
Internet Engineering Task Force I. Bouazizi
Internet-Draft Samsung Research America
Intended status: Informational March 4, 2014
Expires: September 5, 2014

 MPEG Media Transport Protocol (MMTP)
 draft-bouazizi-mmtp-00

Abstract

 The MPEG Media Transport Protocol (MMTP) is a transport protocol that
 is designed to support download, progressive download, and streaming
 applications simultaneously. MMTP provides a generic media streaming
 mode by optimizing the delivery of generic media data encapsulated
 according to the ISO-Base Media File Format (ISOBMFF). In the file
 delivery mode, MMTP supports the delivery of any type of file. MMTP
 may used in IP unicast or multicast delivery and supports both
 Forward Error Correction (FEC) and retransmissions for reliable
 delivery of content.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 5, 2014.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Bouazizi Expires September 5, 2014 [Page 1]

Internet-Draft MMTP March 2014

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Rationale . 3
 3. Packet Header Field . 4
 3.1. MMTP Header Extension 7
 4. The MMTP payload . 8
 4.1. The ISOBMFF Mode . 8
 4.1.1. MMTP payload header for ISOBMFF mode 9
 4.2. Generic File Delivery Mode 12
 4.2.1. GFD Information 13
 4.2.1.1. GFD Table . 13
 4.2.1.2. CodePoints 14
 4.2.1.3. Content-Location Template 16
 4.2.1.4. File metadata 17
 4.2.1.5. MMTP payload header for GFD mode 18
 5. Protocol Operation . 19
 5.1. General Operation . 19
 5.2. Delivery ISOBMFF objects 20
 5.2.1. MMTP sender operation 20
 5.2.1.1. Timed Media Data 20
 5.2.1.2. Non-Timed Media Data 21
 5.2.2. MMTP receiver operation 22
 5.3. Delivering Generic Objects 23
 5.3.1. MMTP sender operation 23
 5.3.2. GFD Payload . 25
 5.3.3. GFD Table Delivery 25
 5.3.4. MMTP receiver operation 25
 6. Session Description information 27
 7. Congestion Control . 27
 8. IANA Considerations . 27
 9. Security Considerations 27
 10. References . 28
 10.1. Normative References 28
 10.2. Informative References 28
 Author’s Address . 28

1. Introduction

 The MMT protocol is an application layer transport protocol that is
 designed to efficiently and reliably transport multimedia data. MMTP
 can be used for both timed and non-timed media data. It supports
 several features, such as media multiplexing and network jitter

Bouazizi Expires September 5, 2014 [Page 2]

Internet-Draft MMTP March 2014

 estimation. These features are designed to deliver content composed
 of various types of encoded media data more efficiently. MMTP may
 run on top of existing network protocols such as UDP and IP. In this
 specification, the carriage of data formatted differently than the
 MMTP payload format as specified in Section 4 by MMTP is not defined.
 The MMT protocol is designed to support a wide variety of
 applications and does not specify congestion control. The congestion
 control function is left for the application implementation. MMTP
 supports the multiplexing of different media data such as ISOBMFF
 files from various Assets over a single MMTP packet flow. It
 delivers multiple types of data in the order of consumption to the
 receiving entity to help synchronization between different types of
 media data without introducing a large delay or requiring large
 buffer. MMTP defines two packetization modes, Generic File Delivery
 mode as specified in Section 4.2 and the ISOBMFF mode as specified in
 Section 4.1. The former defines a mode for packetizing media data
 based on the size of the payload to be carried and the latter defines
 a mode for packetizing media data based on the type of data to be
 carried in the payload. MMTP supports simultaneous transmission of
 packets using the two different modes in a single delivery session.
 MMTP also provides means to calculate and remove jitter introduced by
 the underlying delivery network, so that constant end-to-end delay
 for data delivery can be achieved. By using the delivery timestamp
 field in the packet header, jitter can be precisely estimated without
 requiring any additional signalling information and protocols.

2. Rationale

 MMTP provides a generic media transport protocol that inherently
 supports virtually any media type and codec. For this purpose, MMTP
 is designed to support a limited set of payload types agnostic to the
 media type or coding format, but providing generic information to
 serve the needs of different multimedia delivery services. The MMTP
 payload format is defined as a generic payload format for the
 packetization of media data. It is agnostic to media codecs used for
 encoded media data, so that any type of media data that are
 encapsulated in the ISOBMFF format can be packetized into MMTP
 payloads. The MMTP payload format also supports fragmentation and
 aggregation of data to be delivered. MMTP supports both streaming
 and download modes, where the streaming mode is optimized for
 packetized streaming of ISO-Base Media File formatted files (ISOBMFF
 mode) and the download mode allows for flexible delivery of generic
 files (GFD mode). In addition, MMTP delivers streaming support data
 such as Application Layer Forward Error Correction (AL-FEC) repair
 data.

Bouazizi Expires September 5, 2014 [Page 3]

Internet-Draft MMTP March 2014

3. Packet Header Field

 The MMTP header is of variable size, where the size of the header may
 be deduced from the header flags. In the MMTP header, all integer
 fields are carried in "big-endian" or "network order" format, so that
 the most significant byte is first. Bits marked as "reserved" (r)
 MUST be set to 0 by the sender and ignored by receivers in this
 version of the specification. Unless otherwise noted, numeric
 constants in this specification are in decimal form (base 10). The
 format of the MMTP header is depicted in Figure 1.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |V=0|C|FEC|r|X|R|RES| type | packet_id |
 +-+
 | timestamp |
 +-+
 | packet_sequence_number |
 +-+
 | packet_counter |
 +-+
 | header_extension
 +-+
 | payload data
 +-+

 Figure 1: MMTP Header

 The function and length of each field in the MMTP header is specified
 as follows:

 version (V): 2 bits

 indicates the version number of the MMTP protocol. This field
 shall be set to "00" to comply with this specification.

 packet_counter_flag (C): 1 bit

 "1" in this field indicates that the packet_counter field is
 present.

