OPSAWG M. Boucadair, Ed. Internet-Draft Orange Intended status: Standards Track R. Roberts, Ed. Expires: 4 November 2023 Juniper O. G. D. Dios Telefonica S. B. Giraldo Nokia B. Wu Huawei Technologies 3 May 2023 YANG Data Models for 'Attachment Circuits'-as-a-Service (ACaaS) draft-boro-opsawg-teas-attachment-circuit-06 Abstract This document specifies a YANG service data model for Attachment Circuits (ACs). This model can be used for the provisioning of ACs prior or during service provisioning (e.g., Network Slice Service). The document specifies also a module that updates other service and network modules with the required information to bind specific services to ACs that are created using the AC service model. Also, the document specifies a set of reusable groupings. Whether a service model reuses structures defined in the AC models or simply include an AC reference is a design choice of these service models. Relying upon the AC service model to manage ACs over which a service is delivered has the merit to decorrelate the management of a service vs. upgrade the AC components to reflect recent AC technologies or features. Discussion Venues This note is to be removed before publishing as an RFC. Discussion of this document takes place on the Operations and Management Area Working Group Working Group mailing list (opsawg@ietf.org), which is archived at https://mailarchive.ietf.org/arch/browse/opsawg/. Source for this draft and an issue tracker can be found at https://github.com/boucadair/attachment-circuit-model. Boucadair, et al. Expires 4 November 2023 [Page 1] Internet-Draft ACaaS May 2023 Status of This Memo This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." This Internet-Draft will expire on 4 November 2023. Copyright Notice Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/ license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License. Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1. Scope and Intended Use . . . . . . . . . . . . . . . . . 3 1.2. Position ACaaS vs. Other Data Models . . . . . . . . . . 6 1.2.1. Why Not Using L2SM as Reference Data Model for ACaaS? . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.2. Why Not Using L3SM as Reference Data Model for ACaaS? . . . . . . . . . . . . . . . . . . . . . . . 6 2. Conventions and Definitions . . . . . . . . . . . . . . . . . 7 3. Sample Uses of the Data Models . . . . . . . . . . . . . . . 8 3.1. ACs Terminated by One or Multiple Customer Edges (CEs) . 8 3.2. Separate AC Provisioning vs. Actual Service Provisioning . . . . . . . . . . . . . . . . . . . . . . 9 4. Description of the Data Models . . . . . . . . . . . . . . . 11 4.1. The Bearer Service ("ietf-bearer-svc") YANG Module . . . 11 Boucadair, et al. Expires 4 November 2023 [Page 2] Internet-Draft ACaaS May 2023 4.2. The Attachment Circuit Service ("ietf-ac-svc") YANG Module . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.2.1. Overall Structure . . . . . . . . . . . . . . . . . . 13 4.2.2. Service Profiles . . . . . . . . . . . . . . . . . . 15 4.2.3. Attachment Circuits Profiles . . . . . . . . . . . . 17 4.2.4. AC Placement Contraints . . . . . . . . . . . . . . . 17 4.2.5. Attachment Circuits . . . . . . . . . . . . . . . . . 18 5. YANG Modules . . . . . . . . . . . . . . . . . . . . . . . . 37 5.1. The Bearer Service ("ietf-bearer-svc") YANG Module . . . 37 5.2. The AC Service ("ietf-ac-svc") YANG Module . . . . . . . 43 6. Security Considerations . . . . . . . . . . . . . . . . . . . 62 7. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 63 8. References . . . . . . . . . . . . . . . . . . . . . . . . . 64 8.1. Normative References . . . . . . . . . . . . . . . . . . 64 8.2. Informative References . . . . . . . . . . . . . . . . . 66 Appendix A. Examples . . . . . . . . . . . . . . . . . . . . . . 68 A.1. Create A New Bearer . . . . . . . . . . . . . . . . . . . 68 A.2. Create An AC over An Existing Bearer . . . . . . . . . . 70 A.3. Create An AC for a Known Peer SAP . . . . . . . . . . . . 71 A.4. One CE, Two ACs . . . . . . . . . . . . . . . . . . . . . 72 A.5. Control Precedence over Multiple ACs . . . . . . . . . . 78 A.6. Multiple CEs . . . . . . . . . . . . . . . . . . . . . . 80 A.7. Binding Attachment Circuits to an IETF Network Slice . . 81 A.8. Connecting a Virtualized Environment Running in a Cloud Provider . . . . . . . . . . . . . . . . . . . . . . . . 88 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . 94 Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 95 1. Introduction 1.1. Scope and Intended Use Connectivity services are provided by networks to customers via dedicated terminating points (e.g., service functions, customer edges (CEs), peer ASBRs, data centers gateways, Internet Exchange Points). A connectivity service is basically about ensuring data transfer received from (or destined to) a given terminating point to (or from) other terminating points that belong to the same customer/service, an interconnection node, or an ancillary node. A set of objectives for the connectivity service may eventually be negotiated and agreed upon between a customer a network provider. For that data transfer to take place within the provider network, it is assumed that adequate setup is provisioned over the links that connect customer terminating points and a provider network so that data can be successfully exchanged over these links. The required setup is referred to in this document as Attachment Circuits (ACs), while the underlying link is referred to as "bearers". Boucadair, et al. Expires 4 November 2023 [Page 3] Internet-Draft ACaaS May 2023 This document adheres to the definition of an Attachment Circuit as provided in Section 1.2 of [RFC4364], especially: Routers can be attached to each other, or to end systems, in a variety of different ways: PPP connections, ATM Virtual Circuits (VCs), Frame Relay VCs, ethernet interfaces, Virtual Local Area Networks (VLANs) on ethernet interfaces, GRE tunnels, Layer 2 Tunneling Protocol (L2TP) tunnels, IPsec tunnels, etc. We will use the term "attachment circuit" to refer generally to some such means of attaching to a router. An attachment circuit may be the sort of connection that is usually thought of as a "data link", or it may be a tunnel of some sort; what matters is that it be possible for two devices to be network layer peers over the attachment circuit. When a customer requests a new value-added service, the service can be bound to existing attachment circuits or trigger the instantiation of new attachment circuits. The provisioning of an value-added service should, thus, accommodate both deployments. Also, because the instantiation of an attachment circuit requires coordinating the provisioning of endpoints that might not belong to the same administrative entity (customer vs. provider or distinct operational teams within the same provider, etc.), *programmatic means to expose 'attachment circuits'-as-a-service will greatly simplify the provisioning of value added services* that will be delivered over an attachment circuits. This document specifies a YANG service data model ("ietf-ac-svc") for managing attachment circuits that are exposed by a network to its customers (e.g., an enterprise site, a network function, a hosting infrastructure, a peer network provider). The model can be used for the provisioning of ACs prior or during advanced service provisioning (e.g., Network Slice Service). The "ietf-ac-svc" includes a set of reusable groupings. Whether a service model reuses structures defined in the "ietf-ac-svc" or simply includes an AC reference (that was communicated during AC service instantiation) is a design choice of these service models. Relying upon the AC service model to manage ACes over which services are delivered has the merit to decorrelate the management of the (core) service vs. upgrade the AC components to reflect recent AC technologies or new features (e.g., new encryption scheme, additional routing protocol). *This document favors the approach of completely relying upon the AC service model instead of duplicating data nodes into specific modules of advanced services that are delivered over an Attachment Circuit.* Boucadair, et al. Expires 4 November 2023 [Page 4] Internet-Draft ACaaS May 2023 Because the provisioning of an AC requires a bearer to be in place, this document allows customers to manage their bearer requests by means of a new module, called "ietf-bearer-svc". The customers can then retrieve a provider-assigned bearer reference that they will include in their AC service requests. An AC service request can provide a reference to a bearer or a set of peer SAPs. Both schemes are supported in the AC service model. Each AC is identified with a unique identifier within a (provider) domain. From a network provider standpoint, an AC can be bound to a single or multiple Service Attachment Points (SAPs) [I-D.ietf-opsawg-sap]. Likewise, the same SAP can be bound to one or multiple ACs. However, the mapping between an AC and a PE in the provider network that terminates that AC is hidden to the application that makes use of the AC service model. Such mapping information is internal to the network controllers. As such, the details about the (node-specific) attachment interfaces are not exposed in the AC service model. The AC service model *does not make any assumption about the internal structure or even the nature or the services that will be delivered over an attachment circuit*. Customers do not have access to that network view other than the ACes that the ordered. For example, the AC service model can be used to provision a set of ACes to connect multiple sites (Site1, Site2, ..., SiteX) for customer that also requested VPN services. If these provisioning of these services require specific configured on ASBR nodes, such configuration is handled at the network level and is not exposed at the service level to the customer. However, the network controller will have access to such a view as the service points in these ASBRs will be exposed as SAPs with "role" set to "ietf-sap-ntw:nni" [I-D.ietf-opsawg-sap]. The AC service model can be used in a variety of contexts, such as (but not limited to) those provided in Appendix A: * Request an attachment circuit for a known peer SAP (Appendix A.3). * Instantiate multiple attachment circuits over the same bearer (Appendix A.4). * Control the precedence over multiple attachment circuits (Appendix A.5). * Bind a slice service to a set of pre-provisioned attachment circuits (Appendix A.7). Boucadair, et al. Expires 4 November 2023 [Page 5] Internet-Draft ACaaS May 2023 * Connect a Cloud Infrastructure to a service provider network (Appendix A.8). The examples use the IPv4 address blocks reserved for documentation [RFC5737], the IPv6 prefix reserved for documentation [RFC3849], and the Autonomous System (AS) numbers reserved for documentation [RFC5398]. The YANG data models in this document conform to the Network Management Datastore Architecture (NMDA) defined in [RFC8342]. 1.2. Position ACaaS vs. Other Data Models The AC model specified in this document *is not a network model* [RFC8969]. As such, the model does not expose details related to specific nodes in the provider's network that terminate an AC. The mapping between an AC as seen by a customer and the network implementation of an AC is maintained by the network controllers, and is not exposed to the customer. Such a mapping can be maintained using a variety of network models, e.g., augmented SAP AC network model [I-D.boro-opsawg-ntw-attachment-circuit]. The AC service model *is not a device model*. A network provider may use a variety of device models (e.g., Routing management [RFC8349] or BGP [I-D.ietf-idr-bgp-model]) to provision an AC service. 1.2.1. Why Not Using L2SM as Reference Data Model for ACaaS? The L2SM [RFC8466] covers some AC-related considerations. Nevertheless, the L2SM structure is too layer 2 centric. For example, the L2SM part does not cover Layer 3 provisioning, which is required for the instantiation of typical ACs. 1.2.2. Why Not Using L3SM as Reference Data Model for ACaaS? Similar to the L2NM, the L3SM [RFC8299] covers some AC-related considerations. Nevertheless, the L3SM structure does not adequately cover layer 2 provisioning matters. Moreover, the L3SM is drawn with conventional L3VPN deployments in mind and, as such, has some limitations for instantiating ACs in other deployment contexts (e.g., cloud environments). For example, the L3SM does not allow to provision multiple BGP sessions over the same AC. Boucadair, et al. Expires 4 November 2023 [Page 6] Internet-Draft ACaaS May 2023 2. Conventions and Definitions The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here. The meanings of the symbols in the YANG tree diagrams are defined in [RFC8340]. This document uses the following terms: Bearer: A physical or logical link that connects a customer node (or site) to a provider network. A bearer can be a wireless or wired link. One or multiple technologies can be used to build a bearer. The bearer type can be specified by a customer. The operator allocates a unique bearer reference to identify a bearer within its network (e.g., customer line identifier). Such a reference can be retrieved by a customer and used in subsequent service placement requests to unambiguously identify where a service is to be bound. The concept of bearer can be generalized to refer to the required underlying connection for the provisioning of an attachment circuit. One or multiple attachment circuits may be hosted over the same bearer (e.g., multiple VLANs on the same bearer that is provided by a physical link). Network controller: Denotes a functional entity responsible for the management of the service provider network. Service orchestrator: Refers to a functional entity that interacts with the