
NFSv4 C. Lever
Internet-Draft Oracle
Intended status: Informational July 2, 2013
Expires: January 3, 2014

 End-to-end Data Integrity Feature For NFSv4
 draft-cel-nfsv4-end2end-data-protection-00

Abstract

 End-to-end data integrity protection provides a strong guarantee that
 data an application reads from durable storage is exactly the same
 data it wrote previously to durable storage. This document specifies
 possible additions to the NFSv4 protocol enabling it to convey end-
 to-end data integrity information between client and server.

Lever Expires January 3, 2014 [Page 1]

Internet-Draft NFSv4 End-to-end Data Integrity July 2013

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 3, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Lever Expires January 3, 2014 [Page 2]

Internet-Draft NFSv4 End-to-end Data Integrity July 2013

Table of Contents

 1. Introduction . 4
 1.1. Scope Of This Document 4
 1.2. Causes of Data Corruption 4
 1.3. End-to-end Data Integrity 5
 1.4. The Case For End-To-End Data Integrity Management 5
 1.5. Terminology . 6
 2. Protocol . 9
 2.1. Protection types . 9
 2.1.1. Protection Type Table 9
 2.2. GETATTR . 10
 2.3. New data content type 10
 2.4. READ_PLUS . 11
 2.5. WRITE_PLUS . 12
 2.6. Error codes . 12
 3. Protocol Design Considerations 14
 3.1. Protection Envelopes 14
 3.2. Protecting Holes . 15
 3.3. Multi-server Considerations 16
 3.3.1. pNFS and Protection Information 17
 3.3.2. Server-to-server copy 17
 4. Security Considerations 19
 5. IANA Considerations . 20
 6. Acknowledgements . 21
 7. References . 22
 7.1. Normative References 22
 7.2. Informative References 22
 Author’s Address . 23

Lever Expires January 3, 2014 [Page 3]

Internet-Draft NFSv4 End-to-end Data Integrity July 2013

1. Introduction

1.1. Scope Of This Document

 This document specifies a protocol based on NFSv4 minor version 2
 [PROVISIONAL-NFSV42] that enables per-I/O data integrity information
 to be conveyed between an NFS client and an NFS server.

 A key requirement is that data integrity verification is possible
 from application write to read. This does not mean that a single
 protection envelope must exist from application to storage. However,
 it must be possible to perform integrity checking during each step of
 an I/O request’s journey from application to storage and back.

 Therefore, the authors will not address how an NFSv4 client handles
 integrity-protected read and write requests from applications, nor
 with how an NFSv4 server manages protection information on its
 durable storage. We only specify a generic mechanism for
 transmitting integrity-protected read and write requests via the
 NFSv4 protocol, which client and server implementors may use as they
 see fit.

 A key interest is exploring how I/O error handling and state recovery
 mechanisms in NFSv4 must be strengthened to guarantee the integrity
 of protected data.

1.2. Causes of Data Corruption

 Data can be corrupted during transmission, during the act of
 recording, or during the act of retrieval. Data can become corrupt
 while at rest on durable storage. Either active corruption (e.g.
 data is accidentally or maliciously overwritten) or passive
 corruption (e.g. storage device failure) can occur.

 Data storage systems must handle an increasingly large amount of
 data. If the rate of corruption stays fixed while the amount of data
 stored increases, we expect corruption to become more common.

 To reduce failure rate and increase performance, data storage system
 complexity has increased. Complexity itself introduces the risk of
 corruption, since complexity can introduce bugs and make test
 coverage unacceptably sparse. Diagnosing a failure in complex
 systems is an everyday challenge.

 Data corruption can be "detected" or "undetected" (silent). The goal
 of data integrity protection is not to make corruption impossible,
 but rather to ensure corruption is detected before it can no longer
 be corrected, or at least before corrupt data is used by an

Lever Expires January 3, 2014 [Page 4]

Internet-Draft NFSv4 End-to-end Data Integrity July 2013

 application.

1.3. End-to-end Data Integrity

 End-to-end data integrity is a class of operating system, file
 system, storage controller, and storage device features that provide
 broad protection against unwanted changes to or loss of data that
 resides on data storage devices.

 Typically, data integrity is verified at individual steps in a data
 flow using techniques such as parity. This provides isolated
 protection during particular transfer operations or at best between
 adjacent nodes in an I/O path.