 FEC_type (FEC): 2 bits

 indicates whether the payload carries FEC source data or repair
 data. Valid values of this field are listed in Table 1 below.
 Depending on the FEC scheme, additional payload header may be
 added, for instance to identify the contained symbol(s).

Bouazizi Expires September 5, 2014 [Page 4]

Internet-Draft MMTP March 2014

 reserved (r): 1 bit

 reserved for future use.

 extension_flag (X): 1 bit

 when set to "1" this flag indicates that the header_extension
 field is present.

 RAP_flag (R): 1 bit

 when set to "1" this flag indicates that the payload contains a
 Random Access Point (RAP) to the data stream of that data type.
 The exact semantics of this flag are defined by the data type
 itself. The RAP_flag shall be set to mark data units of Fragment
 Type value "0" and "1" and for data units that contain a sync
 sample or a fragment thereof in the case of timed media and for
 the primary item of non-timed data.

 reserved (RES): 2 bits

 reserved for future use.

 type: 6 bits

 this field indicates the type of payload data. Payload type
 values are defined in Table 2.

 packet_id: 16 bits

 this field is an integer value that can be used to identify
 related media data, for example media that belong to the same
 media asset. The packet_id is unique throughout the lifetime of
 the delivery session and for all MMTP flows delivered by the same
 MMTP sender.

 packet_sequence_number: 32 bits

 an integer value that is used to distinguish between packets that
 have the same packet_id. The value of this field should start
 from an arbitrary value and shall be incremented by one for each
 new MMTP packet. It wraps around to "0" after the maximum value
 is reached.

 timestamp: 32 bits

 specifies the time instance of MMTP packet delivery based on UTC.
 The format is the "short-format" as defined in clause 6 of

Bouazizi Expires September 5, 2014 [Page 5]

Internet-Draft MMTP March 2014

 [RFC5905], NTP version 4. This timestamp specifies the sending
 time at the first byte of MMTP packet. It is required that an
 MMTP sender should provide accurate time information that are
 synchronized with UTC.

 packet_counter: 32 bits

 an integer value for counting MMTP packets. It is incremented by
 1 when an MMTP packet is sent regardless of its packet_id value.
 This field starts from arbitrary value and wraps around to "0"
 after its maximum value is reached.

 header_extension:

 this field contains user-defined information. The header
 extension mechanism is provided to allow for proprietary
 extensions to the payload format to enable applications and media
 types that require additional information to be carried in the
 payload format header. The header extension mechanism is designed
 in a such way that it may be discarded without impacting the
 correct processing of the MMTP payload. The header extension
 shall have the format as shown in Figure 2. This specification
 does not specify any particular header extension.

 +-------+--+
 | Value | Description |
 +-------+--+
 | 0 | MMTP packet without AL-FEC protection |
 | 1 | MMTP packet with AL-FEC protection (FEC source packet) |
 | 2 | MMTP packet for repair symbol(s) (FEC repair packet) |
 | 3 | Reserved for future use |
 +-------+--+

 Table 1: FEC Type

Bouazizi Expires September 5, 2014 [Page 6]

Internet-Draft MMTP March 2014

 +-----------+------------+--+
 | Value | Data type | Definition of data unit |
 +-----------+------------+--+
0x00	ISOBMFF	The packet carries a media-aware
	file	fragment of the ISOBMFF file
0x01	Generic	The packet contains a generic object
	object	such as a complete ISOBMFF file or an
		object of another type or a chunk
		thereof.
0x02	signalling	one or more signalling messages or a
	message	fragment of a signalling message. The
		syntax and semantics of signalling
		messages are out of scope of the current
		memo.
0x03	repair	The packet carries a single complete FEC
	symbol	repair symbol
0x04-0x1F	reserved	reserved for ISO use
0x20-0x3F	reserved	reserved for private use
 +-----------+------------+--+

 Table 2: Data type and definition of data unit

3.1. MMTP Header Extension

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | type | length |
 +-+
 | header_extension_value
 +-+

 Figure 2: MMTP Header Extension

 The function and length of each field in the MMTP header extension is
 as follows:

 type: 16 bits

 indicates the unique identification of the following header
 extension.

 length: 16 bits

 indicates the length of header_extension_value field in byte.

 header_extension_value

Bouazizi Expires September 5, 2014 [Page 7]

Internet-Draft MMTP March 2014

 provides the extension information. The format of this field is
 out of scope of this specification.

4. The MMTP payload

 The MMTP payload is a generic payload to packetize and carry media
 data such as ISOBMFF files, generic objects, and other information
 for consumption of a Package using the MMT protocol. The appropriate
 MMTP payload format shall be used to packetize ISOBMFF files, and
 generic objects. An MMTP payload may carry complete ISOBMFF files or
 fragments of ISOBMFF files, signalling messages, generic objects,
 repair symbols of AL-FEC schemes, etc. The type of the payload is
 indicated by the type field in the MMT protocol packet header. For
 each payload type, a single data unit for delivery as well as a type
 specific payload header are defined. For example, fragment of an
 ISOBMFF file (e.g. a data unit) is considered as a single data unit
 when MMTP payload carries ISOBMFF file fragments. The MMT protocol
 may aggregate multiple data units with the same data type into a
 single MMTP payload. It can also fragment a single data unit into
 multiple MMTP packets. The MMTP payload consists of a payload header
 and payload data. Some data types may allow for fragmentation and
 aggregation, in which case a single data unit is split into multiple
 fragments or a set of data units are delivered in a single MMTP
 packet. Each data unit may have its own data unit header depending
 on the type of the payload. For types that do not require a payload
 type specific header no payload type header is present and the
 payload data follows the MMTP header immediately. Some fields of the
 MMTP packet header are interpreted differently depending on the
 payload type. The semantics of these fields will be defined by the
 payload type in use.