customer of a network service. The service orchestrator is typically responsible for the attachment circuits, the Provider Edge (PE) selection, and requesting the activation of the requested service to a network controller. Service provider network: A network that is able to provide network services (e.g., Layer 2 VPN, Layer 3, and Network Slice Services). Service provider: A service provider that offers network services (e.g., Layer 2 VPN, Layer 3, and Network Slice Services). Boucadair, et al. Expires 4 November 2023 [Page 7] Internet-Draft ACaaS May 2023 3. Sample Uses of the Data Models 3.1. ACs Terminated by One or Multiple Customer Edges (CEs) Figure 1 depicts two target topology flavors that involve ACs. These topologies are characterized as follows: * A Customer Edges (CEs) may be a physical device or a logical entity. Such a logical entity is typically a software component (e.g., a virtual service function that is hosted within the provider's network or a third-party infrastructure). A CE is seen by the network as a peer SAP. * The same AC service request may include one or multiple ACs that are bound to a single CE or a plurality of CEs. * CEs may be dedicated to one single connectivity service or host multiple connectivity services (e.g., CEs as role of service functions [RFC7665]). * A single AC (as seen by a network provider) may be bound to one or multiple peer SAPs (e.g., CE#1 and CE#2 are tagged as peer SAPs for the same AC). For example, and as discussed in [RFC4364], multiple CEs can be attached to a PE over the same attachment circuit. This is typically implemented if the layer 2 infrastructure between the CE and the network provides a multipoint service. * The same CE may terminate multiple ACs. These ACs may be over the same or distinct bearers. * The customer may request protection schemes where the ACs bound to a customer endpoints are terminated by the same PE (e.g., CE#3), distinct PEs (e.g., CE#34), etc. The network provider uses this request to decide where to terminate the AC in the network provider network and also whether to enable specific capabilities (e.g., Virtual Router Redundancy Protocol (VRRP)). Boucadair, et al. Expires 4 November 2023 [Page 8] Internet-Draft ACaaS May 2023 ┌───────┐ ┌────────────────────┐ ┌───────┐ │ ├──────┐ │ ├────AC─────┤ │ │ CE#1 │ │ │ ├────AC─────┤ CE#3 | └───────┘ │ │ │ └───────┘ ├───AC────┤ Network │ ┌───────┐ │ │ │ │ │ │ │ │ ┌───────┐ │ CE#2 ├──────┘ │ │─────AC────┤ CE#4 │ └───────┘ │ │ └────+──┘ └───────────+────────┘ | | | └────────────AC───────────┘ Figure 1: Examples of ACs 3.2. Separate AC Provisioning vs. Actual Service Provisioning The procedure to provision a service in a service provider network may depend on the practices adopted by a service provider, including the flow put in place for the provisioning of advanced network services and how they are bound to an attachment circuit. For example, the same attachment circuit may be used to host multiple connectivity services. In order to avoid service interference and redundant information in various locations, a service provider may expose an interface to manage ACs network-wide. Customers can then request a bearer or an attachment circuit to be put in place, and then refer to that bearer or AC when requesting services that are bound to the bearer or AC. Figure 2 shows the positioning of the AC service model is the overall service delivery process. Boucadair, et al. Expires 4 November 2023 [Page 9] Internet-Draft ACaaS May 2023 +---------------+ | Customer | +-------+-------+ Customer Service Model | e.g., slice-svc, ac-svc,| and bearer-svc +-------+-------+ | Service | | Orchestration | +-------+-------+ Network Model | e.g., l3vpn-ntw, sap, and ac-ntw| +-------+-------+ | Network | | Orchestration | +-------+-------+ Network Configuration Model | +-----------+-----------+ | | +--------+------+ +--------+------+ | Domain | | Domain | | Orchestration | | Orchestration | +---+-----------+ +--------+------+ Device | | | Configuration | | | Model | | | +----+----+ | | | Config | | | | Manager | | | +----+----+ | | | | | | NETCONF/CLI.................. | | | +--------------------------------+ +----+ Bearer | | Bearer +----+ |CE#1+--------+ Network +--------+CE#2| +----+ | | +----+ +--------------------------------+ Site A Site B Figure 2: An Example of AC Model Usage In order to ease the mapping between the service model and underlying network models (e.g., L3NM, SAP), the name conventions used in existing network data models are reused as much as possible. For example, "local-address" is used rather than "provider-address" (or similar) to refer to an IP address used in the provider network. This approach is consistent with the automation framework defined in [RFC8969]. Boucadair, et al. Expires 4 November 2023 [Page 10] Internet-Draft ACaaS May 2023 4. Description of the Data Models 4.1. The Bearer Service ("ietf-bearer-svc") YANG Module Figure 3 shows the tree for managing the bearers (that is, the properties of the attachment that are below Layer 3). A bearer can be a wireless or wired link. A reference to a bearer is generated by the operator. Such a reference can be used, e.g., in a subsequent service request to create an AC. The anchoring of the AC can also be achieved by indicating (with or without a bearer reference), a peer SAP identifier (e.g., an identifier of a Service Function). Boucadair, et al. Expires 4 November 2023 [Page 11] Internet-Draft ACaaS May 2023 module: ietf-bearer-svc +--rw bearers +--rw bearer* [id] +--rw id string +--rw description? string +--rw op-comment? string +--rw customer-point | +--rw identified-by? identityref | +--rw device | | +--rw device-id? string | | +--rw location | | +--rw address? string | | +--rw postal-code? string | | +--rw state? string | | +--rw city? string | | +--rw country-code? string | +--rw site | | +--rw site-id? string | | +--rw location | | +--rw address? string | | +--rw postal-code? string | | +--rw state? string | | +--rw city? string | | +--rw country-code? string | +--rw custom-id? string +--rw requested-type? identityref +--ro bearer-reference? string {vpn-common:bearer-reference}? +--rw requested-start? yang:date-and-time +--rw requested-stop? yang:date-and-time +--ro actual-start? yang:date-and-time +--ro actual-stop? yang:date-and-time +--rw status +--rw admin-status | +--rw status? identityref | +--rw last-change? yang:date-and-time +--ro oper-status +--ro status? identityref +--ro last-change? yang:date-and-time Figure 3: Bearer Service Tree Structure The same customer site (CE, NF, etc.) can terminate one or multiple bearers; each of them uniquely identified by a reference that is assigned by the network provider. These bearers can terminate on the same or distinct network nodes. CEs that terminate multiple bearers are called multi-homed CEs. The descriptions of the bearer data nodes are as follows: Boucadair, et al. Expires 4 November 2023 [Page 12] Internet-Draft ACaaS May 2023 'id': Used to uniquely identify a bearer. This identifier is typically selected by the client when requesting a bearer. 'description': Includes a textual description of the bearer. 'op-comment': Includes operational comments that may be useful for managing the bearer (building, level, etc.). No structure is associated with this data node to accommodate all deployments. 'customer-point': Specifies the customer terminating point for the bearer. A bearer request can indicate a site, a device, a combination thereof, or a custom information when requesting a bearer. All these schemes are supported in the model. 'requested-type': Specifies the requested bearer type (Ethernet, wireless, etc.). 'bearer-reference': Returns an internal reference for the service provider to identify the bearer. This reference can be used when requesting services. Appendix A.1 provides an example about how this reference can be retrieved by a customer. Whether the 'bearer-reference' mirrors the content of the 'id' is deployment specific. The module does not assume nor preclude such schemes. 'status': Used to track the overall status of a given bearer. Both operational and administrative status are maintained together with a timestamp. See [RFC9181] for more details. 4.2. The Attachment Circuit Service ("ietf-ac-svc") YANG Module 4.2.1. Overall Structure The overall tree structure of the AC service module is shown in Figure 4. Boucadair, et al. Expires 4 November 2023 [Page 13] Internet-Draft ACaaS May 2023 +--rw specific-provisioning-profiles | ... +--rw service-provisioning-profiles | ... +--rw attachment-circuits +--rw ac-group-profile* [name] | ... +--rw placement-constraints | ... +--rw ac* [name] ... +--rw l2-connection | ... +--rw ip-connection | ... +--rw routing-protocols | ... +--rw oam | ... +--rw security | ... +--rw service ... Figure 4: Overall AC Service Tree Structure The full ACaaS tree is available at [AC-SVC-Tree]. The full reusable groupings defined in the ACaaS module are shown in [AC-SVC-GRP]. The rationale for deciding whether a reusable grouping should be maintained in this document or be moved into the AC common module [I-D.boro-opsawg-teas-common-ac] is as follows: - Groupings that are reusable among the AC service module, AC network module, other service models, and network models are included in the AC common module. - Groupings that are reusable only by other service models are maintained in the "ietf-ac-svc" module. Each AC is identified with a unique name ('../ac/name') within a domain. The mapping between this AC and a local PE that terminates the AC is hidden to the application that makes use of the AC service model. This information is internal to the Network controller. As such, the details about the (node-specific) attachment interfaces are not exposed in this service model. Boucadair, et al. Expires 4 November 2023 [Page 14] Internet-Draft ACaaS May 2023 The AC service model uses groupings and types defined in the AC common model [I-D.boro-opsawg-teas-common-ac]. Therefore, the description of these nodes are not reiterated in the following subsections. 4.2.2. Service Profiles 4.2.2.1. Description The 'specific-provisioning-profiles' container (Figure 5) can be used by a service provider to maintain a set of reusable profiles. The profiles definition are similar to those defined in [RFC9181], including: Quality of Service (QoS), Bidirectional Forwarding Detection (BFD), forwarding, and routing profiles. The exact definition of the profiles is local to each service provider. The model only includes an identifier for these profiles in order to facilitate identifying and binding local policies when building an AC. Boucadair, et al. Expires 4 November 2023 [Page 15] Internet-Draft ACaaS May 2023 module: ietf-ac-svc +--rw specific-provisioning-profiles | +--rw valid-provider-identifiers | +--rw encryption-profile-identifier* [id] | | +--rw id string | +--rw qos-profile-identifier* [id] | | +--rw id string | +--rw bfd-profile-identifier* [id] | | +--rw id string | +--rw forwarding-profile-identifier* [id] | | +--rw id string | +--rw routing-profile-identifier* [id] | +--rw id string +--rw service-provisioning-profiles | +--rw service-profile-identifier* [id] | +--rw id string +--rw attachment-circuits +--rw ac-group-profile* [name] | ... +--rw placement-constraints | ... +--rw ac* [name] ... +--rw l2-connection | ... +--rw ip-connection | ... +--rw routing-protocols | ... +--rw oam | ... +--rw security | ... +--rw service ... Figure 5: Service Profiles As shown in Figure 5, two profile types can be defined: 'specific- provisioning-profiles' and 'service-provisioning-profiles'. Whether only specific profiles, service profiles, or a combination thereof are used is local to each service provider. The following specific provisioning profiles can be defined: 'encryption-profile-identifier': Refers to a set of policies related to the encryption setup that can be applied when provisioning an AC. Boucadair, et al. Expires 4 November 2023 [Page 16] Internet-Draft ACaaS May 2023 'qos-profile-identifier': Refers to a set of policies, such as classification, marking, and actions (e.g., [RFC3644]). 'bfd-profile-identifier': Refers to a set of Bidirectional Forwarding Detection (BFD) policies [RFC5880] that can be invoked when building an AC. 'forwarding-profile-identifier': Refers to the policies that apply to the forwarding of packets conveyed within an AC. Such policies may consist, for example, of applying Access Control Lists (ACLs). 'routing-profile-identifier': Refers to a set of routing policies that will be invoked (e.g., BGP policies) when building an AC. 4.2.2.2. Referencing Service/Specific Profiles All the abovementioned profiles are uniquely identified by the NETCONF/RESTCONF server by an identifier. To ease referencing these profiles by other data models, specific typedefs are defined for each of these profiles. Likewise, an attachment circuit reference typedef is defined when referencing a (global) attachment circuit by its name is required. These typedefs SHOULD be used when other modules need a reference to one of these profiles or attachment circuits. 4.2.3. Attachment Circuits Profiles The 'ac-group-profile' defines reusable parameters for a set of ACes. Each profile is identified by 'name'. Some of the data nodes can be adjusted at the 'ac'. These adjusted values take precedence over the global values. The structure of 'ac-group-profile' is similar to the one used to model each 'ac' (Figure 7). 