 In contrast, end-to-end protection guarantees data can be verified at
 every step as data flows from an application through a file system
 and storage controllers, via a variety of communication protocols, as
 it is stored on storage devices, and when it is read back from
 storage.

1.4. The Case For End-To-End Data Integrity Management

 A modern NFSv4 deployment may already provide some degree of data
 protection to in-transit data.

 o The use of RPCSEC GSS Kerberos 5i and 5p [RFC2203] can protect
 NFSv4 requests from tampering or corruption during network
 transfer.

 o An NFSv4 fileserver can employ RAID or block devices that store
 additional checksum data per logical block, in order to detect
 media failure.

 o An advanced file system on an NFSv4 fileserver may protect data
 integrity by storing multiple copies of data or by separately
 storing additional checksums.

 To demonstrate why end-to-end data integrity protection provides a
 stronger integrity guarantee than protection provided by the single-
 domain mechanisms above, consider the following cases:

 o On an NFSv4 fileserver, suppose a device driver bug causes a write
 operation to DMA the wrong memory pages to durable storage. The
 written data is incorrect, but the DMA transport checksum matches
 it. The DMA operation completes without reporting an error, and
 upper layers discard the original copy of the data.

Lever Expires January 3, 2014 [Page 5]

Internet-Draft NFSv4 End-to-end Data Integrity July 2013

 o Suppose an operating system or file system bug allows
 modifications to a page after it has been prepared for I/O and a
 checksum has been generated. The page and checksum are then
 written to storage. The written data does not represent the data
 originally by the application, and the accompanying stored
 checksum does not match it. The write operation completes without
 reporting an error, and upper layers discard the original copy of
 the data.

 o Suppose a RAID array on an NFSv4 server receives incorrect data
 for some reason. The array will generate RAID parity blocks from
 the incorrect data. The data is incorrect, but the accompanying
 parity matches it. The write operation completes without
 reporting an error, and upper layers discard the original copy of
 the data.

 o Suppose an application is writing data repeatedly to the same area
 of a file stored on an NFSv4 fileserver. Retransmits of an old
 write request become indistinguishable from new write requests to
 the same region. The written data always matches its appliction-
 generated checksum, but a replayed retransmission can overwrite
 newer data, and upper layers discard the original copy of the
 data.

 o Suppose a middle box is caching NFSv4 write requests on behalf of
 a number of NFSv4 clients. The wsize in effect for the clients
 does not have to match the wsize in effect between the middle box
 and the NFSv4 server. If the middle box fragments and reassembles
 the write requests incorrectly, the write requests appear to
 complete, but incorrect data is written to the NFSv4 server, and
 the clients discard the original copy of the data.

 In none of these cases is corruption identified while the original
 data remains available to correct the situation. An end-to-end
 solution could have caught and reported each of these, allowing the
 data’s originator to retry or report failure before the data loss is
 compounded.

1.5. Terminology

 Buffer separation: Protection information and the data it protects
 is contained in distinct buffers which have independent paths to
 durable storage.

 Checksum: A value which is used to detect corruption in a collection
 of data. It is usually computed by applying a simple operation
 (such as addition) to each element of the collection. Computing a
 checksum is a low-overhead operation, but is less effective at

Lever Expires January 3, 2014 [Page 6]

Internet-Draft NFSv4 End-to-end Data Integrity July 2013

 helping detect and correct errors than a CRC.

 Cyclic Redundancy Check: A value which is used to detect corruption
 in a collection of data. It is based on a linear block error-
 correcting code. The hash function’s generator polynomial is
 chosen to maximize error detection, and is typically more
 successful than either simple parity or a checksum. A CRC is
 efficient to compute with dedicated hardware, but can be expensive
 to compute in software.

 Data corruption: Any undesired alteration of data. Data corruption
 can be "detected" or "undetected" (silent).

 Data integrity: A database term used here to mean that a collection
 of data is exactly the same before and after processing,
 transmission, or storage.

 Data integrity verification failure: A node in an I/O path has
 failed to verify protection information associated with some data.
 This can be because the data or the protection information has
 been corrupted, or the node is malfunctioning.

 Integrity metadata: See "Protection information."

 Latent corruption: Data corruption that is discovered long after
 data was originally recorded on a storage device.