4.1. The ISOBMFF Mode

 The delivery of ISOBMFF files to MMT receivers using the MMT protocol
 requires a packetization and depacketization procedure to take place
 at the MMTP sender and MMTP receiver, respectively. The
 packetization procedure transforms an ISOBMFF file into a set of MMTP
 payloads that are then carried in MMTP packets. The MMTP payload
 format allows for fragmentation of the MMTP payload to enable the
 delivery of large payloads. It also allows for the aggregation of
 multiple MMTP payload data units into a single MMTP payload, to cater
 for smaller data units. At the receiving entity depacketization is
 performed to recover the original ISOBMFF file data. Several
 depacketization modes are defined to address the different
 requirements of the overlaying applications. It the payload type is
 0x00, the ISOBMFF file is fragmented in a media aware way allowing
 the transport layer to identify the nature and priority of the
 fragment that is carried. A fragment of an ISOBMFF file may either

Bouazizi Expires September 5, 2014 [Page 8]

Internet-Draft MMTP March 2014

 be ISOBMFF file metadata, a Movie Fragment metadata, a data unit, or
 a non-timed media data item.

4.1.1. MMTP payload header for ISOBMFF mode

 The payload type specific header is provided in Figure 3.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | length | FT |T|f_i|A| frag_counter |
 +-+
 | sequence_number |
 +-+
 | DU_length | DU_Header
 +-+
 | DU payload
 +-+

 Figure 3: Structure of the MMTP payload header for the ISOBMFF mode

 For payload that carries a data unit, the DU header is specified
 depending on the value of the T flag indicating wether the carried
 data is timed or non-timed media. For timed media (i.e. when the
 value of T is set to "1") the DU header fields are shown in Figure 4.
 For non-timed media (T is set to "0"), the DU header is defined as
 shown in Figure 4.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | movie_fragment_sequence_number |
 +-+
 | sample_number |
 +-+
 | offset |
 +-+
 | priority | dep_counter |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Figure 4: The DU header for a timed-media data unit

 For non-timed media, the DU header fields are shown in Figure 5.

Bouazizi Expires September 5, 2014 [Page 9]

Internet-Draft MMTP March 2014

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | item_ID |
 +-+

 Figure 5: The DU header for a non-timed media data unit

 length: 16 bits indicates the length of payload excluding this field
 in byte.

 Fragment Type (FT): 4 bits this field indicates the fragment type
 and its valid values are shown in Table 3.

 Timed Flag (T): 1 bit this flag indicates if the fragment is from an
 ISOBMFF file that carries timed (value 1) or non-timed media
 (value 0).

 Fragmentation Indicator (f_i) : 2 bits this field indicates the
 fragmentation indicator contains information about fragmentation
 of data unit in the payload. The four values are listed in
 Table 4. If the value is set to "00", the aggregation_flag can be
 presented.

 +------+--------------+---+
 | FT | Description | Content |
 +------+--------------+---+
0	ISOBMFF	contains the ftyp, mmpu, moov, and meta
	metadata	boxes as well as any other boxes that
		appear in between.
1	Movie	contains the moof box and the mdat box,
	fragment	excluding all media data inside the mdat
	metadata	box.
2	a data unit	contains a sample or sub-sample of timed
		media data or an item of non-timed media
		data.
3˜15	Reserved for	reserved
	private use	
 +------+--------------+---+

 Table 3: Data type and definition of data unit

Bouazizi Expires September 5, 2014 [Page 10]

Internet-Draft MMTP March 2014

 +----------------+--+
 | fragmentation | Description |
 | indicator | |
 +----------------+--+
00	Payload contains one or more complete data
	units.
01	Payload contains the first fragment of data unit
10	Payload contains a fragment of data unit that is
	neither the first nor the last part.
11	Payload contains the last fragment of data unit.
 +----------------+--+

 Table 4: Values for fragmentation indicator

 The following flags are used to indicate the presence of various
 information carried in the MMTP payload. Multiple bits can be set
 simultaneously.

 aggregation_flag (A: 1 bit)

 when set to "1" indicates that more than 1 data unit is present in
 the payload, i.e. multiple data units are aggregated.

 fragment_counter (frag_count: 8 bits)

 this field specifies the number of payload containing fragments of
 same data unit succeeding this MMTP payload. This field shall be
 "0" if aggregation_flag is set to "1".

 sequence_number (32 bits)

 the sequence number of the ISOBMFF to which this fragment belongs.

 DU_length (16 bits)

 this field indicates the length of the data following this field.
 When aggregation_flag is set to "0", this field shall not be
 present. When aggregation_flag is set to "1", this field shall
 appear as many times as the number of the data units aggregated in
 the payload and preceding each aggregated data unit.

 DU_Header

 The header of the data unit, which depends on the FT field. A
 header is only defined for the media unit fragment type, with
 different semantics for timed and non-timed media as identified by
 the T flag.

Bouazizi Expires September 5, 2014 [Page 11]

Internet-Draft MMTP March 2014

 movie_fragment_sequence_number (32 bits)

 the sequence number of the movie fragment to which the media data
 of this data unit belongs. (see [isopart12] sub-clause 8.5.5)

 sample_number (32 bits)

 the sample number of the sample to which the media data of the
 data unit. (see [isopart12] sub-clause 8.8.8)

 offset (32 bits)

 offset of the media data of this data unit inside the referenced
 sample.

 subsample_priority (priority: 8 bits)

 provides the priority of the media data carried by this data unit
 compared to other media data of the same ISOBMFF file. The value
 of subsample_priority shall be between "0" and "255", with higher
 values indicating higher priority.

 dependency_counter (dep_counter: 8 bits)

 indicates the number of data units that depend on their media
 processing upon the media data in this data unit.