4.2.4. AC Placement Contraints The 'placement-constraints' specifies the placement constraints of an AC. For example, this container can be used to request avoiding to connecting two ACes to the same PE. The full set of supported constraints is defined in [RFC9181] (see 'placement-diversity', in particular). The structure of 'placement-constraints' is shown in Figure 6. Boucadair, et al. Expires 4 November 2023 [Page 17] Internet-Draft ACaaS May 2023 +--rw specific-provisioning-profiles | ... +--rw service-provisioning-profiles | ... +--rw attachment-circuits +--rw ac-group-profile* [name] | ... +--rw placement-constraints | +--rw constraint* [constraint-type] | +--rw constraint-type identityref | +--rw target | +--rw (target-flavor)? | +--:(id) | | +--rw group* [group-id] | | +--rw group-id string | +--:(all-accesses) | | +--rw all-other-accesses? empty | +--:(all-groups) | +--rw all-other-groups? empty +--rw ac* [name] ... Figure 6: Placement Constraints Subtree Structure 4.2.5. Attachment Circuits The structure of 'attachment-circuits' is shown in Figure 7. Boucadair, et al. Expires 4 November 2023 [Page 18] Internet-Draft ACaaS May 2023 +--rw specific-provisioning-profiles | ... +--rw service-provisioning-profiles | ... +--rw attachment-circuits +--rw ac-group-profile* [name] | ... +--rw placement-constraints | ... +--rw ac* [name] +--rw customer-name? string +--rw description? string +--rw requested-start? yang:date-and-time +--rw requested-stop? yang:date-and-time +--ro actual-start? yang:date-and-time +--ro actual-stop? yang:date-and-time +--rw peer-sap-id* string +--rw ac-group-profile* ac-group-reference +--rw group* [group-id] | +--rw group-id string | +--rw precedence? identityref +--rw name string +--rw service-profile* service-profile-reference +--rw l2-connection | ... +--rw ip-connection | ... +--rw routing-protocols | ... +--rw oam | ... +--rw security | ... +--rw service ... Figure 7: Attachment Circuits Tree Structure The description of the data nodes is as follows: 'customer-name': Indicates the name of the customer who ordered the AC. 'description': Includes a textual description of the AC. 'peer-sap-id': Includes references to the remote endpoints of an attachment circuit [I-D.ietf-opsawg-sap]. Boucadair, et al. Expires 4 November 2023 [Page 19] Internet-Draft ACaaS May 2023 'ac-group-profile': Indicates references to one or more profiles that are defined in Section 4.2.3. 'group': Lists the groups to which an AC belongs [RFC9181]. For example, the 'group-id' is used to associate redundancy or protection constraints of ACes. An example is provided in Appendix A.5. 'name': Associates a name that uniquely identifies an AC within a service provider network. 'l2-connection': See Section 4.2.5.1. 'ip-connection': See Section 4.2.5.2. 'routing': See Section 4.2.5.3. 'oam': See Section 4.2.5.7. 'security': See Section 4.2.5.8. 'service': See Section 4.2.5.9. 4.2.5.1. Layer 2 Connection Structure The 'l2-connection' container (Figure 8) is used to configure the relevant Layer 2 properties of an AC including: encapsulation details and tunnel terminations. For the encapsulation details, the model supports the definition of the type as well as the Identifiers (e.g., VLAN-IDs) of each of the encapsulation-type defined. For the second case, attributes for pseudowire, Virtual Private LAN Service (VPLS), and Virtual eXtensible Local Area Network (VXLAN) tunnel terminations are included. This structure relies upon the common groupings defined in [I-D.boro-opsawg-teas-common-ac]. +--rw specific-provisioning-profiles | ... +--rw service-provisioning-profiles | ... +--rw attachment-circuits +--rw ac-group-profile* [name] | ... +--rw placement-constraints | ... +--rw ac* [name] +--rw customer-name? string +--rw description? string +--rw requested-start? yang:date-and-time Boucadair, et al. Expires 4 November 2023 [Page 20] Internet-Draft ACaaS May 2023 +--rw requested-stop? yang:date-and-time +--ro actual-start? yang:date-and-time +--ro actual-stop? yang:date-and-time +--rw peer-sap-id* string +--rw ac-group-profile* ac-group-reference +--rw group* [group-id] | +--rw group-id string | +--rw precedence? identityref +--rw name string +--rw l2-connection | +--rw encapsulation | | +--rw type? identityref | | +--rw dot1q | | | +--rw tag-type? identityref | | | +--rw cvlan-id? uint16 | | +--rw priority-tagged | | | +--rw tag-type? identityref | | +--rw qinq | | +--rw tag-type? identityref | | +--rw svlan-id uint16 | | +--rw cvlan-id uint16 | +--rw (l2-service)? | | +--:(l2-tunnel-service) | | | +--rw l2-tunnel-service | | | +--rw type? identityref | | | +--rw pseudowire | | | | +--rw vcid? uint32 | | | | +--rw far-end? union | | | +--rw vpls | | | | +--rw vcid? uint32 | | | | +--rw far-end* union | | | +--rw vxlan | | | +--rw vni-id uint32 | | | +--rw peer-mode? identityref | | | +--rw peer-ip-address* inet:ip-address | | +--:(l2vpn) | | +--rw l2vpn-id? vpn-common:vpn-id | +--rw bearer-reference? string | {vpn-common:bearer-reference}? +--rw ip-connection | ... +--rw routing-protocols | ... +--rw oam | ... +--rw security | ... +--rw service Boucadair, et al. Expires 4 November 2023 [Page 21] Internet-Draft ACaaS May 2023 ... Figure 8: Layer 2 Connection Tree Structure 4.2.5.2. IP Connection Structure The 'ip-connection' container is used to configure the relevant IP properties of an AC. The model supports the usage of dynamic and static addressing. This structure relies upon the common groupings defined in [I-D.boro-opsawg-teas-common-ac]. Both IPv4 and IPv6 parameters are supported. Figure 9 shows the structure of the IPv4 connection. Boucadair, et al. Expires 4 November 2023 [Page 22] Internet-Draft ACaaS May 2023 | ... +--rw ip-connection | +--rw ipv4 {vpn-common:ipv4}? | | +--rw local-address? | | | inet:ipv4-address | | +--rw virtual-address? | | | inet:ipv4-address | | +--rw prefix-length? uint8 | | +--rw address-allocation-type? | | | identityref | | +--rw (allocation-type)? | | +--:(dynamic) | | | +--rw (address-assign)? | | | | +--:(number) | | | | | +--rw number-of-dynamic-address? uint16 | | | | +--:(explicit) | | | | +--rw customer-addresses | | | | +--rw address-pool* [pool-id] | | | | +--rw pool-id string | | | | +--rw start-address | | | | | inet:ipv4-address | | | | +--rw end-address? | | | | inet:ipv4-address | | | +--rw (provider-dhcp)? | | | | +--:(dhcp-service-type) | | | | +--rw dhcp-service-type? | | | | enumeration | | | +--rw (dhcp-relay)? | | | +--:(customer-dhcp-servers) | | | +--rw customer-dhcp-servers | | | +--rw server-ip-address* | | | inet:ipv4-address | | +--:(static-addresses) | | +--rw address* [address-id] | | +--rw address-id string | | +--rw customer-address? inet:ipv4-address | +--rw ipv6 {vpn-common:ipv6}? | ... Figure 9: Layer 3 Connection Tree Structure (IPv4) Figure 10 shows the structure of the IPv6 connection. Boucadair, et al. Expires 4 November 2023 [Page 23] Internet-Draft ACaaS May 2023 | ... +--rw ip-connection | +--rw ipv4 {vpn-common:ipv4}? | | ... | +--rw ipv6 {vpn-common:ipv6}? | +--rw local-address? | | inet:ipv6-address | +--rw virtual-address? | | inet:ipv6-address | +--rw prefix-length? uint8 | +--rw address-allocation-type? | | identityref | +--rw (allocation-type)? | +--:(dynamic) | | +--rw (address-assign)? | | | +--:(number) | | | | +--rw number-of-dynamic-address? uint16 | | | +--:(explicit) | | | +--rw customer-addresses | | | +--rw address-pool* [pool-id] | | | +--rw pool-id string | | | +--rw start-address | | | | inet:ipv6-address | | | +--rw end-address? | | | inet:ipv6-address | | +--rw (provider-dhcp)? | | | +--:(dhcp-service-type) | | | +--rw dhcp-service-type? | | | enumeration | | +--rw (dhcp-relay)? | | +--:(customer-dhcp-servers) | | +--rw customer-dhcp-servers | | +--rw server-ip-address* | | inet:ipv6-address | +--:(static-addresses) | +--rw address* [address-id] | +--rw address-id string | +--rw customer-address? inet:ipv6-address ... Figure 10: Layer 3 Connection Tree Structure (IPv6) Boucadair, et al. Expires 4 November 2023 [Page 24] Internet-Draft ACaaS May 2023 4.2.5.3. Routing As shown in the tree depicted in Figure 11, the 'routing-protocols' container defines the required parameters to enable the desired routing features for an AC. One or more routing protocols can be associated with an AC. Such routing protocols will be then enabled between a PE and the customer terminating points. Each routing instance is uniquely identified by the combination of the 'id' and 'type' to accommodate scenarios where multiple instances of the same routing protocol have to be configured on the same link. In addition to static routing, the module supports BGP, OSPF, IS-IS, and RIP. It also includes a reference to the 'routing-profile- identifier' defined in Section 4.2.2, so that additional constraints can be applied to a specific instance of each routing protocol. +--rw specific-provisioning-profiles | ... +--rw service-provisioning-profiles | ... +--rw attachment-circuits +--rw ac-group-profile* [name] | ... +--rw placement-constraints | ... +--rw ac* [name] +--rw customer-name? string +--rw description? string +--rw requested-start? yang:date-and-time +--rw requested-stop? yang:date-and-time +--ro actual-start? yang:date-and-time +--ro actual-stop? yang:date-and-time +--rw peer-sap-id* string +--rw ac-group-profile* ac-group-reference +--rw group* [group-id] | +--rw group-id string | +--rw precedence? identityref +--rw name string +--rw l2-connection | ... +--rw ip-connection | ... +--rw routing-protocols | +--rw routing-protocol* [id] | +--rw id string | +--rw type? identityref | +--rw routing-profiles* [id] | | +--rw id routing-profile-reference Boucadair, et al. Expires 4 November 2023 [Page 25] Internet-Draft ACaaS May 2023 | | +--rw type? identityref | +--rw static | | ... | +--rw bgp | | ... | | ... | +--rw isis | | ... | +--rw rip | | ... | +--rw vrrp | ... +--rw oam | ... +--rw security | ... +--rw service ... Figure 11: Routing Tree Structure 4.2.5.3.1. Static Routing The static tree structure is shown in Figure 12. Boucadair, et al. Expires 4 November 2023 [Page 26] Internet-Draft ACaaS May 2023 | ... +--rw routing-protocols | +--rw routing-protocol* [id] | +--rw id string | +--rw type? identityref | +--rw routing-profiles* [id] | | +--rw id routing-profile-reference | | +--rw type? identityref | +--rw static | | +--rw cascaded-lan-prefixes | | +--rw ipv4-lan-prefixes* [lan next-hop] | | | {vpn-common:ipv4}? | | | +--rw lan inet:ipv4-prefix | | | +--rw lan-tag? string | | | +--rw next-hop union | | | +--rw metric? uint32 | | | +--rw status | | | +--rw admin-status | | | | +--rw status? identityref | | | | +--rw last-change? yang:date-and-time | | | +--ro oper-status | | | +--ro status? identityref | | | +--ro last-change? yang:date-and-time | | +--rw ipv6-lan-prefixes* [lan next-hop] | | {vpn-common:ipv6}? | | +--rw lan inet:ipv6-prefix | | +--rw lan-tag? string | | +--rw next-hop union | | +--rw metric? uint32 | | +--rw status | | +--rw admin-status | | | +--rw status? identityref | | | +--rw last-change? yang:date-and-time | | +--ro oper-status | | +--ro status? identityref | | +--ro last-change? yang:date-and-time | +--rw bgp | | ... | +--rw ospf | | ... | +--rw isis | | ... | +--rw rip | | ... | +--rw vrrp | ... Figure 12: Static Routing Tree Structure Boucadair, et al. Expires 4 November 2023 [Page 27] Internet-Draft ACaaS May 2023 4.2.5.3.2. BGP The BGP tree structure is shown in Figure 13. | ... +--rw routing-protocols | +--rw routing-protocol* [id] | +--rw id string | +--rw type? identityref | +--rw routing-profiles* [id] | | +--rw id routing-profile-reference | | +--rw type? identityref | +--rw static | | ... | +--rw bgp | | +--rw peer-groups | | | +--rw peer-group* [name] | | | +--rw name string | | | +--ro local-address? inet:ip-address | | | +--ro local-as? inet:as-number | | | +--rw peer-as? inet:as-number | | | +--rw address-family? identityref | | | +--rw authentication | | | +--rw enable? boolean | | | +--rw keying-material | | | +--rw (option)? | | | +--:(ao) | | | | +--rw enable-ao? boolean | | | | +--rw ao-keychain? | | | | key-chain:key-chain-ref | | | +--:(md5) | | | | +--rw md5-keychain? | | | | key-chain:key-chain-ref | | | +--:(explicit) | | | +--rw key-id? uint32 | | | +--rw key? string | | | +--rw crypto-algorithm? | | | identityref | | +--rw neighbor* [id] | | +--rw id string | | +--rw remote-address? inet:ip-address | | +--ro local-address? inet:ip-address | | +--rw peer-group? | | | -> ../../peer-groups/peer-group/name | | +--ro local-as? inet:as-number | | +--rw peer-as? inet:as-number | | +--rw address-family? identityref | | +--rw authentication Boucadair, et al. Expires 4 November 2023 [Page 28] Internet-Draft ACaaS May 2023 | | | +--rw enable? boolean | | | +--rw keying-material | | | +--rw (option)? | | | +--:(ao) | | | | +--rw enable-ao? boolean | | | | +--rw ao-keychain? | | | | key-chain:key-chain-ref | | | +--:(md5) | | | | +--rw md5-keychain? | | | | key-chain:key-chain-ref | | | +--:(explicit) | | | +--rw key-id? uint32 | | | +--rw key? string | | | +--rw crypto-algorithm? identityref | | +--rw status | | +--rw admin-status | | | +--rw status? identityref | | | +--rw last-change? yang:date-and-time | | +--ro oper-status | | +--ro status? identityref | | +--ro last-change? yang:date-and-time | +--rw ospf | | ... | +--rw isis | | ... | +--rw rip | | ... | +--rw vrrp | ... Figure 13: BGP Tree Structure Similar to [RFC9182], this version of the ACaaS assumes that parameters specific to the TCP-AO are preconfigured as part of the key chain that is referenced in the ACaaS. No assumption is made about how such a key chain is preconfigured. However, the structure of the key chain should cover data nodes beyond those in [RFC8177], mainly SendID and RecvID (Section 3.1 of [RFC5925]). 