Abstract

This document specifies the use of several ECC Brainpool curves for authentication and key exchange in the Transport Layer Security (TLS) protocol version 1.3.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on December 7, 2019.

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
1. Introduction

In [RFC5639], a new set of elliptic curve groups over finite prime fields for use in cryptographic applications was specified. These groups, denoted as ECC Brainpool curves, were generated in a verifiably pseudo-random way and comply with the security requirements of relevant standards from ISO [ISO1] [ISO2], ANSI [ANSI1], NIST [FIPS], and SecG [SEC2].

[RFC8422] defines the usage of elliptic curves for authentication and key agreement in TLS 1.2 and earlier versions, and [RFC7027] defines the usage of the ECC Brainpool curves for authentication and key exchange in TLS. The latter is applicable to TLS 1.2 and earlier versions, but not to TLS 1.3 that deprecates the ECC Brainpool Curve IDs registered for the use of ECC Brainpool Curves in earlier TLS versions.

The negotiation of ECC Brainpool Curves for key exchange in TLS 1.3 according to [RFC8446] requires the definition and assignment of additional NamedGroup IDs. Analogously, the negotiation of ECC Brainpool Curves for authentication requires the definition and assignment of additional SignatureScheme IDs. This document specifies such values for three curves from [RFC5639].

2. Brainpool NamedGroup Types

According to [RFC8446], the name space NamedGroup is used for the negotiation of elliptic curve groups for key exchange during a handshake starting a new TLS session. This document adds new NamedGroup types to three elliptic curves defined in [RFC5639] as follows.
enum {
 brainpoolP256r1tls13(31),
 brainpoolP384r1tls13(32),
 brainpoolP512r1tls13(33)
} NamedGroup;

The encoding of ECDHE parameters for sec256r1, secp384r1, and secp521r1 as defined in section 4.2.8.2 of [RFC8446] also applies to this document.

Test vectors for a Diffie-Hellman key exchange using these elliptic curves are provided in Appendix A.

3. Brainpool SignatureScheme Types

According to [RFC8446], the name space SignatureScheme is used for the negotiation of elliptic curve groups for authentication via the "signature_algorithms" extension. This document adds new SignatureScheme types to three elliptic curves defined in [RFC5639] as follows.

enum {
 ecdsa_brainpoolP256r1tls13_sha256(0x081A),
 ecdsa_brainpoolP384r1tls13_sha384(0x081B),
 ecdsa_brainpoolP512r1tls13_sha512(0x081C)
} SignatureScheme;

This notation is used to clarify that an ECDSA signature is calculated over the hashed message.

4. IANA Considerations

IANA is requested to update the references for the ECC Brainpool curves listed in the Transport Layer Security (TLS) Parameters registry "TLS Supported Groups" [IANA-TLS] to this document.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>DTLS-OK</th>
<th>Recommended</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>brainpoolP256r1tls13</td>
<td>Y</td>
<td>N</td>
<td>This doc</td>
</tr>
<tr>
<td>32</td>
<td>brainpoolP384r1tls13</td>
<td>Y</td>
<td>N</td>
<td>This doc</td>
</tr>
<tr>
<td>33</td>
<td>brainpoolP512r1tls13</td>
<td>Y</td>
<td>N</td>
<td>This doc</td>
</tr>
</tbody>
</table>

Table 1
IANA is requested to update the references for the ECC Brainpool curves in the Transport Layer Security (TLS) Parameters registry "TLS SignatureScheme" [IANA-TLS] to this document.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>DTLS-OK</th>
<th>Recommended</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x081A</td>
<td>ecdsa_brainpoolP256r1tls13_sha256</td>
<td>Y</td>
<td>N</td>
<td>This doc</td>
</tr>
<tr>
<td>0x081B</td>
<td>ecdsa_brainpoolP384r1tls13_sha384</td>
<td>Y</td>
<td>N</td>
<td>This doc</td>
</tr>
<tr>
<td>0x081C</td>
<td>ecdsa_brainpoolP512r1tls13_sha512</td>
<td>Y</td>
<td>N</td>
<td>This doc</td>
</tr>
</tbody>
</table>

Table 2

5. Security Considerations

The security considerations of [RFC8446] apply accordingly.

The confidentiality, authenticity and integrity of the TLS communication is limited by the weakest cryptographic primitive applied. In order to achieve a maximum security level when using one of the elliptic curves from Table 1 for key exchange and / or one of the signature algorithms from Table 2 for authentication in TLS, the key derivation function, the algorithms and key lengths of symmetric encryption and message authentication as well as the algorithm, bit length and hash function used for signature generation should be chosen according to the recommendations of [NIST800-57] and [RFC5639]. Furthermore, the private Diffie-Hellman keys should be generated from a random keystream with a length equal to the length of the order of the group E(GF(p)) defined in [RFC5639]. The value of the private Diffie-Hellman keys should be less than the order of the group E(GF(p)).

Implementations of elliptic curve cryptography for TLS may be susceptible to side-channel attacks. Particular care should be taken for implementations that internally transform curve points to points on the corresponding "twisted curve", using the map \((x', y') = (x*Z^2, y*Z^3)\) with the coefficient Z specified for that curve in [RFC5639], in order to take advantage of an an efficient arithmetic based on the twisted curve’s special parameters \(A = -3\): although the twisted curve itself offers the same level of security as the corresponding random curve (through mathematical equivalence), arithmetic based on small curve parameters may be harder to protect against side-channel

attacks. General guidance on resistance of elliptic curve cryptography implementations against side-channel-attacks is given in [BSI1] and [HMV].

