
Network Working Group A. Silvas
Internet-Draft GoDaddy
Intended status: Experimental June 26, 2016
Expires: December 28, 2016

Push-Assets Header Field
draft-asilvas-http-push-assets-00

Abstract
Push-Assets is a header field that provides the necessary client state in order for servers to utilize HTTP/2
Server Push with confidence in knowing what resources SHOULD or SHOULD NOT be sent, reducing waste,
and ultimately providing an improved user experience. This document will provide an overview of Push-
Assets requirements, and describes any implementation concerns.

Status of This Memo
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups
may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at
http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or
obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or
to cite them other than as "work in progress."

This Internet-Draft will expire on December 28, 2016.

Copyright Notice
Copyright (c) 2016 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these
documents carefully, as they describe your rights and restrictions with respect to this document. Code
Components extracted from this document must include Simplified BSD License text as described in Section
4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD
License.

Table of Contents
1. Introduction

1.1. Terminology
2. Understanding The Problem
3. Push Assets Use Cases

3.1. First Load Experience
3.2. Subsequent Load Experience
3.3. Proxy Optimization
3.4. Non-Browser Clients
3.5. Alternative Content Types

4. Push-Assets Header
4.1. Caching Headers
4.2. Empty Cache Request

5. Push-Asset-Key Header
5.1. Named Key
5.2. Key from URI Path

6. Push-Asset-Match Header
6.1. Match Similar Requests
6.2. Match All Requests

7. Responsible Usage
7.1. Frequently Changing Paths
7.2. Excessive Matching
7.3. Varying Content Types

8. References
8.1. Normative References
8.2. Informative References

Author's Address

1. Introduction
As described in [HighPerformance], transfer sizes and resource counts continue to increase. While network
conditions continue to improve, resulting in lower latencies and increased bandwidth, HTTP/1.1 ([RFC7230]
and [RFC7231]) fails to address the underlying problem of resource dependencies and the resulting
"waterfall" of blocked requests.

HTTP/2 [RFC7540] aims to address some of these problems, by way of Streams and Multiplexing, combined
with HTTP/2 Server Push [RFC7540]. A ruthless combination, addressing "head-of-line blocking" through
Multiplexing, and optimistic pre-loading by way of Server Push.

Where Server Push begins to fall short is around client state, leaving it up to servers to leverage existing
HTTP State Management Mechanism [RFC6265] with Cookies, which are not purpose built to solve the
problem of resource dependency state. This lack of client state can result in HTTP/2 [RFC7540]
RST_STREAM, where-in in-flight Server Push Streams will be cancelled, incurring client and server waste.

This document aims to address resource dependency state by looking to Caching [RFC7234] familiar with
existing HTTP/1.1 requests (see [RFC7230] and [RFC7231]). By pulling this state data into the request,
servers are able to intelligently and responsibly Server Push only missing or outdated resource.

1.1. Terminology
In this document, the key words �MUST�, �MUST NOT�, �REQUIRED�, �SHALL�, �SHALL NOT�, �SHOULD�,
�SHOULD NOT�, �RECOMMENDED�, �MAY�, and �OPTIONAL� are to be interpreted as described in BCP 14,
RFC 2119 [RFC2119] and indicate requirement levels for compliant implementations.

This document uses the Augmented BNF defined in [RFC5234].

2. Understanding The Problem
Here we can begin to see the problem with vanilla HTTP/2 [RFC7540] Server Push without client state
management.

+----------------------------+-------------------------+
| Client | Server |
+----------------------------+-------------------------+
| [TCP+TLS+HTTP/2 Negotiation] |
GET /A.html =======>	
<=======	PUSH_PROMISE GET /A1.js
<=======	PUSH_PROMISE GET /AB.js
<=======	GET /A.html
<=======	GET /A1.js
<=======	GET /AB.js
[Page Complete]	
[Navigate to "/B"]	
GET /B.html =======>	
<=======	PUSH_PROMISE GET /B1.js
<=======	PUSH_PROMISE GET /AB.js
<=======	GET /B.html
<=======	GET /B1.js
RST_STREAM /AB.js =======>	(Hault transfer)
<=======	GET /AB.js
[Page Complete]	
+----------------------------+-------------------------+

While in some situations cookie-based management will address the above, ultimately it'll vary depending on
the complexity of the origin, including but not limited to the number of assets and the frequency of change.

Figure 1

With Push-Assets enabled both client and server adhere to a strict dependency state contract.