4.2.5.3.3. OSPF The OSPF tree structure is shown in Figure 14. Boucadair, et al. Expires 4 November 2023 [Page 29] Internet-Draft ACaaS May 2023 | ... +--rw routing-protocols | +--rw routing-protocol* [id] | +--rw id string | +--rw type? identityref | +--rw routing-profiles* [id] | | +--rw id routing-profile-reference | | +--rw type? identityref | +--rw static | | ... | +--rw bgp | | ... | +--rw ospf | | +--rw address-family? identityref | | +--rw area-id yang:dotted-quad | | +--rw metric? uint16 | | +--rw authentication | | | +--rw enable? boolean | | | +--rw keying-material | | | +--rw (option)? | | | +--:(auth-key-chain) | | | | +--rw key-chain? | | | | key-chain:key-chain-ref | | | +--:(auth-key-explicit) | | | +--rw key-id? uint32 | | | +--rw key? string | | | +--rw crypto-algorithm? identityref | | +--rw status | | +--rw admin-status | | | +--rw status? identityref | | | +--rw last-change? yang:date-and-time | | +--ro oper-status | | +--ro status? identityref | | +--ro last-change? yang:date-and-time | +--rw isis | | ... | +--rw rip | | ... | +--rw vrrp | ... Figure 14: OSPF Tree Structure 4.2.5.4. IS-IS The IS-IS tree structure is shown in Figure 15. Boucadair, et al. Expires 4 November 2023 [Page 30] Internet-Draft ACaaS May 2023 | ... +--rw routing-protocols | +--rw routing-protocol* [id] | +--rw id string | +--rw type? identityref | +--rw routing-profiles* [id] | | +--rw id routing-profile-reference | | +--rw type? identityref | +--rw static | | ... | +--rw bgp | | ... | | +--ro last-change? yang:date-and-time | +--rw ospf | | ... | +--rw isis | | +--rw address-family? identityref | | +--rw area-address area-address | | +--rw authentication | | | +--rw enable? boolean | | | +--rw keying-material | | | +--rw (option)? | | | +--:(auth-key-chain) | | | | +--rw key-chain? | | | | key-chain:key-chain-ref | | | +--:(auth-key-explicit) | | | +--rw key-id? uint32 | | | +--rw key? string | | | +--rw crypto-algorithm? identityref | | +--rw status | | +--rw admin-status | | | +--rw status? identityref | | | +--rw last-change? yang:date-and-time | | +--ro oper-status | | +--ro status? identityref | | +--ro last-change? yang:date-and-time | +--rw rip | | ... | +--rw vrrp | ... Figure 15: IS-IS Tree Structure 4.2.5.5. RIP The RIP tree structure is shown in Figure 16. Boucadair, et al. Expires 4 November 2023 [Page 31] Internet-Draft ACaaS May 2023 | ... +--rw routing-protocols | +--rw routing-protocol* [id] | +--rw id string | +--rw type? identityref | +--rw routing-profiles* [id] | | +--rw id routing-profile-reference | | +--rw type? identityref | +--rw static | | ... | +--rw bgp | | ... | | +--ro last-change? yang:date-and-time | +--rw ospf | | ... | +--rw isis | | ... | +--rw rip | | +--rw address-family? identityref | | +--rw authentication | | | +--rw enable? boolean | | | +--rw keying-material | | | +--rw (option)? | | | +--:(auth-key-chain) | | | | +--rw key-chain? | | | | key-chain:key-chain-ref | | | +--:(auth-key-explicit) | | | +--rw key? string | | | +--rw crypto-algorithm? identityref | | +--rw status | | +--rw admin-status | | | +--rw status? identityref | | | +--rw last-change? yang:date-and-time | | +--ro oper-status | | +--ro status? identityref | | +--ro last-change? yang:date-and-time | +--rw vrrp | ... Figure 16: RIP Tree Structure 'address-family' indicates whether IPv4, IPv6, or both address families are to be activated. For example, this parameter is used to determine whether RIPv2 [RFC2453], RIP Next Generation (RIPng), or both are to be enabled [RFC2080]. Boucadair, et al. Expires 4 November 2023 [Page 32] Internet-Draft ACaaS May 2023 4.2.5.6. VRRP The model also supports the Virtual Router Redundancy Protocol (VRRP) [RFC5798] on an AC (Figure 17). | ... +--rw routing-protocols | +--rw routing-protocol* [id] | +--rw id string | +--rw type? identityref | +--rw routing-profiles* [id] | | +--rw id routing-profile-reference | | +--rw type? identityref | +--rw static | | ... | +--rw bgp | | ... | +--rw ospf | | ... | +--rw isis | | ... | +--rw rip | | ... | +--rw vrrp | +--rw address-family? identityref | +--rw status | +--rw admin-status | | +--rw status? identityref | | +--rw last-change? yang:date-and-time | +--ro oper-status | +--ro status? identityref | +--ro last-change? yang:date-and-time Figure 17: VRRP Tree Structure 4.2.5.7. OAM As shown in the tree depicted in Figure 18, the 'oam' container defines OAM-related parameters of an AC. Boucadair, et al. Expires 4 November 2023 [Page 33] Internet-Draft ACaaS May 2023 +--rw specific-provisioning-profiles | ... +--rw service-provisioning-profiles | ... +--rw attachment-circuits +--rw ac-group-profile* [name] | ... +--rw placement-constraints | ... +--rw ac* [name] ... +--rw l2-connection | ... +--rw ip-connection | ... +--rw routing-protocols | ... +--rw oam | +--rw bfd {vpn-common:bfd}? | +--rw holdtime? uint32 | +--rw status | +--rw admin-status | | +--rw status? identityref | | +--rw last-change? yang:date-and-time | +--ro oper-status | +--ro status? identityref | +--ro last-change? yang:date-and-time +--rw security | ... +--rw service ... Figure 18: OAM Tree Structure 4.2.5.8. Security As shown in the tree depicted in Figure 19, the 'security' container defines a set of AC security parameters. Boucadair, et al. Expires 4 November 2023 [Page 34] Internet-Draft ACaaS May 2023 +--rw specific-provisioning-profiles | ... +--rw service-provisioning-profiles | ... +--rw attachment-circuits +--rw ac-group-profile* [name] | ... +--rw placement-constraints | ... +--rw ac* [name] ... +--rw l2-connection | ... +--rw ip-connection | ... +--rw routing-protocols | ... +--rw oam | ... +--rw security | +--rw encryption {vpn-common:encryption}? | | +--rw enabled? boolean | | +--rw layer? enumeration | +--rw encryption-profile | +--rw (profile)? | +--:(provider-profile) | | +--rw provider-profile? | | encryption-profile-reference | +--:(customer-profile) | +--rw customer-key-chain? | key-chain:key-chain-ref +--rw service ... Figure 19: Security Tree Structure 4.2.5.9. Service As shown in the tree depicted in Figure 20, the 'service' container defines the following data nodes: 'mtu': Specifies the Layer 2 MTU, in bytes, for the AC. 'svc-pe-to-ce-bandwidth': Indicates the inbound bandwidth of the AC (i.e., download bandwidth from the service provider to the customer site). 'svc-ce-to-pe-bandwidth': Indicates the outbound bandwidth of the AC Boucadair, et al. Expires 4 November 2023 [Page 35] Internet-Draft ACaaS May 2023 (i.e., upload bandwidth from the customer site to the service provider). Both 'svc-pe-to-ce-bandwidth' and 'svc-ce-to-pe-bandwidth' can be represented using the Committed Information Rate (CIR), the Excess Information Rate (EIR), or the Peak Information Rate (PIR). Both reuse the 'bandwidth-per-type' grouping defined in [I-D.boro-opsawg-teas-common-ac]. +--rw specific-provisioning-profiles | ... +--rw service-provisioning-profiles | ... +--rw attachment-circuits +--rw ac-group-profile* [name] | ... +--rw placement-constraints | ... +--rw ac* [name] ... +--rw l2-connection | ... +--rw ip-connection | ... +--rw routing-protocols | ... +--rw oam | ... +--rw security | ... +--rw service +--rw mtu? uint32 +--rw svc-pe-to-ce-bandwidth {vpn-common:inbound-bw}? | +--rw bandwidth* [bw-type] | +--rw bw-type identityref | +--rw (type)? | +--:(per-cos) | | +--rw cos* [cos-id] | | +--rw cos-id uint8 | | +--rw cir? uint64 | | +--rw cbs? uint64 | | +--rw eir? uint64 | | +--rw ebs? uint64 | | +--rw pir? uint64 | | +--rw pbs? uint64 | +--:(other) | +--rw cir? uint64 | +--rw cbs? uint64 Boucadair, et al. Expires 4 November 2023 [Page 36] Internet-Draft ACaaS May 2023 | +--rw eir? uint64 | +--rw ebs? uint64 | +--rw pir? uint64 | +--rw pbs? uint64 +--rw svc-ce-to-pe-bandwidth {vpn-common:outbound-bw}? +--rw bandwidth* [bw-type] +--rw bw-type identityref +--rw (type)? +--:(per-cos) | +--rw cos* [cos-id] | +--rw cos-id uint8 | +--rw cir? uint64 | +--rw cbs? uint64 | +--rw eir? uint64 | +--rw ebs? uint64 | +--rw pir? uint64 | +--rw pbs? uint64 +--:(other) +--rw cir? uint64 +--rw cbs? uint64 +--rw eir? uint64 +--rw ebs? uint64 +--rw pir? uint64 +--rw pbs? uint64 Figure 20: Bandwidth Tree Structure 5. YANG Modules 5.1. The Bearer Service ("ietf-bearer-svc") YANG Module This module uses types defined in [RFC6991] and [RFC9181]. file ietf-bearer-svc@2022-11-30.yang module ietf-bearer-svc { yang-version 1.1; namespace "urn:ietf:params:xml:ns:yang:ietf-bearer-svc"; prefix bearer-svc; import ietf-vpn-common { prefix vpn-common; reference "RFC 9181: A Common YANG Data Model for Layer 2 and Layer 3 VPNs"; } import ietf-ac-common { prefix ac-common; Boucadair, et al. Expires 4 November 2023 [Page 37] Internet-Draft ACaaS May 2023 reference "RFC CCCC: A Common YANG Data Model for Attachment Circuits"; } import ietf-ac-svc { prefix ac-svc; reference "RFC XXXX: YANG Service Data Models for Attachment Circuits"; } organization "IETF OPSAWG (Operations and Management Area Working Group)"; contact "WG Web: WG List: Editor: Mohamed Boucadair Author: Richard Roberts Author: Oscar Gonzalez de Dios Author: Samier Barguil Author: Bo Wu "; description "This YANG module defines a generic YANG model for exposing network bearers as a service. Copyright (c) 2023 IETF Trust and the persons identified as authors of the code. All rights reserved. Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Revised BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info). This version of this YANG module is part of RFC xxx; see the RFC itself for full legal notices."; revision 2022-11-30 { description "Initial revision."; reference "RFC xxxx: A YANG Service Data Model for Attachment Circuits"; } Boucadair, et al. Expires 4 November 2023 [Page 38] Internet-Draft ACaaS May 2023 // Identities identity identification-type { description "Base identity for identification of bearers."; } identity device-id { base identification-type; description "Identification of bearers based on device.."; } identity site-id { base identification-type; description "Identification of bearers based on site."; } identity site-and-device-id { base identification-type; description "Identification of bearers based on site and device."; } identity custom { base identification-type; description "Identification of bearers based on other custom criteria."; } identity bearer-type { description "Base identity for bearers type."; } identity ethernet { base bearer-type; description "Ethernet."; } identity wireless { base bearer-type; description "Wireless."; } Boucadair, et al. Expires 4 November 2023 [Page 39] Internet-Draft ACaaS May 2023 grouping location-information { description "Basic location information"; container location { description "Location of the node."; leaf address { type string; description "Address (number and street) of the device/site."; } leaf postal-code { type string; description "Postal code of the device/site."; } leaf state { type string; description "State of the device/site. This leaf can also be used to describe a region for a country that does not have states."; } leaf city { type string; description "City of the device/site."; } leaf country-code { type string { pattern '[A-Z]{2}'; } description "Country of the device/site. Expressed as ISO ALPHA-2 code."; } } } container bearers { description "Main container for the bearers."; list bearer { key "id"; description "Maintains a list of bearers."; leaf id { type string; Boucadair, et al. Expires 4 November 2023 [Page 40] Internet-Draft ACaaS May 2023 description "An identifier of the bearer."; } leaf description { type string; description "A description of this bearer."; } leaf op-comment { type string; description "Includes comments that can be shared with operational teams and which may be useful for the activation of a bearer. This may include, for example, information about the building, level, etc."; } container customer-point { description "Base container to link the Bearer existence"; leaf identified-by { type identityref { base identification-type; } description "Attribute used to identify the bearer"; } container device { when "derived-from-or-self(../identified-by, " + "'device-id') or derived-from-or-self(../identified-by, " + "'site-and-device-id')" { description "Only applicable if identified-by is device."; } description "Bearer is linked to device."; leaf device-id { type string; description "Identifier for the device where that bearer belongs."; } uses location-information; } container site { when "derived-from-or-self(../identified-by, " + "'site-id') or derived-from-or-self(../identified-by, " + "'site-and-device-id')" { description Boucadair, et al. Expires 4 November 2023 [Page 41] Internet-Draft ACaaS May 2023 "Only applicable if identified-by is site."; } description "Bearer is linked to a site."; leaf site-id { type string; description "Identifier for the site or sites where that bearer belongs."; } uses location-information; } leaf custom-id { when "derived-from-or-self(../identified-by, " + "'custom')" { description "Only enabled id identified-by is custom."; } type string; description "The semantic of this identifier is shared between the customer/provider using out-of-band means."; } } leaf requested-type { type identityref { base bearer-type; } description "Type of the requested bearer (e.g., Ethernet, or wireless)"; } leaf bearer-reference { if-feature "vpn-common:bearer-reference"; type string; config false; description "This is an internal reference for the service provider to identify the bearers."; } leaf-list ac-refs { type ac-svc:attachment-circuit-reference; config false; description "Specifies the set of ACes that are bound to the bearer."; } uses ac-common:op-instructions; uses vpn-common:service-status; } } Boucadair, et al. Expires 4 November 2023 [Page 42] Internet-Draft ACaaS May 2023 } 5.2. The AC Service ("ietf-ac-svc") YANG Module This module uses types defined in [RFC6991], [RFC9181], [RFC8177], and [I-D.boro-opsawg-teas-common-ac]. file ietf-ac-svc@2022-11-30.yang module ietf-ac-svc { yang-version 1.1; namespace "urn:ietf:params:xml:ns:yang:ietf-ac-svc"; prefix ac-svc; import ietf-ac-common { prefix ac-common; reference "RFC CCCC: A Common YANG Data Model for Attachment Circuits"; } import ietf-vpn-common { prefix vpn-common; reference "RFC 9181: A Common YANG Data Model for Layer 2 and Layer 3 VPNs"; } import ietf-netconf-acm { prefix nacm; reference "RFC 8341: Network Configuration Access Control Model"; } import ietf-inet-types { prefix inet; reference "RFC 6991: Common YANG Data Types, Section 4"; } import ietf-key-chain { prefix key-chain; reference "RFC 8177: YANG Data Model for Key Chains"; } organization "IETF OPSAWG (Operations and Management Area Working Group)"; contact "WG Web: WG List: Boucadair, et al. Expires 4 November 2023 [Page 43] Internet-Draft ACaaS May 2023 Editor: Mohamed Boucadair Author: Richard Roberts Author: Oscar Gonzalez de Dios Author: Samier Barguil Author: Bo Wu "; description "This YANG module defines a YANG model for exposing attachment circuits (ACs) as a service. Copyright (c) 2023 IETF Trust and the persons identified as authors of the code. All rights reserved. Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Revised BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info). This version of this YANG module is part of RFC XXXX; see the RFC itself for full legal notices."; revision 2022-11-30 { description "Initial revision."; reference "RFC XXXX: YANG Service Data Models for Attachment Circuits"; } /* A set of typedefs to ease referencing cross-modules */ typedef attachment-circuit-reference { type leafref { path "/ac-svc:attachment-circuits/ac-svc:ac/ac-svc:name"; } description "Defines a reference to an attachment circuit that can be used by other modules."; } typedef ac-group-reference { type leafref { path "/ac-svc:attachment-circuits/ac-group-profile/name"; Boucadair, et al. Expires 4 November 2023 [Page 44] Internet-Draft ACaaS May 2023 } description "Defines a reference to an attachment circuit profile."; } typedef encryption-profile-reference { type leafref { path "/ac-svc:specific-provisioning-profiles/ac-svc:valid-provider-identifiers" + "/ac-svc:encryption-profile-identifier/ac-svc:id"; } description "Defines a type to an encryption profile for referencing purposes."; } typedef qos-profile-reference { type leafref { path "/ac-svc:specific-provisioning-profiles/ac-svc:valid-provider-identifiers" + "/ac-svc:qos-profile-identifier/ac-svc:id"; } description "Defines a type to a QoS profile for referencing purposes."; } typedef bfd-profile-reference { type leafref { path "/ac-svc:specific-provisioning-profiles/ac-svc:valid-provider-identifiers" + "/ac-svc:bfd-profile-identifier/ac-svc:id"; } description "Defines a type to a BFD profile for referencing purposes."; } typedef forwarding-profile-reference { type leafref { path "/ac-svc:specific-provisioning-profiles/ac-svc:valid-provider-identifiers" + "/ac-svc:forwarding-profile-identifier/ac-svc:id"; } description "Defines a type to a forwarding profile for referencing purposes."; } typedef routing-profile-reference { type leafref { Boucadair, et al. Expires 4 November 2023 [Page 45] Internet-Draft ACaaS May 2023 path "/ac-svc:specific-provisioning-profiles/ac-svc:valid-provider-identifiers" + "/ac-svc:routing-profile-identifier/ac-svc:id"; } description "Defines a type to a routing profile for referencing purposes."; } typedef service-profile-reference { type leafref { path "/ac-svc:service-provisioning-profiles/ac-svc:service-profile-identifier" + "/ac-svc:id"; } description "Defines a type to a service profile for referencing purposes."; } /******************** Reusable groupings ********************/ // Basic Layer 2 connection grouping l2-connection-basic { description "Defines Layer 2 protocols and parameters that can be factorized when provisioning Layer 2 connectivity among multiple ACs."; container encapsulation { description "Container for Layer 2 encapsulation."; leaf type { type identityref { base vpn-common:encapsulation-type; } description "Encapsulation type."; } container dot1q { when "derived-from-or-self(../type, 'vpn-common:dot1q')" { description "Only applies when the type of the tagged interface is 'dot1q'."; } description "Tagged interface."; uses ac-common:dot1q; } container qinq { when "derived-from-or-self(../type, 'vpn-common:qinq')" { description Boucadair, et al. Expires 4 November 2023 [Page 46] Internet-Draft ACaaS May 2023 "Only applies when the type of the tagged interface is 'qinq'."; } description "Includes QinQ parameters."; uses ac-common:qinq; } } } // Full Layer 2 connection grouping l2-connection { description "Defines Layer 2 protocols and parameters that are used to enable AC connectivity."; container encapsulation { description "Container for Layer 2 encapsulation."; leaf type { type identityref { base vpn-common:encapsulation-type; } description "Encapsulation type."; } container dot1q { when "derived-from-or-self(../type, 'vpn-common:dot1q')" { description "Only applies when the type of the tagged interface is 'dot1q'."; } description "Tagged interface."; uses ac-common:dot1q; } container priority-tagged { when "derived-from-or-self(../type, " + "'vpn-common:priority-tagged')" { description "Only applies when the type of the tagged interface is 'priority-tagged'."; } description "Priority-tagged interface."; uses ac-common:priority-tagged; } container qinq { Boucadair, et al. Expires 4 November 2023 [Page 47] Internet-Draft ACaaS May 2023 when "derived-from-or-self(../type, 'vpn-common:qinq')" { description "Only applies when the type of the tagged interface is 'qinq'."; } description "Includes QinQ parameters."; uses ac-common:qinq; } } choice l2-service { description "The Layer 2 connectivity service can be provided by indicating a pointer to an L2VPN or by specifying a Layer 2 tunnel service."; container l2-tunnel-service { description "Defines a Layer 2 tunnel termination. It is only applicable when a tunnel is required."; uses ac-common:l2-tunnel-service; } case l2vpn { leaf l2vpn-id { type vpn-common:vpn-id; description "Indicates the L2VPN service associated with an Integrated Routing and Bridging (IRB) interface."; } } } leaf bearer-reference { if-feature "vpn-common:bearer-reference"; type string; description "This is an internal reference for the service provider to identify the bearer associated with this AC."; } } // Basic IP connection grouping ip-connection-basic { description "Defines basic IP connection parameters."; container ipv4 { if-feature "vpn-common:ipv4"; description "IPv4-specific parameters."; Boucadair, et al. Expires 4 November 2023 [Page 48] Internet-Draft ACaaS May 2023 uses ac-common:ipv4-connection-basic; } container ipv6 { if-feature "vpn-common:ipv6"; description "IPv6-specific parameters."; uses ac-common:ipv6-connection-basic; } } // Full IP connection grouping ip-connection { description "Defines IP connection parameters."; container ipv4 { if-feature "vpn-common:ipv4"; description "IPv4-specific parameters."; uses ac-common:ipv4-connection; } container ipv6 { if-feature "vpn-common:ipv6"; description "IPv6-specific parameters."; uses ac-common:ipv6-connection; } } // Routing protocol list grouping routing-protocol-list { description "List of routing protocols used on the AC."; leaf type { type identityref { base vpn-common:routing-protocol-type; } description "Type of routing protocol."; } list routing-profiles { key "id"; description "Routing profiles."; leaf id { type routing-profile-reference; description Boucadair, et al. Expires 4 November 2023 [Page 49] Internet-Draft ACaaS May 2023 "Reference to the routing profile to be used."; } leaf type { type identityref { base vpn-common:ie-type; } description "Import, export, or both."; } } } // BGP Service grouping bgp-svc { description "Configuration specific to BGP."; container peer-groups { description "Configuration for BGP peer-groups"; list peer-group { key "name"; description "List of BGP peer-groups configured on the local system - uniquely identified by peer-group name"; uses ac-common:bgp-peer-group-with-name; leaf local-address { type inet:ip-address; description "The local IP address that will be used to establish the BGP session."; } uses ac-common:bgp-authentication; } } list neighbor { key "id"; description "List of BGP neighbors."; leaf id { type string; description "A neighbor identifier."; } leaf remote-address { type inet:ip-address; description "The remote IP address of this entry's BGP peer. Boucadair, et al. Expires 4 November 2023 [Page 50] Internet-Draft ACaaS May 2023 If this leaf is not present, this means that the primary customer IP address is used as remote IP address."; } leaf local-address { type inet:ip-address; description "The local IP address that will be used to establish the BGP session."; } leaf peer-group { type leafref { path "../../peer-groups/peer-group/name"; } description "The peer-group with which this neighbor is associated."; } uses ac-common:bgp-peer-group-without-name; uses ac-common:bgp-authentication; uses vpn-common:service-status; } } // OSPF Service grouping ospf-svc { description "Service configuration specific to OSPF."; uses ac-common:ospf-basic; uses ac-common:ospf-authentication; uses vpn-common:service-status; } // IS-IS Service grouping isis-svc { description "Service configuration specific to IS-IS."; uses ac-common:isis-basic; uses ac-common:isis-authentication; uses vpn-common:service-status; } // RIP Service grouping rip-svc { description "Service configuration specific to RIP routing."; leaf address-family { Boucadair, et al. Expires 4 November 2023 [Page 51] Internet-Draft ACaaS May 2023 type identityref { base vpn-common:address-family; } description "Indicates whether IPv4, IPv6, or both address families are to be activated."; } uses ac-common:rip-authentication; uses vpn-common:service-status; } // VRRP Service grouping vrrp-svc { description "Service configuration specific to VRRP."; reference "RFC 5798: Virtual Router Redundancy Protocol (VRRP) Version 3 for IPv4 and IPv6"; leaf address-family { type identityref { base vpn-common:address-family; } description "Indicates whether IPv4, IPv6, or both address families are to be enabled."; } uses vpn-common:service-status; } // Basic routing parameters grouping routing-basic { description "Defines basic parameters for routing protocols."; list routing-protocol { key "id"; description "List of routing protocols used on the AC."; leaf id { type string; description "Unique identifier for the routing protocol."; } uses routing-protocol-list; container bgp { when "derived-from-or-self(../type, 'vpn-common:bgp-routing')" { Boucadair, et al. Expires 4 November 2023 [Page 52] Internet-Draft ACaaS May 2023 description "Only applies when the protocol is BGP."; } description "Configuration specific to BGP."; container peer-groups { description "Configuration for BGP peer-groups"; list peer-group { key "name"; description "List of BGP peer-groups configured on the local system - uniquely identified by peer-group name"; uses ac-common:bgp-peer-group-with-name; } } } container ospf { when "derived-from-or-self(../type, " + "'vpn-common:ospf-routing')" { description "Only applies when the protocol is OSPF."; } description "Configuration specific to OSPF."; uses ac-common:ospf-basic; } container isis { when "derived-from-or-self(../type, " + "'vpn-common:isis-routing')" { description "Only applies when the protocol is IS-IS."; } description "Configuration specific to IS-IS."; uses ac-common:isis-basic; } container rip { when "derived-from-or-self(../type, " + "'vpn-common:rip-routing')" { description "Only applies when the protocol is RIP. For IPv4, the model assumes that RIP version 2 is used."; } description "Configuration specific to RIP routing."; leaf address-family { Boucadair, et al. Expires 4 November 2023 [Page 53] Internet-Draft ACaaS May 2023 type identityref { base vpn-common:address-family; } description "Indicates whether IPv4, IPv6, or both address families are to be activated."; } } container vrrp { when "derived-from-or-self(../type, " + "'vpn-common:vrrp-routing')" { description "Only applies when the protocol is the Virtual Router Redundancy Protocol (VRRP)."; } description "Configuration specific to VRRP."; leaf address-family { type identityref { base vpn-common:address-family; } description "Indicates whether IPv4, IPv6, or both address families are to be enabled."; } } } } // Full routing parameters grouping routing { description "Defines routing protocols."; list routing-protocol { key "id"; description "List of routing protocols used on the AC."; leaf id { type string; description "Unique identifier for the routing protocol."; } uses routing-protocol-list; container static { when "derived-from-or-self(../type, " + "'vpn-common:static-routing')" { description Boucadair, et al. Expires 4 November 2023 [Page 54] Internet-Draft ACaaS May 2023 "Only applies when the protocol is static routing protocol."; } description "Configuration specific to static routing."; container cascaded-lan-prefixes { description "LAN prefixes from the customer."; uses ac-common:ipv4-static-rtg; uses ac-common:ipv6-static-rtg; } } container bgp { when "derived-from-or-self(../type, " + "'vpn-common:bgp-routing')" { description "Only applies when the protocol is BGP."; } description "Configuration specific to BGP."; uses bgp-svc { refine "peer-groups/peer-group/local-address" { config false; } refine "neighbor/local-address" { config false; } } } container ospf { when "derived-from-or-self(../type, " + "'vpn-common:ospf-routing')" { description "Only applies when the protocol is OSPF."; } description "Configuration specific to OSPF."; uses ospf-svc; } container isis { when "derived-from-or-self(../type, " + "'vpn-common:isis-routing')" { description "Only applies when the protocol is IS-IS."; } description "Configuration specific to IS-IS."; uses isis-svc; Boucadair, et al. Expires 4 November 2023 [Page 55] Internet-Draft ACaaS May 2023 } container rip { when "derived-from-or-self(../type, " + "'vpn-common:rip-routing')" { description "Only applies when the protocol is RIP. For