 Item_ID (32 bits)

 the identifier of the item that is carried as part of this data
 unit.

 For the FT types "0" and "1", no additional DU header is defined.

4.2. Generic File Delivery Mode

 MMTP also supports the transport of generic files and Assets and uses
 payload type "0x01" as defined in Table 3. An Asset consists of one
 or more files that are logically grouped and share some commonality
 for an application, e.g. Segments of a Dynamic Adaptive Streaming
 over HTTP (DASH) Representation, a sequence of ISOBMFF files, etc.
 In the generic file delivery (GFD) mode, an Asset is transported by
 using MMTP"s GFD payload type. Each file delivered using the GFD
 mode requires association of transport delivery information. This
 includes, but is not limited to information such as the transfer
 length. Each file delivered using the GFD mode may also have
 associated content specific parameters such as Name, Identification,
 and Location of file, media type, size of the file, encoding of the

Bouazizi Expires September 5, 2014 [Page 12]

Internet-Draft MMTP March 2014

 file or message digest of the file. In alignment with HTTP/1.1
 protocol as defined in [RFC2616], each file within one generic Asset
 may have assigned any meta-information about the entity body, i.e.
 the delivered file. The details are also defined in Section 4.2.1.

4.2.1. GFD Information

 In the GFD mode, each file gets assigned the following parameters:

 o the asset to which each object belongs to. Objects that belong to
 the same asset are considered as logically connected, e.g. all
 DASH segments of a Representation and also across Representations
 that extend over multiple DASH Periods and which carry pieces of
 the same content.

 o Each object is associated with a unique identifier within the
 scope of the packet_id.

 o each object is associated with a CodePoint. A CodePoint
 associates a specific object and object transport properties.
 Packets with the same TOI shall have the same CodePoint value.
 For more details see 0.

4.2.1.1. GFD Table

 The GFD table provides a list of CodePoints as defined in
 Section 4.2.1.2. Each CodePoint gets dynamically assigned a
 CodePoint value. Table 5 shows the structure and semantics of the
 GFD table.

 +-----------------------+------+------------------------------------+
 | Element or Attribute | Use | Description |
 | Name | | |
 +-----------------------+------+------------------------------------+
GFDTable		The element carries a GFDTable
CodePoint	1..N	defines all CodePoints in the MMTP
		session
 +-----------------------+------+------------------------------------+

 Table 5: GFD Table

 Legend: For attributes: M=Mandatory, O=Optional, OD=Optional with
 Default Value, CM=Conditionally Mandatory. For elements:
 minOccurs..maxOccurs (N=unbounded) Elements are bold; attributes are
 non-bold and preceded with an @

Bouazizi Expires September 5, 2014 [Page 13]

Internet-Draft MMTP March 2014

4.2.1.2. CodePoints

 A CodePoint value can be used to obtain following information:

 o the maximum transfer length of any object delivered with this
 CodePoint signalling

 In addition, a CodePoint may include following information

 o the actual transfer length of the objects

 o any information that may be present in the entity-header as
 defined in [RFC2616] section 7.1.

 o A Content-Location-Template as defined in Section 4.2.1.3 using
 the TOI and packet_id parameter, if present. The TOI and
 packet_id may be used to generate the Content-Location for each
 TOI and packet_id. If such a template is present, the processing
 in Section 4.2.1.3 shall be used to generate the Content-Location
 and the value of the URI shall be treated as the Content-Location
 field in the entity-header.

 o Specific information on the content, for example how the content
 is packaged, etc.

 Within one session, at most 256 CodePoints may be defined. The
 definition of CodePoints is dynamically setup in the MMTP Session
 Description. The CodePoint semantics are described in Table 6.

Bouazizi Expires September 5, 2014 [Page 14]

Internet-Draft MMTP March 2014

 +--------------------------+----------+-----------------------------+
 | Element or Attribute | Use | Description |
 | Name | | |
 +--------------------------+----------+-----------------------------+
@value	M	defines the value of the
		CodePoint in the MMTP
		session as provided in the
		CodePoint value of the MMTP
		packet header containing
		the GFD payload. The value
		shall be between 1 and 255.
		The value 0 is reserved.
@fileDeliveryMode	M	specifies the file delivery
		mode according to Section
		4.2.
@maximumTransferLength	M	specifies the maximum
		transfer length in bytes of
		any object delivered with
		this CodePoint in this MMTP
		session.
@constantTransferLength	OD	specifies if all objects
	default:	delivered by this CodePoint
	’false’	have constant transfer
		length. If this attribute
		is set to TRUE, all objects
		shall have transfer length
		as specified in the
		@maximumTransferLength
		attribute.
@contentLocationTemplate	O	specifies a template to
		generate the Content-
		Location of the entity
		header.
EntityHeader	0..1	specifies a full entity
		header in the format as
		defined in [RFC2616]
		section 7.1. The entity
		header applies for all
		objects that are delivered
		with the value of this
		CodePoint.
 +--------------------------+----------+-----------------------------+

 Table 6: CodePoint Semantics

 Legend: For attributes: M=Mandatory, O=Optional, OD=Optional with
 Default Value, CM=Conditionally Mandatory. For elements:

Bouazizi Expires September 5, 2014 [Page 15]

Internet-Draft MMTP March 2014

 minOccurs..maxOccurs (N=unbounded) Elements are bold; attributes are
 non-bold and preceded with an @

4.2.1.3. Content-Location Template

 A CodePoint may include a @contentLocationTemplate attribute. The
 value of @contentLocationTemplate attribute may contain one or more
 of the identifiers listed in Table 7. In each URL, the identifiers
 from Table 7 shall be replaced by the substitution parameter defined
 in Table 7. Identifier matching is case-sensitive. If the URL
 contains unescaped $ symbols which do not enclose a valid identifier
 then the result of URL formation is undefined. The format of the
 identifier is also specified in Table 7. Each identifier may be
 suffixed, within the enclosing "$" characters following this
 prototype: %0[width]d The width parameter is an unsigned integer that
 provides the minimum number of characters to be printed. If the
 value to be printed is shorter than this number, the result shall be
 padded with zeros. The value is not truncated even if the result is
 larger. The @contentLocationTemplate shall be authored such that the
 application of the substitution process results in valid URIs.
 Strings outside identifiers shall only contain characters that are
 permitted within URLs according to [RFC3986].