+----------------------------+-------------------------+
| Client | Server |
+----------------------------+-------------------------+
| [TCP+TLS+HTTP/2 Negotiation] |
GET /A.html =======>	
<=======	PUSH_PROMISE GET /A1.js
<=======	PUSH_PROMISE GET /AB.js
<=======	GET /A.html
<=======	GET /A1.js
<=======	GET /AB.js
[Page Complete]	

[Navigate to "/B"]	
GET /B.html =======>	
<=======	PUSH_PROMISE GET /B1.js
<=======	GET /B.html
<=======	GET /B1.js
[Page Complete]	
+----------------------------+-------------------------+

Avoiding needless waste, the benefits of Push-Assets far outweighs the additional header data needed to
track client state.

Figure 2

3. Push Assets Use Cases

3.1. First Load Experience
Often the most import visit to a site is the first. Push-Assets provides the necessary client state for the
server to confidently know which resources are missing or outdated.

3.2. Subsequent Load Experience
As users navigate to previously visited resources, or new resources where some shared resources have
been cached, Push-Assets provides the necessary client state to make efficient use of Server Push, only
sending what resources the client does not already have.

3.3. Proxy Optimization
On one end of the spectrum of proxies lies your server proxies, with CDN's on the other end.

[Client] <==[CDN]<=======================[Proxy]<==[Origin]

Figure 3

With Push-Assets providing efficient communication between two points, this may lend to potential benefits
between Proxies and their Origin server as well. While the Proxy nearest your Client SHOULD support Push-
Assets for best results, it MAY elect not to also leverage Push-Assets between the Proxy and Origin.

For proxies with caching nearest to Client (namely CDN's), they may further benefit from Push-Assets by
way of efficient use of Server Push.

3.4. Non-Browser Clients
By enabling Push-Assets between any two points, Server Push can be used to reduce waste and provide
improved performance. The greater the shared resources, the greater the potential benefits.

3.5. Alternative Content Types
With Push-Assets being nothing more than an HTTP Header, extending the benefits to other Content Type's
[RFC2045] is entirely up to the Client and Server. Consider circumstances where you retrieve a JSON
resource, which signals relationships with other resources. Push-Assets reduces waste and enables better

user experiences irrespective of Content-Type.

4. Push-Assets Header

Push-Assets = [*][Asset-Key=Caching-Headers][;Asset-Key=Caching-Headers]

A request header field SHALL be sent by the client when requesting the server to support Push-Assets.

Comprised of zero or more resources addressed by their Asset-Key.

An Asset-Key is the name of the resource uniquely identifiable by the resource or matching resources.

4.1. Caching Headers

Push-Assets = Asset-Key=[etag(etag-value),][last-modified(date)][no-push]

Caching MAY include an etag, and/or last-modified, or no-push. This provides necessary client state of
dependencies to server.

4.2. Empty Cache Request

Push-Assets = *

Where * informs server to Server Push all push-enabled dependencies, if Push-Assets is enabled. Servers
MUST push all missing or outdated push-enabled resources.

5. Push-Asset-Key Header

Push-Asset-Key = Asset-Key

A PUSH_PROMISE response Header field MAY be sent to inform the client that the resource should be
tracked as a Push-Asset.

The Asset-Key MUST be stored in the header field as an MD5 representation of the desired Key.

Unlike the Asset-Key in a request, the Push-Asset-Key header field corresponds to the Key of the
PUSH_PROMISE response.

5.1. Named Key

Push-Asset-Key = core-bundle.js

By naming a resource, you MAY share that resource across multiple resources, and MAY change the URI
[RFC3986] as necessary without resulting in wasted requests.

5.2. Key from URI Path

Push-Asset-Key = $

Where $ is reserved as a short-hand for the client to recognize the key as the URI Path [RFC3986], and
MUST NOT include the query string.

Example URI Path [RFC3986] of /my/resource?some=thing would by keyed as /my/resource.

If there are more than one cached resources on the client for a given Push-Asset-Key, the client MUST treat
the most recent Key as the current version.

6. Push-Asset-Match Header

Push-Asset-Match = Asset-Path[;Asset-Path]

An OPTIONAL PUSH_PROMISE response header field.

An Asset-Match supports the lexical matching of the URI Path [RFC3986], and MAY end with reserved
wildcard * to indicate matching all requests "equal or greater than" the URI Path. While one or more Asset-
Path's may be provided, they SHOULD be consistent between requests to avoid any caching proxies from
serving varying responses. Usage of Vary header field (Section 7.1.4 of [RFC3986]) MAY be applied with
Push-Asset-Match to permit varying responses, but SHOULD NOT be used in most scenarios to avoid
unnecessary complexity.

6.1. Match Similar Requests

Push-Asset-Match = /some-path/*

Where all requests with URI Path [RFC3986] greater than or equal to /some-path/ will be matched.

