
Behavior Engineering for Hindrance Avoidance X. Chen
Internet-Draft Huawei
Intended status: Standards Track S. Garcia Murillo
Expires: March 16, 2014 Medooze
 O. Moskalenko
 Yahoo
 V. Pascual
 Quobis
 L. Miniero
 Meetecho
 September 12, 2013

WebSocket Protocol as a Transport for Traversal Using Relays around NAT
 (TURN)
 draft-chenxin-behave-turn-websocket-01

Abstract

 This document defines an extension to the Traversal Using Relays
 around NAT (TURN) protocol, in order to allow it to run over a
 WebSocket channel. This will allow clients in restrictive networks
 to traverse them and effectively exchange and relay media or data
 over WebSockets.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 16, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Chen, et al. Expires March 16, 2014 [Page 1]

Internet-Draft TURN over Websocket September 2013

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

1. Introduction

 Traversal Using Relays around NAT (TURN) [RFC5766], which assigns a
 transport address allocation for clients and relays data between the
 address and the clients, is an extension to the Session Traversal
 Utilities for NAT [RFC5389] protocol. TURN is used for NAT traversal
 in some complicated types of NAT network by UDP-based media sessions
 [RFC5766] or TCP-based media sessions [RFC6062]. It is also used in
 conjunction with the Interactive Connectivity Establishment (ICE)
 [RFC5245] technique.

 In some particularly restrictive networks though, e.g., a web proxy
 or firewall that only allows HTTP traffic to pass through, TURN UDP-
 based media sessions and TCP-based media sessions do not work. These
 types of networks are often deployed in corporations, prisons,
 hotels, airports and other locations that may need to limit the
 access, and as such legitimate users trying to set up a real-time
 multimedia session in such a scenario would find themselves unable to
 do so. This is a known issue and in fact the RTCWEB specification,
 which provides the means to realize direct interactive rich
 communications between two peers by using just their web browsers,
 has an explicit requirement to allow such peers to use some kind of
 fallback communication in HTTP-only networks, as specified in
 [I-D.ietf-rtcweb-use-cases-and-requirements](F37).

 That said, this document is aimed at targeting such scenarios, and as
 such defines an extension to the standard TURN protocol that allows
 it to run over a WebSocket [RFC6455] channel.

 The WebSocket [RFC6455] protocol enables message exchange between
 clients and servers on top of a persistent TCP connection.
 Considering that the initial protocol handshake makes use of HTTP
 [RFC2616] semantics, thus allowing the WebSocket protocol to reuse
 existing HTTP infrastructure, this means that a client in a
 restrictive network would be able to exchange media over a WebSocket.
 Besides solving the HTTP fallback problem, this solution could also
 be easyly implemented and deployed within the existing RTCWEB
 framework.

Chen, et al. Expires March 16, 2014 [Page 2]

Internet-Draft TURN over Websocket September 2013

 For what concerns the impact of such an extensions on the interaction
 with legacy peers making use of the services provided by a TURN
 server, the connection between the server and such peers would still
 be based on UDP as [RFC5766] or TCP as [RFC6062] in a seamless and
 transparent fashion.

 +----------------------------+---------------------+
 | TURN client to TURN server | TURN server to peer |
 +----------------------------+---------------------+
 | WebSocket over TCP/TLS | UDP |
 | | TCP |
 +----------------------------+---------------------+

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Deployment Topology

 Within the context of real-time multimedia communications and
 considering a scenario that involves two peers, an HTTP fallback
 mechanism may fall in basically three different network topologies:

3.1. A topology whereas only one of the involved peers needs HTTP
 fallback for communication

 +-------------+
 | |
 +--------------+ TURN Server +----------------+
 | WS/WSS | | UDP/TCP |
 | +-------------+ |
 | |
 | |
 +---+---+ +---+---+
 | Alice | | Bob |
 +-------+ +-------+

 Figure 1

 In Figure 1, only one involved peer (Alice) is in a restrained
 network, which means Alice needs to make use of a WebSocket
 connection to traverse the firewall and/or proxy. The situation for
 Bob is better, he could connect to the TURN server by UDP or TCP
 using the existing mechanisms.

Chen, et al. Expires March 16, 2014 [Page 3]

Internet-Draft TURN over Websocket September 2013

 When Alice wants to communicate with Bob, she needs to request a UDP
 or TCP allocation in the WebSocket server for Bob, which is then
 transferred to the WebSocket channel. The WebSocket server will
 receive the request and handle it like a TURN server. The processing
 of TURN messages is exactly the same as TURN UDP and TURN TCP, and
 the WebSocket server will also allocate a UDP or TCP relay address
 for Bob. The application data between Alice and Bob will be packaged
 and relayed to each other by the WebSocket server.