 Lost write: A write operation to a storage device which behaves as
 if the target data is stored durably, but in fact the data is
 never recorded.

 Misdirected write: A write operation that causes the target data to
 be written to a different location on a storage device than was
 intended.

 Parity: A single bit which represents the evenness or oddness of a
 collection of data. Checking a parity bit can reveal and help
 correct data corruption. Parity is easy to compute and requires
 little space to store, but is generally less effective than other
 methods of error correction. "Parity" can also refer to checksum
 data in a RAID.

 Protection envelope: A set of nodes in an I/O system which together
 guarantee data integrity from input to output.

Lever Expires January 3, 2014 [Page 7]

Internet-Draft NFSv4 End-to-end Data Integrity July 2013

 Protection information: Information about a collection of
 application data that allows detection and possibly correction of
 corruption. This can take the form of parity, a checksum, a CRC
 value, or something more complex. Also the formal name of an end-
 to-end data integrity mechanism adopted by T10 for SCSI block
 storage devices.

 Protection interval: A collection of application data that is
 protected from corruption. The collection must be no larger or
 smaller than what can be written atomically to durable storage.
 Typically there is a one-to-one mapping between a protection
 interval and a logical block on a storage device. However, a
 device with a large sector size may store multiple protection
 intervals per sector, to maintain adequate protection with limited
 protection information.

 Protection type: An enumerated value that indicates the the size,
 contents, and interpretation of fields containing protection
 information.

Lever Expires January 3, 2014 [Page 8]

Internet-Draft NFSv4 End-to-end Data Integrity July 2013

2. Protocol

 This section prescribes changes to the NFSv4 XDR specification
 [PROVISIONAL-NFSV42-XDR] to enable the conveyance of Protection
 Information via NFSv4. Therefore, an NFSv4.2 implementation is a
 necessary starting point. These changes are compatible with the
 NFSv4 minor versioning rules described in the NFSv4.2 specification.

 The RPC protocol used by NFSv4 is ONC RPC [RFC5531]. The data
 structures used for the parameters and return values of these
 procedures are expressed in this document in XDR [RFC4506].

2.1. Protection types

 A new named enumerated integer type is defined that encodes the
 format and content of Protection Information. This includes the
 meaning of tags, the size of the protection interval, and so on.

 To begin, we provide NFSv4 equivalents for T10 PI protection types
 [T10-SBC2]:

 enum nfs_protection_type4 {
 NFS_PI_T10_TYPE1 = 1,
 NFS_PI_T10_TYPE2 = 2,
 NFS_PI_T10_TYPE3 = 3,
 };

2.1.1. Protection Type Table

 The following table specifies tag sizes and contents, the protection
 interval, and other features of each protection type.

 +------------+--+---------+
NFS	Description	Comment
Protection		
Type		
+------------+--+---------+		
1	512-byte protection interval; PI field is	T10 PI
	application-owned; 8-byte protection	Type 1
	information field containing 2-byte guard	
	tag (CRC-16 checksum of protection	
	interval), 2-byte application tag (user	
	defined), and 4-byte reference tag (LO	
	32-bits of LBA)	

Lever Expires January 3, 2014 [Page 9]

Internet-Draft NFSv4 End-to-end Data Integrity July 2013

2	512-byte protection interval; PI field is	T10 PI
	application-owned; 8-byte protection	Type 2
	information field containing 2-byte guard	
	tag (CRC-16 checksum of protection	
	interval), 2-byte application tag (user	
	defined), and 4-byte reference tag (*)	
3	512-byte protection interval; PI field is	T10 PI
	application-owned; 8-byte protection	Type 3
	information field containing 2-byte guard	
	tag (CRC-16 checksum of protection	
	interval), 2-byte application tag (user	
	defined), and 4-byte reference tag (user	
	defined)	
 +------------+--+---------+

 The protection type enumerator is key to the extensibility of the
 NFSv4 end-to-end data integrity feature. A future specification can
 introduce new protection types that support Advanced Format drives,
 or types for storage that does not support application-owned
 Protection Information fields, for example. To manage this ongoing
 process, the contents of this table should be administered by IANA.

 [*] Protection Type 2 uses an indirect LBA in its reference tag. In
 this case, the I/O operation separately passes the reference tag
 value for the first protection interval. The reference tag in the
 first protection field must match this value. The reference tags in
 subsequent fields are this value plus (n-1).