6. References

6.1. Normative References

6.2. Informative References

Appendix A. Test Vectors

This section provides some test vectors for example Diffie-Hellman key exchanges using each of the curves defined in Table 1. In all of the following sections the following notation is used:

\[\begin{align*}
 &d_A: \text{the secret key of party A} \\
 &x_{qA}: \text{the x-coordinate of the public key of party A} \\
 &y_{qA}: \text{the y-coordinate of the public key of party A} \\
 &d_B: \text{the secret key of party B} \\
 &x_{qB}: \text{the x-coordinate of the public key of party B} \\
 &y_{qB}: \text{the y-coordinate of the public key of party B} \\
 &x_Z: \text{the x-coordinate of the shared secret that results from completion of the Diffie-Hellman computation, i.e. the hex representation of the pre-master secret} \\
 &y_Z: \text{the y-coordinate of the shared secret that results from completion of the Diffie-Hellman computation}
\end{align*} \]

The field elements \(x_{qA}, y_{qA}, x_{qB}, y_{qB}, x_Z, y_Z \) are represented as hexadecimal values using the FieldElement-to-OctetString conversion method specified in [SEC1].

A.1. 256 Bit Curve

Curve brainpoolP256r1

\[\begin{align*}
 &d_A = 81DB1EE100150FF2EA338D708271BE38300CB54241D79950F77B063039804F1D \\
 &x_{qA} = 44106E913F92BC02A1705D9953A8414DB95E1AAA49E81D9E85F929A8E3100BE5 \\
 &y_{qA} = 8AB4846F11CA4CBE73CE49CBDD120F5A900A69FD32C72222F789EF10EB089BDC \\
 &d_B = 55E40BC41E37E32AD253C6654511FFA8474A91A0032087593852D3E7D6BD3 \\
 &x_{qB} = 8D2D688C6CF93E1160AD04CC4429117DC2C41825E1E9FCA0ADD34E6F1B39F7B
\]
A.2. 384 Bit Curve

Curve brainpoolP384r1

dA = 1E20F5E048A5886F1F157C74E91BDE2B98C8B52D58E5003D57053FC4B0BD6
5D6F15EB5D1EE1610DF870795143627D042

x_qA = 68B665DD91C195800650CDD363C625F4E742E8134667B767B1B47679358
8F885AB698C852D4A6E77A252D6380FCAF068

y_qA = 5BC91A39C9EC01DE36017B7673A9312362D2F15C83942D049E3FA206
07493E0D38FF2FD30C2AB67D15C85F7FAA59

dB = 032640BC6003C59260F7250C3DB58CE647F98E1260ACCE4ACDA3DD869F74E
01F8BA5E0324309DB6A98314978BC5F7FAA59

x_qB = 4D44326F269A597A5B58BA565DA5556ED7FD9A8A9EB76C25F46DB69D19
DC8CE6AD18E404B15738B2086DF37E71DE1B4

y_qB = 62D692136DE56CBE93BF5FA3188EF58BC8A3A0EC6C1E151A21038A42E91
85329B5B275903D192F8D4E1F32FE9CC78C48

x_Z = 0BD9D3A7EA0B3D519D09D8E48D0785FB744A6355E6304BC51C299FBBCE2
39BBADF6403715C354F2A5444F575D4F42

y_Z = 0DF213417EBE4D8E40A5F76F66C56470C489A3478D146DECF6DF0D94B69E
E598157290F8756066975F1DB34B2324B7BD

A.3. 512 Bit Curve

Curve brainpoolP512r1

dA = 16302FF0DBBB5A8D733DAB7141C1B45ACBC8715939677F6A56850A38BD87B
D59B09E80279609FF33EB9D4C061231FB26F92EEB04982A5F1D1764CAD5766542
2

x_qA = 0A420517E406AAC0ACDCE90FCD71487718D3B953EFDF7F32CF5F7F27E28C6
149999397E91E029E06457DB2D3E640668B392C2A7E737A7F0BF04436D11640F0
9FD
\[y_{qA} = 72E6882E8DB28AAD36237CD25D580DB23783961C8DC52DFA2EC138AD472A0FCEF3887CF62B623B2A87DE5C588301EA3E5FC269B373B60724F5E82A6AD147FDE7 \]
\[d_B = 230E18E1BCC88A362FA54E4EA3902009292F7F8033624FD471B5D8ACE49D12CFABBC19963DAB8E2F1EBA00BFFB29E4D72D13F2224562F405CB80503666B25429 \]
\[x_{qB} = 9D45F66DE5D67E2E6DB693A59CE0BB48106097FF78A081DE781CDB31FC8CCBAEEA8DD4320C4119F1E9CD437A2EAB3731FA9668AB268D871DEDA55A5473199F \]
\[y_{qB} = 2FDC313095BCDD5FB3A91636F07A959C8E86B5636A1E930E8396049CB481961D365CC11453A06C719835475B12CB52FC3C383BCE35E27EF194512B71876285FA \]
\[x_Z = A7927098655F1F9976FA50A9D566865DC530331846381C87256BAF3226244B76D36403C024D7BBF0AAA0803EAFF405D3D24F11A9B5C0BEF679FE1454B21C4CD1F \]
\[y_Z = 7DB71C3DEF63212841C463E881BDCF055523BD368240E6C3143BD8DEF8B3B3223B95E053082FF5E412F4222537A43DF1C6D25729DDB51620A832BE6A26680A2 \]

Authors’ Addresses

Leonie Bruckert
secunet Security Networks
Ammonstr. 74
01067 Dresden
Germany

Phone: +49 201 5454 3819
EMail: leonie.bruckert@secunet.com

Johannes Merkle
secunet Security Networks
Mergenthaler Allee 77
65760 Eschborn
Germany

Phone: +49 201 5454 3091
EMail: johannes.merkle@secunet.com