buffers are filled.

 An indication of saturation is when the observed goodput is no more

 increasing even as connections are being added to the pool of load-

 generating connections. An additional indication is the presence of

 packet-loss or ECN-marks signaling a congestion or even a full buffer

 of the bottleneck link.

4.1.4. Final algorithm

 The following is a proposal for an algorithm to reach saturation of a

 network by using HTTP/2 upload (POST) or download (GET) requests of

 infinitely large files. The algorithm is the same for upload and

 download and thus we will use the same term "load-bearing connection"

 for either of them.

Paasch, et al. Expires February 14, 2022 [Page 7]

Internet-Draft Responsiveness under Working Conditions August 2021

 The algorithm takes into account that throughput gradually increases

 as TCP connections go through their TCP slow-start phase.

 Throughput-increase eventually stalls for a constant number of TCP-

 connections - usually due to receive-window limitations. At that

 point, the only means to further increase throughput is by adding

 more TCP connections to the pool of load-bearing connections. This

 will then either result in a further increase in throughput, or

 throughput will remain stable. In the latter case, this means that

 saturation has been reached and - more importantly - is stable.

 In detail, the steps of the algorithm are the following

 o Create 4 load-bearing connections

 o At each 1-second interval:

 * Compute "instantaneous aggregate" goodput which is the number

 of bytes received within the last second.

 * Compute moving average as the last 4 "instantaneous aggregate

 goodput" measurements

 * If moving average > "previous" moving average + 5%:

 + We did not yet reach saturation, but if we haven’t added

 more flows for 4 seconds, add 4 more flows to the mix.

 * Else, we reached saturation for the current flow-count.

 + If we added flows and for 4 seconds the moving average

 throughput did not change: We reached stable saturation

 + Else, add more flows

 Note: It may be tempting to steer the algorithm through an initial

 base-RTT measurement and adjust the intervals as a function of the

 RTT. However, experiments have shown that this makes the saturation-

 detection extremely unstable in low-RTT environments. When the

 "unloaded" RTT is in the single-digit milli-second range, while under

 load the network’s RTT increases to more than a hundred milliseconds,

 the intervals become much too low to accurately drive the algorithm.

4.2. Measuring Responsiveness

 Once the network is in consistent working conditions, the network’s

 responsiveness can be measured. As the focus of our responsiveness

 metric is to evaluate a real user-experience we focus on measuring

Paasch, et al. Expires February 14, 2022 [Page 8]

Internet-Draft Responsiveness under Working Conditions August 2021

 the different stages of a separate network transaction as well as

 measuring on the load-bearing connections themselves.

 Two aspects are being measured with this approach :

 1. How the network handles new connections and their different

 stages (DNS-request, TCP-handshake, TLS-handshake, HTTP/2

 request/response) while being under working conditions. E.g.,

 the presence of fair-queueing on the bottleneck will drastically

 improve the experience on these connections.

 2. How the network and the client/server networking stack handles

 the latency on the load-bearing connections themselves. E.g.,

 Smart queuing techniques on the bottleneck will allow to keep the

 latency within a reasonable limit in the network and buffer-

 reducing techniques like TCP_NOTSENT_LOWAT makes sure the client

 and server TCP-stack is not a source of significant latency.

 To measure the former, we send a DNS-request, establish a TCP-

 connection on port 443, establish a TLS-context using TLS1.3 and send

 an HTTP2 GET request for an object of a single byte large. This

 measurement will be repeated multiple times for accuracy. Each of

 these stages allows to collect a single latency measurement that can

 then be factored into the responsiveness computation.

 To measure the latter, on the load-bearing connections (that uses

 HTTP/2) a GET request is multiplexed. This GET request is for a

 1-byte object. This allows to measure the end-to-end latency on the

 connections that are using the network at full speed.

4.2.1. Aggregating Round-trips per Minute

 The above described method will produce 5 sets of measurement

 results, namely: DNS-handshake, TCP-handshake, TLS handshake, HTTP/2

 request/response on separate connections, HTTP/2 request/response on

 load-bearing connections. Each of these sets of numbers focuses on a

 specific aspect of a user’s interaction with the network. In order

 to expose a single "Responsiveness" number to the user the weighting

 among these sets needs to be decided. In our first iteration we give

 an equal weight to each of these measurements.

 Finally, the resulting latency needs to be exposed to the users.

 Users have been trained to accept metrics that have a notion of "The

 higher the better". Latency measuring in units of seconds however is

 "the lower the better". Thus, converting the latency measurement to

 a frequency allows using the familiar notion of "The higher the

 better". The term frequency has a very technical connotation. What

 we are effectively measuring is the number of round-trips from the

Paasch, et al. Expires February 14, 2022 [Page 9]

Internet-Draft Responsiveness under Working Conditions August 2021

 user’s device to the server endpoint that can be done within a unit

 of time. This leads to the notion of Round-trips per Minute. It has

 the advantage that the range of values is within a reasonable 50 to

 3000 Round-trips per Minute. It can also be abbreviated to "RPM"

 which is a wink to the "revolutions per minute" that we are used to

 in cars.