 To do: For Type 2, determine how to pass the value of the first
 reference tag.

2.2. GETATTR

 A new read-only per-FSID GETATTR attribute is defined to request the
 list of protection types supported on a particular FSID.

 const FATTR4_PROTECTION_TYPES = 82;

 The reply data type follows.

 typedef nfs_protection_type4 fattr4_protection_types<>;

2.3. New data content type

 NFSv4.2 introduces a mechanism that can be used to extend the types
 of data that can be read and written by a client. To convey
 protection information we extend the data_content4 enum.

Lever Expires January 3, 2014 [Page 10]

Internet-Draft NFSv4 End-to-end Data Integrity July 2013

 enum data_content4 {
 NFS4_CONTENT_DATA = 0,
 NFS4_CONTENT_APP_DATA_HOLE = 1,
 NFS4_CONTENT_HOLE = 2,
 NFS4_CONTENT_PROTECTED_DATA = 3,
 };

 struct data_protected4 {
 nfs_protection_type4 pd_type;
 offset4 pd_offset;
 bool pd_allocated;
 opaque pd_info<>;
 opaque pd_data<>;
 };

 The pd_offset field specifies the byte offset where data should be
 read or written. The number of bytes to write is specified by the
 size of the pd_data array.

 The pd_allocated field is equivalent to the d_allocated field in the
 data4 type specified in [PROVISIONAL-NFSV42].

 The opaque pd_info field contains a packed array of fixed-size
 protection fields. The length of the array must be consistent with
 the pd_offset and count arguments specified for the data range of the
 operation. The size and format of the contents of each field in the
 array is determined by the value of the pd_type field.

 The opaque pd_data field contains the normal data being conveyed in
 this operation.

2.4. READ_PLUS

 The READ_PLUS operation reads protection information using the
 NFS4_CONTENT_PROTECTED_DATA content type.

 union read_plus_content switch (data_content4 rpc_content) {
 case NFS4_CONTENT_DATA:
 data4 rpc_data;
 case NFS4_CONTENT_APP_DATA_HOLE:
 app_data_hole4 rpc_adh;
 case NFS4_CONTENT_HOLE:
 data_info4 rpc_hole;
 case NFS4_CONTENT_PROTECTED_DATA:
 data_prot_fields4 rpc_pdata;
 default:
 void;
 };

Lever Expires January 3, 2014 [Page 11]

Internet-Draft NFSv4 End-to-end Data Integrity July 2013

 The offset and length arguments of the READ_PLUS operation
 (rpa_offset and rpa_count) determine the data byte range covered by
 the protection information and normal data returned in each request.

 For example, suppose the protection type mandated 8-byte protection
 fields and a 512-byte protection interval. A READ_PLUS requesting
 protection information for a 4096-byte range of a file would receive
 an array of eight 8-byte protection fields, or 64 bytes.

2.5. WRITE_PLUS

 The WRITE_PLUS operation writes protection information using the
 NFS4_CONTENT_PROTECTED_DATA content type.

 union write_plus_arg4 switch (data_content4 wpa_content) {
 case NFS4_CONTENT_DATA:
 data4 wpa_data;
 case NFS4_CONTENT_APP_DATA_HOLE:
 app_data_hole4 wpa_adh;
 case NFS4_CONTENT_HOLE:
 data_info4 wpa_hole;
 case NFS4_CONTENT_PROTECTED_DATA:
 data_prot_fields4 wpa_pdata;
 default:
 void;
 };

 The offset and length arguments of the WRITE_PLUS operation
 (pd_offset and the size of pd_data) determine the data byte range
 covered by the protection information.

 For example, suppose the protection type mandated 8-byte protection
 fields and a 512-byte protection interval. A WRITE_PLUS writing
 protection information to a 4096-byte range of a file would send an
 array of eight 8-byte protection fields, or 64 bytes.

2.6. Error codes

 New error codes are introduced to allow an NFSv4 server to convey
 integrity-related failure modes to clients. These new codes include
 (but are not limited to) the following:

 enum nfsstat4 {
 ...
 NFS4ERR_PROT_NOTSUPP = 10200,
 NFS4ERR_PROT_INVAL = 10201,
 NFS4ERR_PROT_FAIL = 10202,
 NFS4ERR_PROT_LATFAIL = 10203,

Lever Expires January 3, 2014 [Page 12]

Internet-Draft NFSv4 End-to-end Data Integrity July 2013

 };

 NFS4ERR_PROT_NOTSUPP: The protection type specified in a READ_PLUS
 or WRITE_PLUS operation is not supported for the FSID upon which
 the file resides.

