Network Working Group Internet-Draft

Intended status: Informational

Expires: October 25, 2019

L. Bruckert J. Merkle secunet Security Networks M. Lochter BSI

April 23, 2019

ECC Brainpool Curves for Transport Layer Security (TLS) Version 1.3 draft-bruckert-brainpool-for-tls13-03

Abstract

This document specifies the use of several ECC Brainpool curves for authentication and key exchange in the Transport Layer Security (TLS) protocol version 1.3.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on October 25, 2019.

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1.	Introduction	2
2.	Brainpool NamedGroup Types	2
	Brainpool SignatureScheme Types	3
4.	IANA Considerations	3
5.	Security Considerations	4
6.	References	5
6.	.1. Normative References	5
6.	.2. Informative References	5
Appe	endix A. Test Vectors	7
A.	.1. 256 Bit Curve	7
A.	.2. 384 Bit Curve	8
A.	.3. 512 Bit Curve	8
Δıı+h	nors' Addresses	C

1. Introduction

In [RFC5639], a new set of elliptic curve groups over finite prime fields for use in cryptographic applications was specified. These groups, denoted as ECC Brainpool curves, were generated in a verifiably pseudo-random way and comply with the security requirements of relevant standards from ISO [ISO1] [ISO2], ANSI [ANSI1], NIST [FIPS], and SecG [SEC2].

[RFC8422] defines the usage of elliptic curves for authentication and key agreement in TLS 1.2 and earlier versions, and [RFC7027] defines the usage of the ECC Brainpool curves for authentication and key exchange in TLS. The latter is applicable to TLS 1.2 and earlier versions, but not to TLS 1.3 that deprecates the ECC Brainpool Curve IDs registered for the use of ECC Brainpool Curves in earlier TLS versions.

The negotiation of ECC Brainpool Curves for key exchange in TLS 1.3 according to [RFC8446] requires the definition and assignment of additional NamedGroup IDs. Analogously, the negotiation of ECC Brainpool Curves for authentication requires the definition and assignment of additional SignatureScheme IDs. This document specifies such values for three curves from [RFC5639].

2. Brainpool NamedGroup Types

According to [RFC8446], the name space NamedGroup is used for the negotiation of elliptic curve groups for key exchange during a handshake starting a new TLS session. This document adds new NamedGroup types to three elliptic curves defined in [RFC5639] as follows.

```
enum {
     brainpoolP256r1tls13(31),
     brainpoolP384r1tls13(32),
     brainpoolP512r1tls13(33)
} NamedGroup;
```

The encoding of ECDHE parameters for sec256r1, secp384r1, and secp521r1 as defined in section 4.2.8.2 of [RFC8446] also applies to this document.

Test vectors for a Diffie-Hellman key exchange using these elliptic curves are provided in Appendix A.

3. Brainpool SignatureScheme Types

According to [RFC8446], the name space SignatureScheme is used for the negotiation of elliptic curve groups for authentication via the "signature_algorithms" extension. This document adds new SignatureScheme types to three elliptic curves defined in [RFC5639] as follows.

```
enum {
     ecdsa_brainpoolP256r1tls13_sha256(0x081A),
     ecdsa_brainpoolP384r1tls13_sha384(0x081B),
     ecdsa_brainpoolP512r1tls13_sha512(0x081C)
} SignatureScheme;
```

This notation is used to clarify that an ECDSA signature is calculated over the hashed message.

4. IANA Considerations

IANA is requested to update the references for the ECC Brainpool curves listed in the Transport Layer Security (TLS) Parameters registry "TLS Supported Groups" [IANA-TLS] to this document.

Value	Description	+ DTLS-OK	Recommended	Reference
31	brainpoolP256r1tls13	Y Y	N	This doc
32	 brainpoolP384r1tls13	Y	l N	This doc
33	 brainpoolP512r1tls13	 У	N N	This doc

Table 1

IANA is requested to update the references for the ECC Brainpool curves in the Transport Layer Security (TLS) Parameters registry "TLS SignatureScheme" [IANA-TLS] to this document.

+	 Description	+ DTLS-OK	Recommended	Reference
0x081A	ecdsa_brainpoolP256r 1tls13_sha256	+ Y 	N 	This doc
0x081B	ecdsa_brainpoolP384r 1tls13_sha384	 Y 	N 	This doc
0x081C	ecdsa_brainpoolP512r 1tls13_sha512	Y 	N	This doc

Table 2

5. Security Considerations

The security considerations of [RFC8446] apply accordingly.

The confidentiality, authenticity and integrity of the TLS communication is limited by the weakest cryptographic primitive applied. In order to achieve a maximum security level when using one of the elliptic curves from Table 1 for key exchange and / or one of the signature algorithms from Table 2 for authentication in TLS, the key derivation function, the algorithms and key lengths of symmetric encryption and message authentication as well as the algorithm, bit length and hash function used for signature generation should be chosen according to the recommendations of [NIST800-57] and [RFC5639]. Furthermore, the private Diffie-Hellman keys should be selected with the same bit length as the order of the group generated by the base point G and with approximately maximum entropy.