 +--------------+--------------------------+-------------------------+
 | $Identifier$ | Substitution parameter | Format |
 +--------------+--------------------------+-------------------------+
$$	Is an escape sequence,	not applicable
	i.e. "$$" is replaced	
	with a single "$"	
$PacketID$	This identifier is	The format tag may be
	substituted with the	present.If no format
	value of the packet_id	tag is present, a
	of the associated MMT	default format tag with
	flow.	width=1 shall be used.
TOI	This identifier is	The format tag may be
	substituted with the	present. If no format
	Object Identifier of the	tag is present, a
	corresponding MMTP	default format tag with
	packet containing the	width=1 shall be used.
	GFDpayload.	
 +--------------+--------------------------+-------------------------+

 Table 7: Identifiers for URL templates

Bouazizi Expires September 5, 2014 [Page 16]

Internet-Draft MMTP March 2014

4.2.1.4. File metadata

 Files can be transported using the GFD mode of the MMT protocol.
 Furthermore, the GFD mode can also be used to transport entities
 where an entity is defined according to section 7 of [RFC2616]. An
 entity consists of meta-information in the form of entity-header
 fields and content in the form of an entity-body (the file), as
 described in section 7 of [RFC2616]. This enables that files may get
 assigned information by inband delivery in a dynamic fashion. For
 example, it enables the association of a Content-Location, the
 Content-Size, etc. The file delivery mode shall be signaled in the
 CodePoint.

 +--------------+--------------------------------+-------------------+
 | Value | Description | Definition |
 | $Identifier$ | | |
 +--------------+--------------------------------+-------------------+
1	The transport object is a file	in Section
		4.2.1.4.1
2	The delivered object is an	in Section
	entity consisting of an	4.2.1.4.2
	entity-header and the file	
 +--------------+--------------------------------+-------------------+

 Table 8: File Delivery Modes for GFD

4.2.1.4.1. Regular File

 In case of the regular file, the object represents a file. If the
 CodePoint defined in the GFD table contains entity-header fields or
 entity-header fields can be generated, then all of these entity-
 header fields shall apply to the delivered file.

4.2.1.4.2. Regular Entity

 In case of the regular entity, the object represents an entity as
 defined in section 7 of [RFC2616]. An entity consists of entity-
 header fields and an entity-body. If the CodePoint defined in the
 GFD table contains entity-header fields or entity-header fields can
 be generated, then all of these entity-header fields apply to the
 delivered file. If the entity-header field is present in both
 locations, then the entity header field in the entity-header
 delivered with the object overwrites the one in the CodePoint.

Bouazizi Expires September 5, 2014 [Page 17]

Internet-Draft MMTP March 2014

4.2.1.5. MMTP payload header for GFD mode

 The GFD mode of MMTP delivers regular files. When delivering regular
 files, the object represents a file. If the CodePoint defined in the
 MMTP Session description contains entity-header fields or entity-
 header fields can be generated, then all of these entity-header
 fields shall apply to the delivered file. The payload packets sent
 using MMTP shall include a GFD payload header and a GFD payload as
 shown in Figure 6. In some special cases a MMTP sender may need to
 produce packets that do not contain any payload. This may be
 required, for example, to signal the end of a session.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |C|L|B| CP | RES | TOI |
 +-+
 | TOI | start_offset |
 +-+
 | start_offset |
 +-+
 | Generic File Delivery payload |
 +-+

 MMTP payload header for GFD mode

 Figure 6

 The GFD payload header as shown in Figure 6 and has a variable size.
 Bits designated as "padding" or "reserved" (r) MUST by set to 0 by
 MMTP sender s and ignored by receivers. Unless otherwise noted,
 numeric constants in this specification are in decimal form

 C (1 bit)

 indicates that this is the last packet for this session.

 L (1 bit)

 indicates that this is the last delivered packet for this object.

 B (1 bit)

 indicates that this packet contains the last byte of the object.

 CodePoint (CP: 8 bits)

Bouazizi Expires September 5, 2014 [Page 18]

Internet-Draft MMTP March 2014

 An opaque identifier that is passed to the packet payload decoder
 to convey information on the packet payload. The mapping between
 the CodePoint and the actual codec is defined on a per session
 basis and communicated out-of-band as part of the session
 description information.

 RES (5 bits)

 a reserved field that should be set to "0".

 Transport Object Identifier (TOI: 32 bits)

 The object identifier should be set to a unique identifier of the
 generic object that is being delivered. The mapping between the
 object identifier and the object information (such as URL and MIME
 type) may be done explicitly or implicitly. For example a
 sequence of DASH segments may use the segment index as the object
 identifier and a numerical representation identifier as the
 packet_id. This mapping may also be performed using a signalling
 message

 start_offset (48 bits)

 the location of the current payload data in the object.

5. Protocol Operation

 In this section, we describe the behavior of an MMTP receiver and of
 an MMTP sender when operating the MMTP protocol using different
 payload types.