 NFS4ERR_PROT_INVAL: The protection information passed by a READ_PLUS
 or WRITE_PLUS operation is garbled (cf. BADXDR). This error code
 MUST be returned if the offset and length of read or written data
 does not align with the protection interval specified by the
 protection type.

 NFS4ERR_PROT_FAIL: During a WRITE_PLUS operation, the protection
 information does not verify the written data. If this was an
 UNSTABLE WRITE_PLUS, the client should retry the operation using
 FILE_SYNC so the server can report precisely where the data writes
 are failing.

 NFS4ERR_PROT_LATFAIL: During a READ_PLUS operation, the protection
 information does not verify the read data. This error code
 reports a verification that occurred before the data arrives at an
 NFSv4 client. The client is not required to read protection
 information to see this error.

 If data integrity verification fails while a server is pre-
 fetching data, the failure cannot be reported until the client
 reads the section of the file where the failure occurs. Pre-
 fetched data might never be read by a client, therefore a data
 integrity verification failure that occured while pre-fetching may
 never be reported to an NFS client or an application.

Lever Expires January 3, 2014 [Page 13]

Internet-Draft NFSv4 End-to-end Data Integrity July 2013

3. Protocol Design Considerations

3.1. Protection Envelopes

 We explore protection envelopes that might appear in a typical NFSv4
 deployment, and design an architecture that guarantees unbroken data
 integrity protection through each of these envelopes.

 In addition, it is useful to permit varying degrees of server,
 client, and application participation in a data protection scheme.
 We can define protection envelopes of varying circumference that
 allow implementations and deployments to choose a level of
 complexity, data protection, and performance impact that suits their
 applications.

 The following are presented in order of smallest to largest
 circumference. To enable end-to-end protection, each protection
 envelope in this list depends on having the previous envelope in
 place.

 Server storage: The storage subsystem on an NFSv4 server is below
 the physical filesystems on that server. If a data integrity
 mechanism is available on the block storage, the physical
 filesystem may or may not choose to use it. Data integrity
 verification failures are reflected to NFS clients as simple I/O
 errors.

 Server filesystem: The physical filesystem on an NFSv4 server may
 provide a data integrity mechanism based on its own checksumming
 scheme, or by using a standard block storage mechanism such as T10
 PI/DIX [DIX]. The NFSv4 service on that system may or may not
 choose to use the filesystem’s integrity service. Data integrity
 verification failures are reflected to NFS clients as simple I/O
 errors.

 Server: An NFSv4 server may choose to use the local filesystem’s
 data integrity mechanism, but not to advertise a data integrity
 mechanism via NFSv4. Data integrity verification failures are
 reflected to NFS clients as simple I/O errors.

 Client-server: If an NFSv4 server advertises data integrity
 mechanisms via NFSv4, an NFSv4 client may choose to use NFSv4 data
 integrity protection without advertising the capability to
 applications running on it. It may also choose not to use NFSv4
 data integrity protection at all. Data integrity verification
 failures are reflected to applications as simple I/O errors.

Lever Expires January 3, 2014 [Page 14]

Internet-Draft NFSv4 End-to-end Data Integrity July 2013

 Application-client-server: Suppose that an NFSv4 client chooses to
 use data integrity protection via NFSv4 and that. the capability
 is advertised to applications. Applications may or may not choose
 to use the capability. An NFSv4 client uses on-the-wire data
 integrity when an application chooses to use the capability, but
 may or may not use it when the application chooses not to use it.
 Data integrity verification failures are reflected to applications
 as is. This is full end-to-end data integrity protection via
 NFSv4.

 Note that the "server" envelope is not externally distinguishable
 from a server that does not support data integrity protection at all
 (other than that it provides somewhat better data integrity
 guarantees than one that does not support data integrity protection).
 This is a way to introduce stronger data integrity without requiring
 a large deployment of NFSv4 clients capable of integrity
 verification. Or, stronger data integrity can be introduced to
 legacy NFS environments that have no protocol mechanisms for
 extending the protection envelop past the server.