 Thus, our unit of measure is "Round-trip per Minute" (RPM) that

 expresses responsiveness under working conditions.

4.2.2. Statistical Confidence

 It remains an open question as to how many repetitions of the above

 described latency measurements a tool would need to execute. One

 could imagine a computation of the variance and confidence interval

 that would drive the number of measurements and balance the accuracy

 with the speed of the measurement itself.

5. Protocol Specification

 By using standard protocols that are most commonly used by end-users,

 no new protocol needs to be specified. However, both client and

 servers need capabilities to execute this kind of measurement as well

 as a standard to flow to provision the client with the necessary

 information.

 First, the capabilities of both the client and the server: It is

 expected that both hosts support HTTP/2 over TLS 1.3. That the

 client is able to send a GET-request and a POST. The server needs

 the ability to serve both of these HTTP commands. Further, the

 server endpoint is accessible through a hostname that can be resolved

 through DNS. Finally, the server has the ability to provide content

 upon a GET-request.

 Given those capabilities, the server is expected to provide 4 URLs/

 responses:

 1. A config URL/response: This is the configuration file/format used

 by the client. It’s a simple JSON file format that points the

 client at the various URLs mentioned below. All of the fields

 are required except "test_endpoint". If the service-procier can

 pin all of the requests for a test run to a specific node in the

 service (for a particular run), they can specify that node’s name

 in the "test_endpoint" field. It’s preferred that pinning of

 some sort is available. This is to ensure the measurement is

 against the same paths and not switching hosts during a test run

 (ie moving from near POP A to near POP B) Sample content of this

 JSON would be:

Paasch, et al. Expires February 14, 2022 [Page 10]

Internet-Draft Responsiveness under Working Conditions August 2021

{

 "version": 1,

 "urls": {

 "small_https_download_url": "https://example.apple.com/api/v1/small",

 "large_https_download_url": "https://example.apple.com/api/v1/large",

 "https_upload_url": "https://example.apple.com/api/v1/upload"

 },

 "test_endpoint": "hostname123.cdnprovider.com"

}

 2. A "small" URL/response: This needs to serve a status code of 200

 and 1 byte in the body. The actual body content is irrelevant.

 3. A "large" URL/response: This needs to serve a status code of 200

 and a body size of at least 8GB. The body can be bigger, and

 will need to grow as network speeds increases over time. The

 actual body content is irrelevant. The client will probably

 never completely download the object.

 4. An "upload" URL/response: This needs to handle a POST request

 with an arbitrary body size. Nothing needs to be done with the

 payload, it should be discarded.

 Given those 4 services provided by the server, the client can

 bootstrap the responsiveness measurement by querying the JSON

 configuration. Upon which it has the URLs for creating the load-

 bearing connections in the upstream and downstream direction as well

 as the small object for the latency measurements.

6. Security Considerations

 TBD

7. IANA Considerations

 TBD

8. Acknowledgments

 TBD

9. Informative References

 [Bufferbloat]

 Gettys, J. and K. Nichols, "Bufferbloat: Dark Buffers in

 the Internet", Communications of the ACM, Volume 55,

 Number 1 (2012) , n.d..

Paasch, et al. Expires February 14, 2022 [Page 11]

Internet-Draft Responsiveness under Working Conditions August 2021

 [RFC8033] Pan, R., Natarajan, P., Baker, F., and G. White,

 "Proportional Integral Controller Enhanced (PIE): A

 Lightweight Control Scheme to Address the Bufferbloat

 Problem", RFC 8033, DOI 10.17487/RFC8033, February 2017,

 <https://www.rfc-editor.org/info/rfc8033>.

 [RFC8289] Nichols, K., Jacobson, V., McGregor, A., Ed., and J.

 Iyengar, Ed., "Controlled Delay Active Queue Management",

 RFC 8289, DOI 10.17487/RFC8289, January 2018,

 <https://www.rfc-editor.org/info/rfc8289>.

Authors’ Addresses

 Christoph Paasch

 Apple Inc.

 One Apple Park Way

 Cupertino, California 95014

 United States of America

 Email: cpaasch@apple.com

 Randall Meyer

 Apple Inc.

 One Apple Park Way

 Cupertino, California 95014

 United States of America

 Email: rrm@apple.com

 Stuart Cheshire

 Apple Inc.

 One Apple Park Way

 Cupertino, California 95014

 United States of America

 Email: cheshire@apple.com

 Omer Shapira

 Apple Inc.

 One Apple Park Way

 Cupertino, California 95014

 United States of America

 Email: oesh@apple.com

Paasch, et al. Expires February 14, 2022 [Page 12]