5.1. General Operation

 An MMTP session consists of one MMTP transport flow. MMTP transport
 flow is defined as all packet flows that are delivered to the same
 destination and which may originate from multiple MMTP senders. In
 the case of IP, destination is the IP address and port number. A
 single Package may be delivered over one or multiple MMTP transport
 flows. A single MMTP transport flow may deliver data from multiple
 Packages. An MMTP transport flow may carry multiple Assets. Each
 Asset is associated with a unique packet_id within the scope of the
 MMTP session. MMTP provides a streaming-optimized mode (the ISOBMFF
 mode) and a file download mode (the GFD mode). The Asset is
 delivered as a set of related objects denoted as an object flow.
 Object may either be an ISOBMFF file, file or signalling message.
 Each object flow shall either be carried in ISOBMFF mode or GFD mode,
 however, the delivery of one Package may be performed using a mix of
 the 2(two) modes, i.e. some Assets may be delivered using the ISOBMFF

Bouazizi Expires September 5, 2014 [Page 19]

Internet-Draft MMTP March 2014

 mode and others using the GFD mode. The MMTP packet sub-flow is the
 subset of the packets of an MMTP packet flow that share the same
 packet_id. The object flow is transported as an MMTP packet sub-
 flow. The ISOBMFF mode supports the packetized streaming of an
 ISOBMFF file. The GFD mode supports flexible file delivery of any
 type of file or sequence of files. MMTP is suitable for unicast as
 well as multicast media distribution. To ensure scalability in
 multicast/ broadcast environments, MMTP relies mainly on FEC instead
 of retransmissions for coping with packet error. Before joining the
 MMTP session, the MMTP receiver should obtain sufficient information
 to enable reception of the delivered data. This minimum required
 information is specified in Section 6. MMTP requires MMTP receivers
 to be able to uniquely identify and de-multiplex MMTP packets that
 belong to a specific object flow. In addition, MMT receivers are
 required to be able to identify packets carrying AL-FEC repair
 packets by interpreting the type field of the MMTP packet header.
 The MMTP receiver shall be able to simultaneously receive, de-
 multiplex, and reconstruct the data delivered by MMTP packets of
 different types and from different object flows. A single MMTP
 packet shall carry exactly one MMTP payload.

5.2. Delivery ISOBMFF objects

 The ISOBMFF mode is used to transport ISOBMFF files sent by a sending
 entity to a receiving entity.

5.2.1. MMTP sender operation

5.2.1.1. Timed Media Data

 The packetization of an ISOBMFF file that contains timed media may be
 performed in a ISOBMFF file format aware mode or ISOBMFF file format
 agnostic mode. In the media format agnostic mode, the ISOBMFF file
 is packetized into data units of equal size (except for the last data
 unit, of which the size may differ) or predefined size according to
 the size of MTU of the underlying delivery network by using GFD mode
 as specified in Section 4.2. It means that the packetization of the
 ISOBMFF file format agnostic mode only consider the size of data to
 be carried in the packet. The type field of MMTP packet header
 specified in Section 4.1 is set to "0x00" to indicate that the
 packetization is format agnostic mode. In the format agnostic mode
 the packetization procedure takes into account the boundaries of
 different types of data in ISOBMFF file to generate packets by using
 ISOBMFF mode as specified in Section 4.1. The resulting packets
 shall carry delivery data units of either ISOBMFF file metadata,
 movie fragment metadata, or a data unit. The resulting packets shall
 not carry more than two different types of delivery data units. The
 delivery data unit of ISOBMFF file metadata consists of the "ftyp"

Bouazizi Expires September 5, 2014 [Page 20]

Internet-Draft MMTP March 2014

 box, the "mmpu" box, the "moov" box, and any other boxes that are
 applied to the whole ISOBMFF file. The FT field of the MMTP payload
 carrying a delivery data unit of the ISOBMFF file metadata is set to
 "0x00". The delivery data unit of movie fragment metadata consists
 of the "moof" box and the "mdat" box header (excluding any media
 data). The FT field of the MMTP payload carrying a delivery data
 unit of movie fragment metadata is set to "0x01". The media data,
 data units in "mdat" box of the ISOBMFF file, is then split into
 multiple delivery data units in a format aware way. This may for
 example be performed with the help of the MMT hint track. The FT
 field of the MMTP payload carrying a delivery data unit is set to
 "0x02". Each data unit is prepended with a data unit header, which
 has the syntax and semantics as defined in section Section 4.1.1. It
 is followed by the media data of the data unit. This procedure is
 described by Figure 7.

+------+ +------+ +------+ +------+ +--------+-------------------------+
| ftyp | | mmpu | | moov | | moof | |mdat_hdr| mdat |
+------+ +------+ +------+ +------+ +--------+-------------------------+
			...	
+------------------------+ +------------------+ +----+				
ISOBMFF metadata		Fragment metadata	...	DU
+------------------------+ +------------------+ +----+

 Payload generation for timed media

 Figure 7

5.2.1.2. Non-Timed Media Data

 The packetization of non-timed media data may also be performed in
 two different modes. In the ISOBMFF file format agnostic mode, the
 ISOBMFF file is packetized into delivery data units of equal size
 (except for the last data unit, of which the size may differ) or or
 predefined size according to the size of MTU of the underlying
 delivery network by using GFD mode as specified in Section 4.2. The
 type field of MMTP packet header specified in Figure 1 is set to
 "0x00" to indicate that the packetization is format agnostic mode.
 In the format agnostic mode, the ISOBMFF file shall be packetized
 into the packet containing delivery data units of either ISOBMFF file
 metadata or data unit by using ISOBMFF mode as defined in
 Section 4.1. The delivery data unit of the ISOBMFF file metadata
 contains the "ftyp" box, the "moov" box, and the "meta" box and any
 other boxes that are applied to the whole ISOBMFF file. The FT field
 of the MMTP payload carrying a delivery data unit of the ISOBMFF file
 metadata is set to "0x01". Each delivery data unit contains a single

Bouazizi Expires September 5, 2014 [Page 21]

Internet-Draft MMTP March 2014

 item of the non-timed media. The FT field of the MMTP payload
 carrying a delivery data unit is set to "0x02". Each item of the
 non-timed data is then used to build a data unit. Each data unit
 consists of a data unit header and the item’s data. The data unit
 header is defined in Section 4.1.1.