Implementations of elliptic curve cryptography for TLS may be susceptible to side-channel attacks. Particular care should be taken for implementations that internally transform curve points to points on the corresponding "twisted curve", using the map $(x',y') = (x*Z^2,$ y*Z^3) with the coefficient Z specified for that curve in [RFC5639], in order to take advantage of an an efficient arithmetic based on the twisted curve's special parameters (A = -3): although the twisted curve itself offers the same level of security as the corresponding random curve (through mathematical equivalence), arithmetic based on small curve parameters may be harder to protect against side-channel attacks. General guidance on resistence of elliptic curve

cryptography implementations against side-channel-attacks is given in [BSI1] and [HMV].

6. References

6.1. Normative References

[IANA-TLS]

Internet Assigned Numbers Authority, "Transport Layer Security (TLS) Parameters", <http://www.iana.org/assignments/tls-parameters/</pre> tls-parameters.xml>.

- Bradner, S., "Key words for use in RFCs to Indicate [RFC2119] Requirement Levels", BCP 14, RFC 2119, March 1997.
- [RFC5639] Lochter, M. and J. Merkle, "Elliptic Curve Cryptography (ECC) Brainpool Standard Curves and Curve Generation", RFC 5639, March 2010.
- [RFC7027] Merkle, J. and M. Lochter, "Elliptic Curve Cryptography (ECC) Brainpool Curves for Transport Layer Security (TLS)", RFC 7027, DOI 10.17487/RFC7027, October 2013, <https://www.rfc-editor.org/info/rfc7027>.
- [RFC8422] Nir, Y., Josefsson, S., and M. Pegourie-Gonnard, "Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS) Versions 1.2 and Earlier", RFC 8422, DOI 10.17487/RFC8422, August 2018, <https://www.rfc-editor.org/info/rfc8422>.
- [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018, <https://www.rfc-editor.org/info/rfc8446>.

6.2. Informative References

- [ANSI1] American National Standards Institute, "Public Key Cryptography For The Financial Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA)", ANSI X9.62, 2005.
- Bundesamt fuer Sicherheit in der Informationstechnik, [BSI1] "Minimum Requirements for Evaluating Side-Channel Attack Resistance of Elliptic Curve Implementations", July 2011.
- [FIPS] National Institute of Standards and Technology, "Digital Signature Standard (DSS)", FIPS PUB 186-2, December 1998.

- [HMV] Hankerson, D., Menezes, A., and S. Vanstone, "Guide to Elliptic Curve Cryptography", Springer Verlag, 2004.
- International Organization for Standardization, [ISO1] "Information Technology - Security Techniques - Digital Signatures with Appendix - Part 3: Discrete Logarithm Based Mechanisms", ISO/IEC 14888-3, 2006.
- [ISO2] International Organization for Standardization, "Information Technology - Security Techniques -Cryptographic Techniques Based on Elliptic Curves - Part 2: Digital signatures", ISO/IEC 15946-2, 2002.

[NIST800-57]

National Institute of Standards and Technology, "Recommendation for Key Management - Part 1: General (Revised)", NIST Special Publication 800-57, January 2016.

- Bassham, L., Polk, W., and R. Housley, "Algorithms and [RFC3279] Identifiers for the Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile", RFC 3279, April 2002.
- [RFC5480] Turner, S., Brown, D., Yiu, K., Housley, R., and T. Polk, "Elliptic Curve Cryptography Subject Public Key Information", RFC 5480, March 2009.
- [RFC6090] McGrew, D., Igoe, K., and M. Salter, "Fundamental Elliptic Curve Cryptography Algorithms", RFC 6090, February 2011.
- [SEC1] Certicom Research, "Elliptic Curve Cryptography", Standards for Efficient Cryptography (SEC) 1, September 2000.
- Certicom Research, "Recommended Elliptic Curve Domain [SEC2] Parameters", Standards for Efficient Cryptography (SEC) 2, September 2000.

Appendix A. Test Vectors

This section provides some test vectors for example Diffie-Hellman key exchanges using each of the curves defined in Table 1 . In all of the following sections the following notation is used:

d_A: the secret key of party A

x_qA: the x-coordinate of the public key of party A

y_qA: the y-coordinate of the public key of party A

d_B: the secret key of party B

x_qB: the x-coordinate of the public key of party B

y_qB: the y-coordinate of the public key of party B

 x_Z : the x-coordinate of the shared secret that results from completion of the Diffie-Hellman computation, i.e. the hex representation of the pre-master secret

y_Z: the y-coordinate of the shared secret that results from completion of the Diffie-Hellman computation

The field elements x_qA , y_qA , x_qB , y_qB , x_Z , y_Z are represented as hexadecimal values using the FieldElement-to-OctetString conversion method specified in [SEC1].