IPv4, the model assumes that RIP version 2 is used."; } description "Configuration specific to RIP routing."; uses rip-svc; } container vrrp { when "derived-from-or-self(../type, " + "'vpn-common:vrrp-routing')" { description "Only applies when the protocol is the Virtual Router Redundancy Protocol (VRRP)."; } description "Configuration specific to VRRP."; uses vrrp-svc; } } } // Encryption choice grouping encryption-choice { description "Container for the encryption profile."; choice profile { description "Choice for the encryption profile."; case provider-profile { leaf provider-profile { type encryption-profile-reference; description "Reference to a provider encryption profile."; } } case customer-profile { leaf customer-key-chain { type key-chain:key-chain-ref; description "Customer-supplied key chain."; } } Boucadair, et al. Expires 4 November 2023 [Page 56] Internet-Draft ACaaS May 2023 } } // Basic security parameters grouping ac-security-basic { description "AC-specific security parameters."; container encryption { if-feature "vpn-common:encryption"; description "Container for AC security encryption."; leaf enabled { type boolean; description "If set to 'true', traffic encryption on the connection is required. Otherwise, it is disabled."; } leaf layer { when "../enabled = 'true'" { description "Included only when encryption is enabled."; } type enumeration { enum layer2 { description "Encryption occurs at Layer 2."; } enum layer3 { description "Encryption occurs at Layer 3. For example, IPsec may be used when a customer requests Layer 3 encryption."; } } description "Indicates the layer on which encryption is applied."; } } container encryption-profile { when "../encryption/enabled = 'true'" { description "Indicates the layer on which encryption is enabled."; } description "Container for the encryption profile."; uses encryption-choice; } Boucadair, et al. Expires 4 November 2023 [Page 57] Internet-Draft ACaaS May 2023 } // Bandwith grouping bandwidth { description "Container for bandwidth."; container svc-pe-to-ce-bandwidth { if-feature "vpn-common:inbound-bw"; description "From the customer site's perspective, the inbound bandwidth of the AC or download bandwidth from the service provider to the site."; uses ac-common:bandwidth-per-type; } container svc-ce-to-pe-bandwidth { if-feature "vpn-common:outbound-bw"; description "From the customer site's perspective, the outbound bandwidth of the AC or upload bandwidth from the CE to the PE."; uses ac-common:bandwidth-per-type; } } // Basic AC parameter grouping ac-basic { description "Grouping for basic parameters for an attachment circuit."; leaf id { type string; description "An identifier of the AC."; } container l2-connection { description "Defines Layer 2 protocols and parameters that are required to enable AC connectivity."; uses l2-connection-basic; } container ip-connection { description "Defines IP connection parameters."; uses ip-connection-basic; } container routing-protocols { description Boucadair, et al. Expires 4 November 2023 [Page 58] Internet-Draft ACaaS May 2023 "Defines routing protocols."; uses routing-basic; } container oam { description "Defines the Operations, Administration, and Maintenance (OAM) mechanisms used."; container bfd { if-feature "vpn-common:bfd"; description "Container for BFD."; uses ac-common:bfd; } } container security { description "AC-specific security parameters."; uses ac-security-basic; } container service { description "AC-specific bandwith parameters."; leaf mtu { type uint32; units "bytes"; description "Layer 2 MTU."; } uses bandwidth; } } // Full AC parameters grouping ac { description "Grouping for an attachment circuit."; leaf name { type string; description "A name of the AC. Data models that need to reference an attachment circuits should use attachment-circuit-reference."; } leaf-list service-profile { type service-profile-reference; description "A reference to a service profile."; } Boucadair, et al. Expires 4 November 2023 [Page 59] Internet-Draft ACaaS May 2023 container l2-connection { description "Defines Layer 2 protocols and parameters that are required to enable AC connectivity."; uses l2-connection; } container ip-connection { description "Defines IP connection parameters."; uses ip-connection; } container routing-protocols { description "Defines routing protocols."; uses routing; } container oam { description "Defines the OAM mechanisms used."; container bfd { if-feature "vpn-common:bfd"; description "Container for BFD."; uses ac-common:bfd; uses vpn-common:service-status; } } container security { description "AC-specific security parameters."; uses ac-security-basic; } container service { description "AC-specific bandwith parameters."; uses bandwidth; } } /******************** Main AC containers ********************/ container specific-provisioning-profiles { description "Contains a set of valid profiles to reference for an AC."; uses ac-common:ac-profile-cfg; } container service-provisioning-profiles { description Boucadair, et al. Expires 4 November 2023 [Page 60] Internet-Draft ACaaS May 2023 "Contains a set of valid profiles to reference for an AC."; list service-profile-identifier { key "id"; description "List of generic service profile identifiers."; leaf id { type string; description "Identification of the service profile to be used. The profile only has significance within the service provider's administrative domain."; } } nacm:default-deny-write; } container attachment-circuits { description "Main container for the attachment circuits."; list ac-group-profile { key "name"; description "Maintains a list of per-node AC profiles."; uses ac; } container placement-constraints { description "Diversity constraint type."; uses vpn-common:placement-constraints; } list ac { key "name"; description "Global provisioning of attachment circuits."; leaf customer-name { type string; description "Indicates the name of the customer that requested this AC."; } leaf description { type string; description "Associates a description with an AC."; } uses ac-common:op-instructions; leaf-list peer-sap-id { type string; description "One or more peer SAPs can be indicated."; Boucadair, et al. Expires 4 November 2023 [Page 61] Internet-Draft ACaaS May 2023 } leaf-list ac-group-profile { type ac-group-reference; description "A reference to a per-node AC profile."; } list group { key "group-id"; description "List of group-ids."; leaf group-id { type string; description "Indicates the group-id to which the network access belongs."; } leaf precedence { type identityref { base ac-common:precedence-type; } description "Defines redundancy of an AC."; } } uses ac; } } } 6. Security Considerations The YANG modules specified in this document define schema for data that is designed to be accessed via network management protocols such as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer is the secure transport layer, and the mandatory-to-implement secure transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer is HTTPS, and the mandatory-to-implement secure transport is TLS [RFC8446]. The Network Configuration Access Control Model (NACM) [RFC8341] provides the means to restrict access for particular NETCONF or RESTCONF users to a preconfigured subset of all available NETCONF or RESTCONF protocol operations and content. There are a number of data nodes defined in these YANG modules that are writable/creatable/deletable (i.e., config true, which is the default). These data nodes may be considered sensitive or vulnerable Boucadair, et al. Expires 4 November 2023 [Page 62] Internet-Draft ACaaS May 2023 in some network environments. Write operations (e.g., edit-config) and delete operations to these data nodes without proper protection or authentication can have a negative effect on network operations. These are the subtrees and data nodes and their sensitivity/ vulnerability in the "ietf-ac-svc" module: * TBC * TBC Some of the readable data nodes in these YANG module may be considered sensitive or vulnerable in some network environments. It is thus important to control read access (e.g., via get, get-config, or notification) to these data nodes. These are the subtrees and data nodes and their sensitivity/vulnerability in the "ietf-ac-svc" module: 'customer-name', 'l2-connection', and 'ip-connection': An attacker can retrieve privacy-related information, which can be used to track a customer. Disclosing such information may be considered a violation of the customer-provider trust relationship. 'keying-material': An attacker can retrieve the cryptographic keys protecting the underlying connectivity services (routing, in particular). These keys could be used to inject spoofed routing advertisements. Several data nodes ('bgp', 'ospf', 'isis', and 'rip') rely upon [RFC8177] for authentication purposes. As such, the AC service module inherits the security considerations discussed in Section 5 of [RFC8177]. Also, these data nodes support supplying explicit keys as strings in ASCII format. The use of keys in hexadecimal string format would afford greater key entropy with the same number of key- string octets. However, such a format is not included in this version of the AC service model, because it is not supported by the underlying device modules (e.g., [RFC8695]). 7. IANA Considerations IANA is requested to register the following URIs in the "ns" subregistry within the "IETF XML Registry" [RFC3688]: Boucadair, et al. Expires 4 November 2023 [Page 63] Internet-Draft ACaaS May 2023 URI: urn:ietf:params:xml:ns:yang:ietf-bearer-svc Registrant Contact: The IESG. XML: N/A; the requested URI is an XML namespace. URI: urn:ietf:params:xml:ns:yang:ietf-ac-svc Registrant Contact: The IESG. XML: N/A; the requested URI is an XML namespace. IANA is requested to register the following YANG modules in the "YANG Module Names" subregistry [RFC6020] within the "YANG Parameters" registry. Name: ietf-bearer-svc Maintained by IANA? N Namespace: urn:ietf:params:xml:ns:yang:ietf-bearer-svc Prefix: bearer-svc Reference: RFC xxxx Name: ietf-ac-svc Maintained by IANA? N Namespace: urn:ietf:params:xml:ns:yang:ietf-ac-svc Prefix: ac-svc Reference: RFC xxxx 8. References 8.1. Normative References [I-D.boro-opsawg-teas-common-ac] Boucadair, M., Roberts, R., de Dios, O. G., Barguil, S., and B. Wu, "A Common YANG Data Model for Attachment Circuits", Work in Progress, Internet-Draft, draft-boro- opsawg-teas-common-ac-01, 6 March 2023, . [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, . [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688, DOI 10.17487/RFC3688, January 2004, . [RFC4364] Rosen, E. and Y. Rekhter, "BGP/MPLS IP Virtual Private Networks (VPNs)", RFC 4364, DOI 10.17487/RFC4364, February 2006, . Boucadair, et al. Expires 4 November 2023 [Page 64] Internet-Draft ACaaS May 2023 [RFC5880] Katz, D. and D. Ward, "Bidirectional Forwarding Detection (BFD)", RFC 5880, DOI 10.17487/RFC5880, June 2010, . [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)", RFC 6020, DOI 10.17487/RFC6020, October 2010, . [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed., and A. Bierman, Ed., "Network Configuration Protocol (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011, . [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011, . [RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types", RFC 6991, DOI 10.17487/RFC6991, July 2013, . [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017, . [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, . [RFC8177] Lindem, A., Ed., Qu, Y., Yeung, D., Chen, I., and J. Zhang, "YANG Data Model for Key Chains", RFC 8177, DOI 10.17487/RFC8177, June 2017, . [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration Access Control Model", STD 91, RFC 8341, DOI 10.17487/RFC8341, March 2018, . [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K., and R. Wilton, "Network Management Datastore Architecture (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018, . [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018, . Boucadair, et al. Expires 4 November 2023 [Page 65] Internet-Draft ACaaS May 2023 [RFC9181] Barguil, S., Gonzalez de Dios, O., Ed., Boucadair, M., Ed., and Q. Wu, "A Common YANG Data Model for Layer 2 and Layer 3 VPNs", RFC 9181, DOI 10.17487/RFC9181, February 2022, . 