3.2. A topology whereas both the involved peers need HTTP fallback for
 communication, using two different intermediaries

 +-------------+ +-------------+
 | | | |
 +--------+ TURN Server +---------+ TURN Server +---------+
 | WS/WSS | | UDP/TCP | | WS/WSS |
 | +-------------+ +-------------+ |
 | |
 | |
 +---+---+ +---+---+
 | Alice | | Bob |
 +-------+ +-------+

 Figure 2

 In Figure 2, both Alice and Bob are in restrictive networks, so both
 need a fallback mechanism. In this slightly more complex scenario,
 both Alice and Bob each have been configred to refer to different
 WebSocket servers. In this scenario, Alice and Bob need to request
 the TURN allocation in their own WebSocket server using a WebSocket
 connection.

 Again, just as before the processing of TURN messages is exactly the
 same as TURN UDP and TURN TCP. The only difference with previous
 sceneario is that, in this case, the involved WebSocket server have
 to relay the application data to each other by either UDP, TCP or
 other existing ways, using the existing TURN mechanics for the
 purpose.

 It is of course suggested that Alice and Bob allocate the same type
 of transport address, so that their reference WebSocket server could
 connect to each other by this address directly.

 The scenario would of course be simpler in case the TURN servers
 depicted in the figure above happen to be the same TURN server, i.e.,
 if Alice and Bob both referred to the same server. In that case, it
 may be possible to relay the data internally instead of using an UDP/
 TCP connection.

Chen, et al. Expires March 16, 2014 [Page 4]

Internet-Draft TURN over Websocket September 2013

 +-------------+
 | |
 +------------+ TURN Server +-----------+
 | WS/WSS | | WS/WSS |
 | +-------------+ |
 | |
 | |
 +---+---+ +---+---+
 | Alice | | Bob |
 +-------+ +-------+

 Figure 3

 However, this is an implementation decision, not affecting the TURN
 clients interaction with the TURN server and it will not be covered
 in detail within this specification.

4. The WebSocket TURN Sub-Protocol

 The term WebSocket sub-protocol refers to an application-level
 protocol layered on top of a WebSocket connection. This document
 specifies the WebSocket TURN sub-protocol for carrying TURN requests
 and responses through a WebSocket connection.

4.1. Handshake

 The TURN Client and TURN Server negotiate usage of the WebSocket TURN
 sub-protocol during the WebSocket handshake procedure as defined in
 section 1.3 of [RFC6455]. The Client MUST include the value "turn"
 in the Sec-WebSocket-Protocol header in its handshake request. The
 101 reply from the Server MUST contain "turn" in its corresponding
 Sec-WebSocket-Protocol header.

 Also, the TURN WebSocket Client shall set the Origin header if the
 TURN connection is createad in a Web context as defined in [RFC6454].
 Particularly, for WebRTC, the Origin header shall be set to the value
 of the URI of the HTML page creating the PeerConnection.

 Below is an example of a WebSocket handshake in which the Client
 requests the WebSocket TURN sub-protocol support from the Server:

 GET / HTTP/1.1
 Host: TURN-ws.example.com
 Upgrade: websocket
 Connection: Upgrade
 Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
 Origin: http://www.example.com
 Sec-WebSocket-Protocol: turn

Chen, et al. Expires March 16, 2014 [Page 5]

Internet-Draft TURN over Websocket September 2013

 Sec-WebSocket-Version: 13

 The handshake response from the Server accepting the WebSocket TURN
 sub-protocol would look as follows:

 HTTP/1.1 101 Switching Protocols
 Upgrade: websocket
 Connection: Upgrade
 Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
 Sec-WebSocket-Protocol: turn

 Once the negotiation has been completed, the WebSocket connection is
 established and can be used for the transport of TURN requests and
 responses. The WebSocket messages transmitted over this connection
 MUST conform to the negotiated WebSocket sub-protocol.

4.2. TURN message framing

 TURN messages shall be transported in unfragmented binary frames
 (FIN:1,opcode:%x2).

 The WebSocket frame data shall be a valid TURN packet, so the length
 of the payload of the WebSocket frame shall be lower than the maximum
 size allowed (2^16 bytes) for a TURN request or response as defined
 in [RFC5766].

 TURN client using TURN over WebSockets should follow the
 recommendations in section 2.7 of [RFC5766] "Avoiding IP
 Fragmentation" when sending application data on the client-to-server-
 leg as messages could be relied over a UDP connection to the peer
 client.

4.3. TURN Allocation

 This document extends both [RFC5766] (TURN UDP relay) and [RFC6062]
 (TURN TCP relay) with a new type of client-to-server connection, i.e.
 WebSocket. For TURN allocations, WebSocket is a type of TCP client-
 to-server connection and is subject to all TURN TCP considerations.