A.1. 256 Bit Curve

Curve brainpoolP256r1

dA =

81DB1EE100150FF2EA338D708271BE38300CB54241D79950F77B063039804F1D

 $x_qA =$

44106E913F92BC02A1705D9953A8414DB95E1AAA49E81D9E85F929A8E3100BE5

 $y_qA =$

8AB4846F11CACCB73CE49CBDD120F5A900A69FD32C272223F789EF10EB089BDC

55E40BC41E37E3E2AD25C3C6654511FFA8474A91A0032087593852D3E7D76BD3

x qB =

8D2D688C6CF93E1160AD04CC4429117DC2C41825E1E9FCA0ADDD34E6F1B39F7B

 $y_qB =$

990C57520812BE512641E47034832106BC7D3E8DD0E4C7F1136D7006547CEC6A

 $x_Z =$

89AFC39D41D3B327814B80940B042590F96556EC91E6AE7939BCE31F3A18BF2B

49C27868F4ECA2179BFD7D59B1E3BF34C1DBDE61AE12931648F43E59632504DE

A.2. 384 Bit Curve

Curve brainpoolP384r1

dA = 1E20F5E048A5886F1F157C74E91BDE2B98C8B52D58E5003D57053FC4B0BD6 5D6F15EB5D1EE1610DF870795143627D042

x qA = 68B665DD91C195800650CDD363C625F4E742E8134667B767B1B476793588F885AB698C852D4A6E77A252D6380FCAF068

y qA = 55BC91A39C9EC01DEE36017B7D673A931236D2F1F5C83942D049E3FA206 07493E0D038FF2FD30C2AB67D15C85F7FAA59

dB = 032640BC6003C59260F7250C3DB58CE647F98E1260ACCE4ACDA3DD869F74E 01F8BA5E0324309DB6A9831497ABAC96670

x qB = 4D44326F269A597A5B58BBA565DA5556ED7FD9A8A9EB76C25F46DB69D19 DC8CE6AD18E404B15738B2086DF37E71D1EB4

y_qB = 62D692136DE56CBE93BF5FA3188EF58BC8A3A0EC6C1E151A21038A42E91 85329B5B275903D192F8D4E1F32FE9CC78C48

x = 0BD9D3A7EA0B3D519D09D8E48D0785FB744A6B355E6304BC51C229FBBCE239BBADF6403715C35D4FB2A5444F575D4F42

y Z = 0DF213417EBE4D8E40A5F76F66C56470C489A3478D146DECF6DF0D94BAE9E598157290F8756066975F1DB34B2324B7BD

A.3. 512 Bit Curve

Curve brainpoolP512r1

dA = 16302FF0DBBB5A8D733DAB7141C1B45ACBC8715939677F6A56850A38BD87B D59B09E80279609FF333EB9D4C061231FB26F92EEB04982A5F1D1764CAD5766542

x qA = 0A420517E406AAC0ACDCE90FCD71487718D3B953EFD7FBEC5F7F27E28C6 149999397E91E029E06457DB2D3E640668B392C2A7E737A7F0BF04436D11640FD0 9FD

y_qA = 72E6882E8DB28AAD36237CD25D580DB23783961C8DC52DFA2EC138AD472 A0FCEF3887CF62B623B2A87DE5C588301EA3E5FC269B373B60724F5E82A6AD147F DE7

dB = 230E18E1BCC88A362FA54E4EA3902009292F7F8033624FD471B5D8ACE49D1 2CFABBC19963DAB8E2F1EBA00BFFB29E4D72D13F2224562F405CB80503666B2542

 $x \neq B = 9D45F66DE5D67E2E6DB6E93A59CE0BB48106097FF78A081DE781CDB31FC$ E8CCBAAEA8DD4320C4119F1E9CD437A2EAB3731FA9668AB268D871DEDA55A54731 99F

y_qB = 2FDC313095BCDD5FB3A91636F07A959C8E86B5636A1E930E8396049CB48 1961D365CC11453A06C719835475B12CB52FC3C383BCE35E27EF194512B7187628 5FA

x = A7927098655F1F9976FA50A9D566865DC530331846381C87256BAF3226244B76D36403C024D7BBF0AA0803EAFF405D3D24F11A9B5C0BEF679FE1454B21C4CD 1F

y z = 7DB71C3DEF63212841C463E881BDCF055523BD368240E6C3143BD8DEF8B3 B3223B95E0F53082FF5E412F4222537A43DF1C6D25729DDB51620A832BE6A26680 Α2

Authors' Addresses

Leonie Bruckert secunet Security Networks Ammonstr. 74 01067 Dresden Germany

Phone: +49 201 5454 3819

EMail: leonie.bruckert@secunet.com

Johannes Merkle secunet Security Networks Mergenthaler Allee 77 65760 Eschborn Germany

Phone: +49 201 5454 3091

EMail: johannes.merkle@secunet.com

Manfred Lochter BSI Postfach 200363 53133 Bonn Germany

Phone: +49 228 9582 5643

EMail: manfred.lochter@bsi.bund.de