8.2. Informative References [AC-SVC-GRP] "Reusable Groupings in Service Attachment Circuits", 2023, . [AC-SVC-Tree] "Full Service Attachment Circuit Tree Structure", 2023, . [I-D.boro-opsawg-ntw-attachment-circuit] Boucadair, M., Roberts, R., de Dios, O. G., Barguil, S., and B. Wu, "A Network YANG Data Model for Attachment Circuits", Work in Progress, Internet-Draft, draft-boro- opsawg-ntw-attachment-circuit-02, 9 March 2023, . [I-D.ietf-idr-bgp-model] Jethanandani, M., Patel, K., Hares, S., and J. Haas, "YANG Model for Border Gateway Protocol (BGP-4)", Work in Progress, Internet-Draft, draft-ietf-idr-bgp-model-16, 1 March 2023, . [I-D.ietf-opsawg-sap] Boucadair, M., de Dios, O. G., Barguil, S., Wu, Q., and V. Lopez, "A YANG Network Model for Service Attachment Points (SAPs)", Work in Progress, Internet-Draft, draft-ietf- opsawg-sap-15, 18 January 2023, . [I-D.ietf-teas-ietf-network-slice-nbi-yang] Wu, B., Dhody, D., Rokui, R., Saad, T., Han, L., and J. Mullooly, "A YANG Data Model for the IETF Network Slice Service", Work in Progress, Internet-Draft, draft-ietf- teas-ietf-network-slice-nbi-yang-04, 13 March 2023, . Boucadair, et al. Expires 4 November 2023 [Page 66] Internet-Draft ACaaS May 2023 [RFC2080] Malkin, G. and R. Minnear, "RIPng for IPv6", RFC 2080, DOI 10.17487/RFC2080, January 1997, . [RFC2453] Malkin, G., "RIP Version 2", STD 56, RFC 2453, DOI 10.17487/RFC2453, November 1998, . [RFC3644] Snir, Y., Ramberg, Y., Strassner, J., Cohen, R., and B. Moore, "Policy Quality of Service (QoS) Information Model", RFC 3644, DOI 10.17487/RFC3644, November 2003, . [RFC3849] Huston, G., Lord, A., and P. Smith, "IPv6 Address Prefix Reserved for Documentation", RFC 3849, DOI 10.17487/RFC3849, July 2004, . [RFC5398] Huston, G., "Autonomous System (AS) Number Reservation for Documentation Use", RFC 5398, DOI 10.17487/RFC5398, December 2008, . [RFC5737] Arkko, J., Cotton, M., and L. Vegoda, "IPv4 Address Blocks Reserved for Documentation", RFC 5737, DOI 10.17487/RFC5737, January 2010, . [RFC5798] Nadas, S., Ed., "Virtual Router Redundancy Protocol (VRRP) Version 3 for IPv4 and IPv6", RFC 5798, DOI 10.17487/RFC5798, March 2010, . [RFC5925] Touch, J., Mankin, A., and R. Bonica, "The TCP Authentication Option", RFC 5925, DOI 10.17487/RFC5925, June 2010, . [RFC6151] Turner, S. and L. Chen, "Updated Security Considerations for the MD5 Message-Digest and the HMAC-MD5 Algorithms", RFC 6151, DOI 10.17487/RFC6151, March 2011, . [RFC6952] Jethanandani, M., Patel, K., and L. Zheng, "Analysis of BGP, LDP, PCEP, and MSDP Issues According to the Keying and Authentication for Routing Protocols (KARP) Design Guide", RFC 6952, DOI 10.17487/RFC6952, May 2013, . Boucadair, et al. Expires 4 November 2023 [Page 67] Internet-Draft ACaaS May 2023 [RFC7665] Halpern, J., Ed. and C. Pignataro, Ed., "Service Function Chaining (SFC) Architecture", RFC 7665, DOI 10.17487/RFC7665, October 2015, . [RFC8299] Wu, Q., Ed., Litkowski, S., Tomotaki, L., and K. Ogaki, "YANG Data Model for L3VPN Service Delivery", RFC 8299, DOI 10.17487/RFC8299, January 2018, . [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams", BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018, . [RFC8349] Lhotka, L., Lindem, A., and Y. Qu, "A YANG Data Model for Routing Management (NMDA Version)", RFC 8349, DOI 10.17487/RFC8349, March 2018, . [RFC8466] Wen, B., Fioccola, G., Ed., Xie, C., and L. Jalil, "A YANG Data Model for Layer 2 Virtual Private Network (L2VPN) Service Delivery", RFC 8466, DOI 10.17487/RFC8466, October 2018, . [RFC8695] Liu, X., Sarda, P., and V. Choudhary, "A YANG Data Model for the Routing Information Protocol (RIP)", RFC 8695, DOI 10.17487/RFC8695, February 2020, . [RFC8969] Wu, Q., Ed., Boucadair, M., Ed., Lopez, D., Xie, C., and L. Geng, "A Framework for Automating Service and Network Management with YANG", RFC 8969, DOI 10.17487/RFC8969, January 2021, . [RFC9182] Barguil, S., Gonzalez de Dios, O., Ed., Boucadair, M., Ed., Munoz, L., and A. Aguado, "A YANG Network Data Model for Layer 3 VPNs", RFC 9182, DOI 10.17487/RFC9182, February 2022, . Appendix A. Examples This section includes a non-exhaustive list of examples to illustrate the use of the service models defined in this document. A.1. Create A New Bearer An example of a request message body to create a bearer is shown in Figure 21. Boucadair, et al. Expires 4 November 2023 [Page 68] Internet-Draft ACaaS May 2023 { "ietf-bearer-svc:bearers": { "bearer": [ { "id": "an-identifier", "description": "A bearer example", "customer-point": { "device": { "device-id": "CE_X_SITE_Y" } }, "requested-type": "ietf-bearer-svc:ethernet" } ] } } Figure 21: Example of a Message Body to Create A New Bearer A bearer-reference is then generated by the controller for this bearer. Figure 22 shows the example of a response message body that is sent by the controller to reply to a GET request: { "ietf-bearer-svc:bearers": { "bearer": [ { "id": "an-identifier", "description": "A bearer example", "customer-point": { "device": { "device-id": "CE_X_SITE_Y" } }, "requested-type": "ietf-bearer-svc:ethernet", "bearer-reference": "line-156" } ] } } Figure 22: Example of a Response Message Body with the Bearer Reference Boucadair, et al. Expires 4 November 2023 [Page 69] Internet-Draft ACaaS May 2023 A.2. Create An AC over An Existing Bearer An example of a request message body to create a simple AC over an existing bearer is shown in Figure 23. The bearer reference is assumed to be known to both the customer and the network provider. Such a reference can be retrieved, e.g., following the example described in Appendix A.1 or using other means (including, exchanged out-of-band or via proprietary APIs). { "ietf-ac-svc:attachment-circuits": { "ac": [ { "name": "ac4585", "description": "An AC on an existing bearer", "requested-ac-start": "2023-12-12T05:00:00.00Z", "l2-connection": { "encapsulation": { "type": "ietf-vpn-common:dot1q" }, "bearer-reference": "line-156" } } ] } } Figure 23: Example of a Message Body to Request an AC over an Existing Bearer Figure 24 shows the message body of a response received from the controller and which indicates the "cvlan-id" that was assigned for the requested AC. Boucadair, et al. Expires 4 November 2023 [Page 70] Internet-Draft ACaaS May 2023 { "ietf-ac-svc:attachment-circuits": { "ac": [ { "name": "ac4585", "description": "An AC on an existing bearer", "requested-ac-start": "2023-12-12T05:00:00.00Z", "l2-connection": { "encapsulation": { "type": "ietf-vpn-common:dot1q", "dot1q": { "tag-type": "ietf-vpn-common:c-vlan", "cvlan-id": 550 } }, "bearer-reference": "line-156" } } ] } } Figure 24: Example of a Message Body of a Response to Assign a CVLAN ID A.3. Create An AC for a Known Peer SAP An example of a request to create a simple AC, when the peer SAP is known, is shown in Figure 25. In this example, the peer SAP identifier points to an identifier of a service function. The (topological) location of that service function is assumed to be known to the network controller. For example, this can be determined as part of an on-demand procedure to instantiate a service function in a cloud. That instantiated service function can be granted a connectivity service via the provider network. Boucadair, et al. Expires 4 November 2023 [Page 71] Internet-Draft ACaaS May 2023 { "ietf-ac-svc:attachment-circuits": { "ac": [ { "name": "ac4585", "description": "An AC on an existing bearer", "requested-ac-start": "2023-12-12T05:00:00.00Z", "peer-sap-id": [ "nf-termination-ip" ], "l2-connection": { "encapsulation": { "type": "ietf-vpn-common:dot1q", "dot1q": { "tag-type": "ietf-vpn-common:c-vlan", "cvlan-id": 550 } } } } ] } } Figure 25: Example of a Message Body to Request an AC with a Peer SAP A.4. One CE, Two ACs Let’s consider the example of an eNodeB (CE) that is directly connected to the access routers of the mobile backhaul (see Figure 26). In this example, two ACs are needed to service the eNodeB (e.g., distinct VLANs for Control and User Planes). +-------------+ +------------------+ | | | PE | | | | 192.0.2.1 | | eNodeB |==================| 2001:db8::1 | | | vlan 1 | | | |==================| | | | vlan 2 | | | | Direct | | +-------------+ Routing | | | | | | | | +------------------+ Figure 26: Example of a CE-PE ACs Boucadair, et al. Expires 4 November 2023 [Page 72] Internet-Draft ACaaS May 2023 An example of a request to create the ACs to service the eNodeB is shown in Figure 27. This example assumes that static addressing is used for both ACs. { "ietf-ac-svc:attachment-circuits": { "ac": [ { "name": "ac1", "description": "a first ac with a same peer node", "l2-connection": { "encapsulation": { "type": "ietf-vpn-common:dot1q" }, "bearer-reference": "line-156" }, "ip-connection": { "ipv4": { "address-allocation-type": "ietf-ac-common:static-address" }, "ipv6": { "address-allocation-type": "ietf-ac-common:static-address" }, "routing-protocols": { "routing-protocol": [ { "id": "1", "type": "ietf-vpn-common:direct-routing" } ] } }, { "name": "ac2", "description": "a second ac with a same peer node", "l2-connection": { "encapsulation": { "type": "ietf-vpn-common:dot1q" }, "bearer-reference": "line-156" }, "ip-connection": { "ipv4": { "address-allocation-type": "ietf-ac-common:static-address" }, "ipv6": { "address-allocation-type": "ietf-ac-common:static-address" }, Boucadair, et al. Expires 4 November 2023 [Page 73] Internet-Draft ACaaS May 2023 "routing-protocols": { "routing-protocol": [ { "id": "1", "type": "ietf-vpn-common:direct-routing" } ] } } ] } } Figure 27: Example of a Message Body to Request Two ACes on The Same Link (Not Recommended) Figure 28 shows the message body of a response received from the controller. { "ietf-ac-svc:attachment-circuits": { "ac": [ { "name": "ac1", "description": "a first ac with a same peer node", "l2-connection": { "encapsulation": { "type": "ietf-vpn-common:dot1q", "dot1q": { "cvlan-id": 1 } }, "bearer-reference": "line-156" }, "ip-connection": { "ipv4": { "local-address": "192.0.2.1", "prefix-length": 30, "address": [ { "address-id": "1", "customer-address": "192.0.2.2" } ] }, "ipv6": { "local-address": "2001:db8::1", "prefix-length": 64, Boucadair, et al. Expires 4 November 2023 [Page 74] Internet-Draft ACaaS May 2023 "address": [ { "address-id": "1", "customer-address": "2001:db8::2" } ] } }, "routing-protocols": { "routing-protocol": [ { "id": "1", "type": "ietf-vpn-common:direct-routing" } ] } }, { "name": "ac2", "description": "a second ac with a same peer node", "l2-connection": { "encapsulation": { "type": "ietf-vpn-common:dot1q", "dot1q": { "cvlan-id": 2 } }, "bearer-reference": "line-156" }, "ip-connection": { "ipv4": { "local-address": "192.0.2.1", "prefix-length": 30, "address": [ { "address-id": "1", "customer-address": "192.0.2.2" } ] }, "ipv6": { "local-address": "2001:db8::1", "prefix-length": 64, "address": [ { "address-id": "1", "customer-address": "2001:db8::2" } Boucadair, et al. Expires 4 November 2023 [Page 75] Internet-Draft ACaaS May 2023 ] } }, "routing-protocols": { "routing-protocol": [ { "id": "1", "type": "ietf-vpn-common:direct-routing" } ] } } ] } } Figure 28 The example shown Figure 28 is not optimal as it includes many redundant data. Figure 29 shows a more compact request that factorizes all the redundant data. { "ietf-ac-svc:attachment-circuits": { "ac-group-profile": [ { "id": "simple-node-profile", "l2-connection": { "bearer-reference": "line-156" }, "ip-connection": { "ipv4": { "local-address": "192.0.2.1", "prefix-length": 30, "address": [ { "address-id": "1", "customer-address": "192.0.2.2" } ] }, "ipv6": { "local-address": "2001:db8::1", "prefix-length": 64, "address": [ { "address-id": "1", "customer-address": "2001:db8::2" Boucadair, et al. Expires 4 November 2023 [Page 76] Internet-Draft ACaaS May 2023 } ] } }, "routing-protocols": { "routing-protocol": [ { "id": "1", "type": "ietf-vpn-common:direct-routing" } ] } } ], "ac": [ { "name": "ac1", "description": "a first ac with a same peer node", "ac-group-profile": ["simple-node-profile"], "l2-connection": { "encapsulation": { "type": "ietf-vpn-common:dot1q", "dot1q": { "cvlan-id": 1 } } } }, { "name": "ac2", "description": "a second ac with a same peer node", "ac-group-profile": ["simple-node-profile"], "l2-connection": { "encapsulation": { "type": "ietf-vpn-common:dot1q", "dot1q": { "cvlan-id": 2 } } } } ] } } Figure 29: Example of a Message Body to Request Two ACes on The Same Link (Node Profile) Boucadair, et al. Expires 4 November 2023 [Page 77] Internet-Draft ACaaS May 2023 A customer may request adding a new AC by simply referring to an existing per-node AC profile as shown in Figure 30. This AC inherits all the data that was enclosed in the indicated per-node AC profile (IP addressing, routing, etc.). { "ietf-ac-svc:attachment-circuits": { "ac": [ { "name": "ac3", "description": "a third AC with a same peer node", "ac-group-profile": [ "simple-node-profile" ], "l2-connection": { "encapsulation": { "dot1q": { "cvlan-id": 3 } }, "bearer-reference": "line-156" } } ] } } Figure 30: Example of a Message Body to Add a new AC over an existing link (Node Profile) A.5. Control Precedence over Multiple ACs When multiple ACs are requested by the same customer for the same site, the request can tag one of these ACs as "primary" and the other ones as "secondary". An example of such a request is shown in Figure 32. In this example, both ACs are bound to the same "group- id", and the "precedence" data node is set as a function of the intended role of each AC (primary or secondary). Boucadair, et al. Expires 4 November 2023 [Page 78] Internet-Draft ACaaS May 2023 ┌───┐ ac1: primary │ │ ┌────────────────────┤PE1│ ┌───┐ │ bearerX@site1 │ │ │ ├───────┘ └───┘ │CE │ │ ├───────┐ ┌───┐ └───┘ │ ac2: secondary │ │ └────────────────────┤PE2│ bearerY@site1 │ │ └───┘ Figure 31: An Example Topology for AC Precedence Enforcement { "ietf-ac-svc:attachment-circuits": { "ac": [ { "name": "ac1", "description": "Example to illustrate AC precedence usage", "group": [ { "group-id": "1", "precedence": "ietf-ac-common:primary" } ], "l2-connection": { "bearer-reference": "bearerX@site1" } }, { "name": "ac2", "description": "Example to illustrate AC precedence usage", "group": [ { "group-id": "1", "precedence": "ietf-ac-common:secondary" } ], "l2-connection": { "bearer-reference": "bearerY@site1" } } ] } } Boucadair, et al. Expires 4 November 2023 [Page 79] Internet-Draft ACaaS May 2023 Figure 32: Example of a Message Body to Associate a Precedence Level with ACs A.6. Multiple CEs Figure 33 shows an example of CEs that are interconnected by a service provider network. +----------------------------------+ +----+ | | +----+ | CE1+-------+ +-------+ CE3| +----+ | | +----+ | Network | +----+ | | +----+ |CE2 +-------+ +-------+ CE4| +----+ | | +----+ +----------------------------------+ Figure 33: Network Topology Example Figure 34 depicts an example of the message body of a response to a request to instantiate the various ACs that are shown in Figure 33. { "ietf-ac-svc:attachment-circuits": { "ac-group-profile": [ { "id": "simple-profile", "l2-connection": { "encapsulation": { "type": "ietf-vpn-common:dot1q", "dot1q": { "cvlan-id": 1 } } } } ], "ac": [ { "name": "ac1", "description": "First site", "ac-group-profile": [ "simple-profile" ], "l2-connection": { "bearer-reference": "ce1-network" } Boucadair, et al. Expires 4 November 2023 [Page 80] Internet-Draft ACaaS May 2023 }, { "name": "ac2", "description": "Second Site", "ac-group-profile": [ "simple-profile" ], "l2-connection": { "bearer-reference": "ce2-network" } }, { "name": "ac3", "description": "Third site", "ac-group-profile": [ "simple-profile" ], "l2-connection": { "bearer-reference": "ce3-network" } }, { "name": "ac4", "description": "Another site", "ac-group-profile": [ "simple-profile" ], "l2-connection": { "bearer-reference": "ce4-network" } } ] } } Figure 34: Example of a Message Body of a Request to Create Multiple ACs bound to Multiple CEs A.7. Binding Attachment Circuits to an IETF Network Slice This example shows how the AC service model complements [I-D.ietf-teas-ietf-network-slice-nbi-yang] to connect a site to a slice service. First, Figure 35 describes the end-to-end network topology as well the orchestration scopes: Boucadair, et al. Expires 4 November 2023 [Page 81] Internet-Draft ACaaS May 2023 * The topology is made up of two sites (site1 and site2), interconnected via a Transport Network (e.g. IP/MPLS Network). A Network Function is deployed within each site in a dedicated IP Subnet. * A 5G SMO is responsible for the deployment Network Functions and the indirect management of a local Gateway (i.e., CE device). * An IETF Network Slice Controller is responsible for the deployment of IETF Network Slices across the TN. Network Functions are deployed within each site. 5G SMO IETF NSC 5G SMO │ (TN ORCHESTRATOR) │ │ │ │ ◄─────┴─────► ◄─────────┴────────► ◄────┴─────► Site1 TRANSPORT NETWORK Site2 ┌───┐ ┌──────────────┐ ┌───┐ │NF1│ │ │ │NF2│ └─┬─┘ ┌───┐ ┌─┴─┐ ┌─┴─┐ ┌───┐ └─┬─┘ │ │ │ │ │ │ │ │ │ │ ──┴─────┤GW1├────────┤PE1│ │PE2├────────┤GW2├────┴── ▲ │ │ ▲ │ │ │ │ ▲ │ │ ▲ │ └───┘ │ └─┬─┘ └─┬─┘ │ └───┘ │ │ │ │ │ │ │ │ │ └──────────────┘ │ │ LAN1 │ │ LAN2 198.51.100.0/24 │ │ 203.0.113.0/24 │ │ │ │ Physical Link ID: Physical Link ID: bearerX@site1 bearerX@site2 Figure 35: An Example of a Network Topology Used to Deploy Slices Figure 36 describes the logical connectivity enforced thanks to both IETF Network Slice and Attachment Circuit models. Boucadair, et al. Expires 4 November 2023 [Page 82] Internet-Draft ACaaS May 2023 AS 65536 ◄────BGP───► AS 65550 ┌───┐ ┌────────┐ ┌───┐ │NF1│ 192.0.2.0/30 │ │ 192.0.2.4/30 │NF2│ └─┬─┘ ┌───┐ ┌──┴┐ ┌┴──┐ ┌───┐ └─┬─┘ │ │ │.1 .2│ │ │ │.6 .5│ │ │ ──┴─────┤GW1│----------│PE1│ │PE2│----------│GW2├────┴── │ │ vlan-id │ │ │ │ vlan-id │ │ └───┘ 100 └──┬┘ └┬──┘ 200 └───┘ 198.51.100.0/24 │ │ 203.0.113.0/24 └────────┘ sdp1 sdp2 ◄─────────► ◄────────────► ◄─────────► Attachment Ietf Network Attachment Circuit Slice Circuit ac1 EMBB_UP ac2 ac1 properties: - bearer-reference: bearerX@site1 - vlan-id: 100 - CE address (GW1): 192.0.2.1/30 - PE address: 192.0.2.2/30 - Routing: static 198.51.100.0/24 via 192.0.2.1 tag primary_UP_slice ac2 properties: - bearer-reference: bearerY@site2 - vlan-id: 200 - CE address (GW2): 192.0.2.5/30 - PE address: 192.0.2.6/30 - Routing: BGP local-as:65536 customer-as:65550 customer-address: 192.0.2.5 Figure 36: Logical Overview Figure 37 shows the message body of the request to create the required ACs using the Attachment Circuit module. =============== NOTE: '\' line wrapping per RFC 8792 ================ { "ietf-ac-svc:attachment-circuits": { "ac": [ { "name": "ac1", Boucadair, et al. Expires 4 November 2023 [Page 83] Internet-Draft ACaaS May 2023 "description": "Connection to site1 on vlan 100", "requested-start": "2023-12-12T05:00:00.00Z", "l2-connection": { "encapsulation": { "type": "ietf-vpn-common:dot1q", "dot1q": { "tag-type": "ietf-vpn-common:c-vlan" }, "bearer-reference": "bearerX@site1" }, "ip-connection": { "ipv4": { "address-allocation-type": "ietf-ac-common:static-\ address" }, "routing-protocols": { "routing-protocol": [ { "id": "1", "type": "ietf-vpn-common:static-routing", "static": { "cascaded-lan-prefixes": { "ipv4-lan-prefixes": [ { "lan": "198.51.100.0/24", "next-hop": "192.0.2.1", "lan-tag": "primary_UP_slice" } ] } } } ] } }, { "name": "ac2", "description": "Connection to site2 on vlan 200", "requested-start": "2023-12-12T05:00:00.00Z", "l2-connection": { "encapsulation": { "type": "ietf-vpn-common:dot1q", "dot1q": { "tag-type": "ietf-vpn-common:c-vlan" } }, "bearer-reference": "bearerY@site2" }, Boucadair, et al. Expires 4 November 2023 [Page 84] Internet-Draft ACaaS May 2023 "ip-connection": { "ipv4": { "address-allocation-type": "ietf-ac-common:static-\ address" }, "routing-protocols": { "routing-protocol": [ { "id": "1", "type": "ietf-vpn-common:bgp-routing", "bgp": { "neighbor": [ { "id": "1", "peer-as": 65550 } ] } } ] } } ] } } Figure 37: Message Body of a Request to Create Required ACs Figure 38 shows the message body of a reponse received from the controller. { "ietf-ac-svc:attachment-circuits": { "ac": [ { "name": "ac1", "description": "Connection to site1 on vlan 100", "requested-start": "2023-12-12T05:00:00.00Z", "l2-connection": { "encapsulation": { "type": "ietf-vpn-common:dot1q", "dot1q": { "tag-type": "ietf-vpn-common:c-vlan", "cvlan-id": 100 } }, "bearer-reference": "bearerX@site1" }, Boucadair, et al. Expires 4 November 2023 [Page 85] Internet-Draft ACaaS May 2023 "ip-connection": { "ipv4": { "local-address": "192.0.2.2", "prefix-length": 30, "address": [ { "address-id": "1", "customer-address": "192.0.2.1" } ] } }, "routing-protocols": { "routing-protocol": [ { "id": "1", "type": "ietf-vpn-common:static-routing", "static": { "cascaded-lan-prefixes": { "ipv4-lan-prefixes": [ { "lan": "198.51.100.0/24", "next-hop": "192.0.2.1", "lan-tag": "primary_UP_slice" } ] } } } ] } }, { "name": "ac2", "description": "Connection to site2 on vlan 200", "requested-start": "2023-12-12T05:00:00.00Z", "l2-connection": { "encapsulation": { "type": "ietf-vpn-common:dot1q", "dot1q": { "tag-type": "ietf-vpn-common:c-vlan", "cvlan-id": 200 } }, "bearer-reference": "bearerY@site2" }, "ip-connection": { "ipv4": { Boucadair, et al. Expires 4 November 2023 [Page 86] Internet-Draft ACaaS May 2023 "local-address": "192.0.2.6", "prefix-length": 30, "address": [ { "address-id": "1", "customer-address": "192.0.2.5" } ] } }, "routing-protocols": { "routing-protocol": [ { "id": "1", "type": "ietf-vpn-common:bgp-routing", "bgp": { "neighbor": [ { "id": "1", "peer-as": 65550, "local-as": 65536 } ] } } ] } } ] } } Figure 38 Figure 39 shows the message body of the request to create the a slice service bound to the ACs created using Figure 37. Only references to these ACs are included in the Slice Service request. This example assumes that the module that "glues" the service/AC is also supported by the NSC. Boucadair, et al. Expires 4 November 2023 [Page 87] Internet-Draft ACaaS May 2023 =============== NOTE: '\' line wrapping per RFC 8792 ================ { "ietf-network-slice-service:network-slice-services": { "slo-sle-templates": { "slo-sle-template": [ { "id": "low-latency-template", "template-description": "Lowest possible latencey \ forwarding behavior" } ] }, "slice-service": [ { "service-id": "Slice URLLC_UP", "service-description": "Dedicate TN Slice for URLLC-UP", "slo-sle-template": "low-latency-template", "status": {}, "sdps": { "sdp": [ { "sdp-id": "sdp1", "ac-svc-name": ["ac1"] }, { "sdp-id": "sdp2", "ac-svc-name": ["ac2"] } ] } } ] } } Figure 39: Message Body of a Request to Create a Slice Service Referring to the ACs A.8. Connecting a Virtualized Environment Running in a Cloud Provider This example (Figure 40) shows how the AC service model can be used to connect a Cloud Infrastructure to a service provider network. This example makes the following assumptions: 1. A customer (e.g., Mobile Network Team or partner) has a virtualized infrastructure running in a Cloud Provider. A simplistic deployment is represented here with a set of Virtual Boucadair, et al. Expires 4 November 2023 [Page 88] Internet-Draft ACaaS May 2023 Machines running in a Virtual Private Environment. The deployment and management of this infrastructure is achieved via private APIs that are supported by the Cloud Provider: this realization is out of the scope of this document. 2. The connectivity to the Data Center is achieved thanks to a service based on direct attachment (physical connection), which is delivered upon ordering via an API exposed by the Cloud Provider. When ordering that connection, a unique "Connection Identifier" is generated and returned via the API. 3. The customer provisions the networking logic within the Cloud Provider based on that unique connection Identifier (i.e., logical interfaces, IP addressing, and routing). Boucadair, et al. Expires 4 November 2023 [Page 89] Internet-Draft ACaaS May 2023 .--------------------------------------------------------. | Cloud Provider DC | | | | | | ┌───┐ ┌───┐ ┌───┐ | | │VM1│ │VM2│ │VM3│ Virtual Private Cloud | | └─┬─┘ └─┬─┘ └─┬─┘ | | │.2 │.5 │.12 198.51.100.0/24 | | ─┴─────┴─────┴───┬─────────────────────── | | │.1 | | ┌───┴────┐ | | │ CLOUD │ BGP_ASN: 65536 | | │PROVIDER│ BGP md5: | | │ GW │ "nyxNER_c5sdn608fFQl3331d" | | └───┬────┘ | | │ ▲ .2 | '--------------------│-│---------------------------------' │ │ Direct Interconnection │ │ connection_id: │BGP vlan-id:50 1234-56789 │ │ 192.0.2.0/24 │ │ │ │ .1 .--------------------│-▼---------------------------------. | If-A┌──┴──┐ Service Provider Network | | │ │ | | │ PE1 │ BGP_ASN: 65550 | | │ │ | | └─────┘ | | | | | | | | | '--------------------------------------------------------' Figure 40: An Example of Realization for Connecting a Cloud Site Figure 41 illustrates the pre-provisioning logic for the physical connection to the Cloud Provider. After this connection is delivered to the service provider, the network inventory is updated with "bearer-reference" set to the value of the "Connection Identifier". Boucadair, et al. Expires 4 November 2023 [Page 90] Internet-Draft ACaaS May 2023 Customer Cloud Orchestration DIRECT INTERCONNECTION ORDERING (API) Provider ──────────────────────────────────────────────► Connection Created with "Connection ID:1234-56789 ◄─────────────────────────────────────────────── x x x x Physical Connection 1234-56789 is delivered and connected to PE1 Network Inventory Updated with: bearer-reference: 1234-56789 for PE1/Interface If-A Figure 41: Illustration of Pre-provisioning Next, API workflows can be initiated: * Cloud Provider for the configuration as per (3) above. * Service provider network via the Attachment Circuit model. This request can be used in conjunction with additional requests based on L3SM (VPN provisioning) or Network Slice Service model (5G hybrid Cloud deployment). Figure 42 shows the message body of the request to create the required ACs to connect the Cloud Provider Virtualized (VM) using the Attachment Circuit module. Boucadair, et al. Expires 4 November 2023 [Page 91] Internet-Draft ACaaS May 2023 =============== NOTE: '\' line wrapping per RFC 8792 ================ { "ietf-ac-svc:attachment-circuits": { "ac": [ { "name": "ac--BXT-DC-customer-VPC-foo", "description": "Connection to Cloud Provider BXT on \ connection 1234-56789", "requested-start": "2023-12-12T05:00:00.00Z", "l2-connection": { "encapsulation": { "type": "ietf-vpn-common:dot1q" }, "bearer-reference": "1243-56789" }, "ip-connection": { "ipv4": { "address-allocation-type": "ietf-ac-common:static-\ address" }, "routing-protocols": { "routing-protocol": [ { "id": "1", "type": "ietf-vpn-common:bgp-routing", "bgp": { "neighbor": [ { "id": "1", "peer-as": 65536 } ] } } ] } } } ] } } Figure 42: Message Body of a Request to Create the ACs for Connecting to the Cloud Provider Boucadair, et al. Expires 4 November 2023 [Page 92] Internet-Draft ACaaS May 2023 Figure 43 shows the message body of the response received from the provider. Note that this Cloud Provider mandates the use of MD5 authentication for establishing BGP connections. The module supports MD5 to basically accommodate the installed BGP base (including by some Cloud Providers). Note that MD5 suffers from the security weaknesses discussed in Section 2 of [RFC6151] and Section 2.1 of [RFC6952]. =============== NOTE: '\' line wrapping per RFC 8792 ================ { "ietf-ac-svc:attachment-circuits": { "ac": [ { "name": "ac--BXT-DC-customer-VPC-foo", "description": "Connection to Cloud Provider BXT on \ connection 1234-56789", "requested-start": "2023-12-12T05:00:00.00Z", "l2-connection": { "encapsulation": { "type": "ietf-vpn-common:dot1q", "dot1q": { "tag-type": "ietf-vpn-common:c-vlan", "cvlan-id": 50 } }, "bearer-reference": "1243-56789" }, "ip-connection": { "ipv4": { "local-address": "192.0.2.1", "prefix-length": 24, "address": [ { "address-id": "1", "customer-address": "192.0.2.2" } ] } }, "routing-protocols": { "routing-protocol": [ { "id": "1", "type": "ietf-vpn-common:bgp-routing", "bgp": { "neighbor": [ Boucadair, et al. Expires 4 November 2023 [Page 93] Internet-Draft ACaaS May 2023 { "id": "1", "peer-as": 65536, "local-as": 65550, "authentication": { "keying-material": { "md5-keychain": "nyxNER_c5sdn608fFQl3331d" } } } ] } } ] } } ] } } Figure 43: Message Body of a Response to the Request to Create ACs for Connecting to the Cloud Provider Acknowledgments Thanks to TBC for the comments. Contributors Victor Lopez Nokia Email: victor.lopez@nokia.com Ivan Bykov Ribbon Communications Email: Ivan.Bykov@rbbn.com Qin Wu Huawei Email: bill.wu@huawei.com Kenichi Ogaki KDDI Email: ke-oogaki@kddi.com Boucadair, et al. Expires 4 November 2023 [Page 94] Internet-Draft ACaaS May 2023 Luis Angel Munoz Vodafone Email: luis-angel.munoz@vodafone.com Authors' Addresses Mohamed Boucadair (editor) Orange Email: mohamed.boucadair@orange.com Richard Roberts (editor) Juniper Email: rroberts@juniper.net Oscar Gonzalez de Dios Telefonica Email: oscar.gonzalezdedios@telefonica.com Samier Barguil Giraldo Nokia Email: samier.barguil_giraldo@nokia.com Bo Wu Huawei Technologies Email: lana.wubo@huawei.com Boucadair, et al. Expires 4 November 2023 [Page 95]