 This specification strictly follows the allocation definition in
 section 5 in [RFC5766]. In the 5-tuple, the transport address is
 always TCP, of course, when WebSockets are used. All definitions in
 the section 5 of [RFC5766] are applicable to the WebSockets TURN
 connections.

Chen, et al. Expires March 16, 2014 [Page 6]

Internet-Draft TURN over Websocket September 2013

4.4. TURN Operation

 The operation of the client, server and peer is the same as TURN UDP
 and TURN TCP, with the difference consisting in the new connection
 channel - WebSocket.

4.5. TURN and TURNS URI WebSocket Transport Parameter

 This document defines the value "ws" as a transport parameter value
 for a TURN and TURNS URI [I-D.petithuguenin-behave-turn-uris] to be
 contacted using the TURN WebSocket sub-protocol as transport.

 The "turns" URI scheme MUST be used when TURN is run over Secure
 Websockets (WebSockets over TLS) and the "turn" scheme MUST be used
 otherwise.

 The updated augmented BNF (Backus-Naur Form) for this parameter is
 the following (the original BNF for this parameter can be found in
 [I-D.petithuguenin-behave-turn-uris]):

 transport = "udp" / "tcp" / "ws" / transport-ext

4.6. Impact on ICE candidates and SDP signalling

 This specification does not have any impact on ICE. In fact, all the
 related candidates would be allocated at the TURN sever, and as such
 no modifications are needed in the SDP signaling in order to support
 the TURN over WebSockets operation.

5. IANA Considerations

 RFC Editor Note: Please set the RFC number assigned for this document
 in the sub-sections below and remove this note.

5.1. Registration of the WebSocket TURN Sub-Protocol

 This specification requests IANA to register the WebSocket TURN sub-
 protocol under the "WebSocket Subprotocol Name" Registry with the
 following data:

 Subprotocol Identifier: turn

 Subprotocol Common Name: WebSocket Transport for TURN

 Subprotocol Definition: TBD: this document

Chen, et al. Expires March 16, 2014 [Page 7]

Internet-Draft TURN over Websocket September 2013

6. Security Considerations

 TBD.

7. Change Summary

 Note to RFC Editor: Please remove this whole section.

 The following are the major changes between the 00 and the 01
 versions of the draft:

 o Removal of multiplexing and references to BCFP and other non
 related protocols

 o Websocket TURN sub protocol specification

 o TURN message framing inside Websocket

 o Extension to turn and turns URI

 o Impact analisys on ice candidates SDP negotiation

8. Acknowledgements

 Paul Kyzivat helped with the formatting of this draft.

9. References

9.1. Normative References

 [RFC5766] Mahy, R., Matthews, P., and J. Rosenberg, "Traversal Using
 Relays around NAT (TURN): Relay Extensions to Session
 Traversal Utilities for NAT (STUN)", RFC 5766, April 2010.

 [RFC6062] Perreault, S. and J. Rosenberg, "Traversal Using Relays
 around NAT (TURN) Extensions for TCP Allocations", RFC
 6062, November 2010.

9.2. Informative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols", RFC 5245, April
 2010.

Chen, et al. Expires March 16, 2014 [Page 8]

Internet-Draft TURN over Websocket September 2013

 [RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
 "Session Traversal Utilities for NAT (STUN)", RFC 5389,
 October 2008.

 [RFC6455] Fette, I. and A. Melnikov, "The WebSocket Protocol", RFC
 6455, December 2011.

 [RFC6454] Barth, A., "The Web Origin Concept", RFC 6454, December
 2011.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [I-D.petithuguenin-behave-turn-uris]
 Petit-Huguenin, M., Nandakumar, S., Salgueiro, G., and P.
 Jones, "Traversal Using Relays around NAT (TURN) Uniform
 Resource Identifiers", draft-petithuguenin-behave-turn-
 uris-06 (work in progress), August 2013.

 [I-D.ietf-rtcweb-use-cases-and-requirements]
 Holmberg, C., Hakansson, S., and G. Eriksson, "Web Real-
 Time Communication Use-cases and Requirements", draft-
 ietf-rtcweb-use-cases-and-requirements-11 (work in
 progress), June 2013.

Authors’ Addresses

 Xin Chen
 Huawei

 Email: hangzhou.chenxin@huawei.com

 Sergio Garcia Murillo
 Medooze

 Email: sergio.garcia.murillo@gmail.com

 Oleg Moskalenko
 Yahoo

 Email: olegm@yahoo-inc.com

Chen, et al. Expires March 16, 2014 [Page 9]

Internet-Draft TURN over Websocket September 2013

 Victor Pascual
 Quobis

 Email: victor.pascual@quobis.com

 Lorenzo Miniero
 Meetecho

 Email: lorenzo@meetecho.com

Chen, et al. Expires March 16, 2014 [Page 10]