 +----+ +----+ +----+ +----+ +---------+ +------------------------+
 |ftyp| |mmpu| |moov| |meta| | item #1 | | item #2 |
 +----+ +----+ +----+ +----+ +---------+ +------------------------+
+-------------------------+ +---------+ +------------------------+				
ISOBMFF metadata		DU		DU
 +-------------------------+ +---------+ +------------------------+

 Payload generation for non-timed media

 Figure 8

5.2.2. MMTP receiver operation

 The depacketization procedure is performed at an MMTP receiver to
 rebuild the transmitted ISOBMFF file. The depacketization procedure
 may operate in one of the following modes, depending on the
 application needs:

 ISOBMFF mode:

 in the ISOBMFF mode, the depacketizer reconstructs the full
 ISOBMFF file before forwarding it to the application. This mode
 is appropriate for non-time critical delivery, i.e. the ISOBMFF
 file’s presentation time as indicated by the presentation
 information document is sufficiently behind its delivery time.

 Fragment mode:

 in the Fragment mode, the depacketizer reconstructs a complete
 fragment including the fragment metadata and the "mdat" box with
 media samples before forwarding it to the application. This mode
 does not apply to non-timed media. This mode is suitable for
 delay-sensitive applications where the delivery time budget is
 limited but is large enough to recover a complete fragment.

 Media unit mode:

 in the media unit mode, the depacketizer extracts and forwards
 media units as fast as possible to the application. This mode is

Bouazizi Expires September 5, 2014 [Page 22]

Internet-Draft MMTP March 2014

 applicable for very low delay media applications. In this mode,
 the recovery of the ISOBMFF file is not required. The processing
 of the fragment media data is not required but may be performed to
 resynchronize. This mode tolerates out of order delivery of the
 fragment metadata data units, which may be generated after the
 media units are generated. This mode applies to both timed and
 non-timed media. Using the data unit sequence numbers, it is
 relatively easy for the receiver to detect missing packets and
 apply any error correction procedures such as ARQ to recover the
 missing packets. The payload type may be used by the MMTP sender
 to determine the importance of the payload for the application and
 to apply appropriate error resilience measures.

5.3. Delivering Generic Objects

 The files delivered using the GFD mode may have to be provided to an
 application, for example Presentation Information documents or a
 Media Presentation Description as defined in ISO/IEC 23009-1 may
 refer to the files delivered using MMTP as GFD objects. The file
 shall be referenced through the URI provided or derived from Content-
 Location, either provided in-band as part of an entity header or as
 part of a GFDT. In certain cases, the files have an availability
 start time in the application. In this case the MMTP session shall
 deliver the files such that the last packet of the object is
 delivered such that it is available latest at the receiver at the
 availability start time as announced in the application.
 Applications delivered through the GFD mode may impose additional and
 stricter requirements on the sending of the files within a MMTP
 session.

5.3.1. MMTP sender operation

 If more than one object is to be delivered using the GFD mode, then
 the MMTP sender shall use different TOI fields. In this case each
 object shall be identified by a unique TOI scoped by the packet_id,
 and the MMTP sender shall use that TOI value for all packets
 pertaining to the same object. The mapping between TOIs and files
 carried in a session is either provided in-band or in a GFDT. The
 GFD payload header as defined in Section 4.2.1.5 shall be used. The
 GFD payload header contains a CodePoint field that shall be used to
 communicate to a MMTP receiver the settings for information that is
 established for the current MMTP session and may even vary during a
 MMTP session. The mapping between settings and Codepoint values is
 communicated in the a GFDT as described in Section 4.2.1.1. Let T >
 0 be the Transfer-Length of any object in bytes. The data carried in
 the payload of a packet consists of a consecutive portion of the
 object. Then for any arbitrary X and any arbitrary Y > 0 as long as

Bouazizi Expires September 5, 2014 [Page 23]

Internet-Draft MMTP March 2014

 X + Y is at most T, an MMTP packet may be generated. In this case
 the followings shall hold:

 1. The data carried in the payload of a packet shall consist of a
 consecutive portion of the object starting from the beginning of
 byte X through the beginning of byte X + Y.

 2. The start_offset field in the GFD payload header shall be set to
 X and the payload data shall be added into the packet to send.

 3. If X + Y is identical to T,

 * the payload header flag B shall be set to "1".

 * else

 * the payload header flag B shall be set to "0".

 The following procedure is recommended for a MMTP sender to deliver
 an object to generate packets containing start_offset and
 corresponding payload data.

 1. Set the byte offset counter X to "0"

 2. For the next packets to be delivered set the length in bytes of a
 payload to a value Y, which is

 * reasonable for a packet payload (e.g., ensure that the total
 packet size does not exceed the MTU), and

 * such that the sum of X and Y is at most T, and

 * such that it is suitable for the payload data included in the
 packet

 3. Generate a packet according to the rules a to c from above

 4. If X + Y is equal to T,

 * set the payload header flag B to "1"

 * else

 * set the payload header flag B to "0"

 * increment X = X + Y

 * goto 2

Bouazizi Expires September 5, 2014 [Page 24]

Internet-Draft MMTP March 2014

 The order of packet delivery is arbitrary, but in the absence of
 other constraints delivery with increasing start_offset number is
 recommended. Note that the transfer length may be unknown prior to
 sending earlier pieces of the data. In this case, T may be
 determined later. However, this does not affect the sending process
 above. Additional packets may be sent following the rules in 1 to 3
 from above. In this case the B flag shall only be set for the
 payload that contains the last portion of the object.