 The "application-client-server" envelope illustrates that, on a
 protection-enabled file system, data integrity verification can be
 used on a per-file basis. Applications may choose to use protection
 for some files and not others. Some applications may choose to use
 protection, and some applications may choose not to use it.

 Note that in each case, data integrity protection is available to the
 edge of the farthest protection envelope. Data integrity is
 protected only after the data arrives at a protection envelope
 boundary, and before it leaves that boundary. Legacy NFS clients
 continue to access protected data on a server, but are unaware of
 data integrity verification failures except as generic I/O errors.

 The client-cache-server case is considered separately. The "cache"
 node in this case may be a dedicated NFSv4 cache, a caching peer-to-
 peer NFSv4 client, or a pNFS metadata server. A separate protection
 envelope exists between an NFSv4 client and an intermediate cache,
 and that cache and the NFSv4 server where the protected data resides.

3.2. Protecting Holes

 NFSv4 minor version 2 [PROVISIONAL-NFSV42] exposes clients to certain
 mechanics of the underlying file systems on servers which allow more
 direct control of the storage space utilized by files. The goal of
 these new features is to economize the transfer and storage of file
 data. These new features include support for reading sparse files
 efficiently, space reservation, and punching holes (similar to a TRIM
 or DISCARD operation on a block device) in files.

Lever Expires January 3, 2014 [Page 15]

Internet-Draft NFSv4 End-to-end Data Integrity July 2013

 A hole is an area of a file that can be represented in a file system
 by having no backing storage. By definition any read of that region
 of the file returns a range of bytes containing zero. Any write to
 that region allocates fresh backing storage normally.

 NFSv4.2 extends this notion to allow NFSv4 clients to specify a
 pattern containing non-zero bytes to be returned when reading that
 region of a file. The protocol feature is independent of how an
 NFSv4 server’s file system chooses to store this data. In fact a
 server’s file system is free to simply store zeroes or a byte pattern
 on disk as raw data rather than in some optimized fashion.

 If an NFSv4 server’s file system does use an optimized storage
 method, a decision must be made about whether accompanying PI is
 needed. For a plain hole (where zero is always returned by a raw
 data read operation) the intention is that there is no backing
 storage there, thus PI is not meaningful. However a read operation
 that requests protection information must return something
 meaningful. For protection types that mandate only a checksum guard
 tag (and do not store either reference or or application tag data), a
 checksum for each protection interval can be generated on the server
 during a normal read operation, or on the client if a sparse read is
 used.

 For a data hole (where some non-zero pattern is returned by a raw
 read operation), storing PI is optional, and depends on whether the
 protection type requires the storage to return an intact application
 tag. Without the requirement of storing the application tag, the
 file system could discard the PI after a write operation, and
 recompute it from the pattern on a read operation. Or, it could
 store the PI information as part of the pattern metadata.

3.3. Multi-server Considerations

 The NFSv4 protocol provides several mechanisms for NFSv4 servers to
 co-operate in ways that enhance performance scalability and data
 availability. An NFSv4 client can access the same data serially on
 single NFSv4 servers when a file system is replicated. A file system
 can be migrated between NFSv4 servers transparently to clients. Or a
 file system can be constructed from files that reside in parts on
 several NFSv4 servers.

 To allow coherent use of a data integrity mechanism:

 o Each NFSv4 Data Server hosting a particular file system MUST
 support the same protection types.

Lever Expires January 3, 2014 [Page 16]

Internet-Draft NFSv4 End-to-end Data Integrity July 2013

 o Each replica of a file system MUST support the same protection
 types.

 o The destination of a file system migration MUST support all
 protection types supported by the source, and the transitioned
 file system MUST use the same protection type it did on the source
 server.

 Enforcing these mandates is likely outside the purview of the NFSv4
 protocol, particularly because no mechanism for transitioning file
 systems is set out by any NFSv4 protocol specification. However,
 enforcing such mandates could be built into administrative tools.

3.3.1. pNFS and Protection Information

 There has been some uncertainty about whether Protection Information
 should be considered metadata or data. pNFS has a convenient
 operational definition of data and metadata: if it’s data, it goes to
 the Data Server; if it’s metadata, it goes to the Metadata Server.