5.3.2. GFD Payload

 The bytes of the object are referenced such that byte 0 is the
 beginning of the object and byte T-1 is the last byte of the object
 with T is the transfer length (in bytes) of the object. The data
 carried in the payload of an MMTP packet shall consist of a
 consecutive portion of the object starting from the beginning of byte
 X and ending at the beginning of byte X + Y where

 1. X is the value of start_offset field in the GFD payload header

 2. Y is the length of the payload in bytes

 Note that Y is not carried in the packet, but framing shall be
 provided by the underlying transport protocol.

5.3.3. GFD Table Delivery

 When GFD mode is used, the GFD table (GFDT) shall be provided. A
 file that is delivered using the GFD mode, but not described in the
 GFD table is not considered a ’file’ belonging to the MMTP session.
 Any object received with an unmapped CodePoint should be ignored by a
 MMTP receiver. Other ways of delivery the GFD table may possible,
 but out of scope of this specification.

5.3.4. MMTP receiver operation

 The GFDT may contain one or multiple CodePoints identified by
 different CodePoint values. Upon receipt of each GFD payload, the
 receiver proceeds with the following steps in the order listed.

 1. The MMTP receiver shall parse the GFD payload header and verify
 that it is a valid header. If it is not valid, then the GFD
 payload shall be discarded without further processing.

 2. The MMTP receiver shall parse the CodePoint value and verify that
 the GFDT contains a matching CodePoint. If it is not valid, then
 the GFD payload shall be discarded without further processing.

Bouazizi Expires September 5, 2014 [Page 25]

Internet-Draft MMTP March 2014

 3. The MMTP receiver should process the remainder of the payload,
 including interpreting the other payload header fields
 appropriately, and using the source_offset and the payload data
 to reconstruct the corresponding object as follows:

 1. The MMT receiving can determine from which object a received
 GFD payload was generated by using the GFDT., and by the TOI
 carried in the payload header.

 2. Upon receipt of the first GFD payload for an object, the
 MMTP receiver uses the Maximum Transfer Length received as
 part of the GFDT to determine the maximum length T’ of the
 object.

 3. The MMTP receiver allocates space for the T’ bytes that the
 object may require.

 4. The MMTP receiver also computes the length of the payload,
 Y, by subtracting the payload header length from the total
 length of the received payload.

 5. The MMTP receiver allocates a Boolean array
 RECEIVED[0..T’-1] with all T entries initialized to false to
 track received object symbols. The MMTP receiver keeps
 receiving payloads for the object block as long as there is
 at least one entry in RECEIVED still set to false or until
 the application decides to give up on this object.

 6. For each received GFD payload for the object (including the
 first payload), the steps to be taken to help recover the
 object are as follows:

 7. Let X be the value of the source_offset field in the GFD
 payload header of the MMTP packet. and let Y be the length
 of the payload, Y, computed by subtracting the MMTP packet
 and GFD payload header lengths from the total length of the
 received packet.

 8. The MMTP receiver copies the data into the appropriate place
 within the space reserved for the object and sets RECEIVED[X
 ... X+Y-1] = true.

 9. If all T entries of RECEIVED are true, then the receiver has
 recovered the entire object.

 10. Once the MMTP receiver receives a GFD payload with the B
 flag set to 1, it can determine the transfer length T of the

Bouazizi Expires September 5, 2014 [Page 26]

Internet-Draft MMTP March 2014

 object as X+Y of the corresponding GFD payload and adjust
 the boolean array RECEIVED[0..T’-1] to RECEIVED[0..T-1].

6. Session Description information

 The MMTP session description information may be delivered to
 receivers in different ways to accommodate different deployment
 environments. Before a receiver is able to join an MMTP session, the
 receiver needs to obtain the following information:

 The destination information. In an IP environment, the
 destination IP address and port number.

 An indication that the session is an MMTP session

 The version number of the MMT protocol used in the MMTP session

 Additionally, the MMTP session description information should contain
 the following information:

 The start and end time of the MMTP session.

7. Congestion Control

 All transport protocols used on the Internet are required to address
 congestion control. MMTP is not an exception, but because the data
 transported over MMTP is often inelastic (generated at a fixed or
 controlled rate), the means to control congestion in RTP may be quite
 different from those for other transport protocols such as TCP. In
 one sense, inelasticity reduces the risk of congestion because the
 MMTP stream will not expand to consume all available bandwidth as a
 TCP stream can. However, inelasticity also means that the MMTP
 stream cannot arbitrarily reduce its load on the network to eliminate
 congestion when it occurs.

8. IANA Considerations

 This internet draft includes no request to IANA.

9. Security Considerations

 Lower layer protocols may eventually provide all the security
 services that may be desired for applications of MMTP, including
 authentication, integrity, and confidentiality. These services have
 been specified for IP in [RFC4301].

Bouazizi Expires September 5, 2014 [Page 27]

Internet-Draft MMTP March 2014

10. References

10.1. Normative References

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC
 3986, January 2005.

 [RFC5905] Mills, D., Martin, J., Burbank, J., and W. Kasch, "Network
 Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, June 2010.

 [isopart12]
 ISO/IEC, "Information technology High efficiency coding
 and media delivery in heterogeneous environments Part 12:
 File Format", 2008, <http://www.mpeg.org/>.

 [mmt] ISO/IEC, "Information technology High efficiency coding
 and media delivery in heterogeneous environments Part 1:
 MPEG media transport (MMT)", 2014, <http://www.mpeg.org/>.

10.2. Informative References

 [RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V.
 Jacobson, "RTP: A Transport Protocol for Real-Time
 Applications", STD 64, RFC 3550, July 2003.

 [RFC4301] Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, December 2005.

Author’s Address

 Imed Bouazizi
 Samsung Research America
 Richardson, TX
 US

 Phone: +1 972 763 7023
 Email: i.bouazizi@samsung.com

Bouazizi Expires September 5, 2014 [Page 28]