 Protection Information belongs with the data it protects, which is
 written to Data Servers. Therefore Protection Information is data.
 If a client ever writes Protection Information to a Metadata Server,
 such Protection Information will be forwarded to an appropriate Data
 Server for storage.

 For the file layout type, which uses NFSv4 when communicating with
 Data Servers, all protection types have protocol support for
 Protection Information. For other layout types, support may or may
 not be available in their respective data protocols. Layout
 implementations are not guaranteed to support every protection type.

3.3.2. Server-to-server copy

 NFSv4 minor version 2 [PROVISIONAL-NFSV42] introduces a new multi-
 server feature known as server-to-server copy. Clients can offload
 the data copy portion of copying part or all of a file. The
 destination file is recognized as a separate entity (ie. has a unique
 file handle), not as a replica of the original file.

 As such, the destination file may be stored in a file system that has
 a different protection type than the source file, or may not be
 protected at all. If the destination filesystem supports the same
 protection type as the source filesystem, the copy offload operation
 MUST copy Protection Information associated with the source file to
 the destination file.

 Server implementors MAY provide data integrity verification on both

Lever Expires January 3, 2014 [Page 17]

Internet-Draft NFSv4 End-to-end Data Integrity July 2013

 ends of the offloaded copy operation. A server MUST report data
 integrity verification failures that occur during an offloaded copy
 operation.

Lever Expires January 3, 2014 [Page 18]

Internet-Draft NFSv4 End-to-end Data Integrity July 2013

4. Security Considerations

 A man-in-the-middle attack can replace both the data and integrity
 metadata in any NFSv4 request that is sent in the clear. Therefore,
 when a data integrity protection mechanism is deployed on an
 untrusted network, it is strongly urged that a cryptographically
 secure integrity-checking RPC transport, such as RPCSEC GSS Kerberos
 5i [RFC2203], is used to convey NFSv4 traffic on open networks.

Lever Expires January 3, 2014 [Page 19]

Internet-Draft NFSv4 End-to-end Data Integrity July 2013

5. IANA Considerations

 This document currently does not require actions by IANA. However,
 see Section 2.1.

Lever Expires January 3, 2014 [Page 20]

Internet-Draft NFSv4 End-to-end Data Integrity July 2013

6. Acknowledgements

 The author of this document gratefully acknowledges the contributions
 of Martin K. Petersen, David Noveck, and Spencer Shepler. Bill
 Baker, Chris Mason, and Tom Haynes also provided guidance and
 suggestions.

Lever Expires January 3, 2014 [Page 21]

Internet-Draft NFSv4 End-to-end Data Integrity July 2013

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2203] Eisler, M., Chiu, A., and L. Ling, "RPCSEC_GSS Protocol
 Specification", RFC 2203, September 1997.

 [RFC4506] Eisler, M., "XDR: External Data Representation Standard",
 STD 67, RFC 4506, May 2006.

 [RFC5531] Thurlow, R., "RPC: Remote Procedure Call Protocol
 Specification Version 2", RFC 5531, May 2009.

7.2. Informative References

 [DIX] Petersen, M., "I/O Controller Data Integrity Extensions",
 November 2009, <http://oss.oracle.com/˜mkp/docs/dif.pdf>.

 [PROVISIONAL-NFSV42]
 Haynes, T., Ed., "NFS Version 4 Minor Version 2",
 March 2013, <http://datatracker.ietf.org/doc/
 draft-ietf-nfsv4-minorversion2>.

 [PROVISIONAL-NFSV42-XDR]
 Haynes, T., Ed., "NFS Version 4 Minor Version 2 Protocol
 External Representation Standard (XDR) Description",
 March 2013, <https://datatracker.ietf.org/doc/
 draft-ietf-nfsv4-minorversion2-dot-x>.

 [T10-SBC2]
 Elliott, R., Ed., "ANSI INCITS 405-2005, Information
 Technology - SCSI Block Commands - 2 (SBC-2)",
 November 2004.

Lever Expires January 3, 2014 [Page 22]

Internet-Draft NFSv4 End-to-end Data Integrity July 2013

Author’s Address

 Chuck Lever
 Oracle Corporation
 1015 Granger Avenue
 Ann Arbor, MI 48104
 US

 Phone: +1 734 274 2396
 Email: chuck.lever@oracle.com

Lever Expires January 3, 2014 [Page 23]