6.2. Match All Requests

Push-Asset-Match = *

* is reserved to indicate "match all requests". This is the equivalent of /*, matching all from root.

7. Responsible Usage
State management can be simple for simple origins, but complex for complex origins. Following is a set of
usage scenarios and suggested tactics to combat unnecessary waste.

7.1. Frequently Changing Paths
Not uncommon amongst websites are changes to the URI Path [RFC3986] of a resource when contents
change. For these assets, utilizing the default Push-Asset-Key of $ MAY result in excessive waste by way
of the client sending state of matching resources that are no longer applicable.

An effective measure is to leverage a uniquely named Push-Asset-Key, enabling the client and server to
understand that the resource has effectively been renamed.

7.2. Excessive Matching
Leveraging the power of the Push-Asset-Match header field MAY greatly improve the efficiency of resources
shared amongst many resources. If used excessively where-in many requests do not depend on the
matched resource MAY lead to waste, as the state of matching resources are sent via Push-Assets header
field.

The server MAY improve effectiveness by way of highly specific Push-Asset-Match definitions, breaking an
origin into multiple sub-paths to permit parts an Origin to operate without negative affect from other parts of
Origin. For example, /some-path/ does NOT need to use the same shared resources as /some-other-path/,
as they MAY NOT know about one another.

In cases where even with highly specific Push-Asset-Match do not address excessive matching, the client
MAY track historical false positives where-in matching resources are not served from requested resources,
and MAY determine a threshold from which the client MAY elect NOT to send alongside Push-Assets
requests.

7.3. Varying Content Types
With Push-Assets not being specific to html resources, clients MUST NOT match resources across requests
with varying Content Type's [RFC2045].

If a server has enabled Push-Assets for more than one Content Type, the client MUST only notify the server
of matching resources that were from the same Content Type of the parent resource.

As an example, "/home.html" with a dependent resource that matches all URI Paths, MUST NOT be sent via
Push-Assets when making a request for "/file.js" as the parent resources differ in Content Type.

8. References

8.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI
10.17487/RFC2119, March 1997.

[RFC3986] Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform Resource Identifier (URI): Generic Syntax",
STD 66, RFC 3986, DOI 10.17487/RFC3986, January 2005.

[RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax Specifications: ABNF", STD 68, RFC
5234, DOI 10.17487/RFC5234, January 2008.

[RFC7230] Fielding, R. and J. Reschke, "Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and
Routing", RFC 7230, DOI 10.17487/RFC7230, June 2014.

[RFC7231] Fielding, R. and J. Reschke, "Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content",
RFC 7231, DOI 10.17487/RFC7231, June 2014.

[RFC7234] Fielding, R., Nottingham, M. and J. Reschke, "Hypertext Transfer Protocol (HTTP/1.1): Caching",
RFC 7234, DOI 10.17487/RFC7234, June 2014.

[RFC7540] Belshe, M., Peon, R. and M. Thomson, "Hypertext Transfer Protocol Version 2 (HTTP/2)", RFC
7540, DOI 10.17487/RFC7540, May 2015.

8.2. Informative References

[HighPerformance] Grigorik, I., "High Performance Browser Networking", September 2013.
[RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail Extensions (MIME) Part One:

Format of Internet Message Bodies", RFC 2045, DOI 10.17487/RFC2045, November
1996.

[RFC6265] Barth, A., "HTTP State Management Mechanism", RFC 6265, DOI 10.17487/RFC6265,
April 2011.

Author's Address
Aaron Silvas
GoDaddy
EMail: asilvas@godaddy.com

http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc5234
http://tools.ietf.org/html/rfc7230
http://tools.ietf.org/html/rfc7231
http://tools.ietf.org/html/rfc7234
http://tools.ietf.org/html/rfc7540
http://tools.ietf.org/html/rfc2045
http://tools.ietf.org/html/rfc6265
mailto:asilvas@godaddy.com

	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology
	2. Understanding The Problem
	3. Push Assets Use Cases
	3.1. First Load Experience
	3.2. Subsequent Load Experience
	3.3. Proxy Optimization
	3.4. Non-Browser Clients
	3.5. Alternative Content Types
	4. Push-Assets Header
	4.1. Caching Headers
	4.2. Empty Cache Request
	5. Push-Asset-Key Header
	5.1. Named Key
	5.2. Key from URI Path
	6. Push-Asset-Match Header
	6.1. Match Similar Requests
	6.2. Match All Requests
	7. Responsible Usage
	7.1. Frequently Changing Paths
	7.2. Excessive Matching
	7.3. Varying Content Types
	8. References
	8.1. Normative References
	8.2. Informative References
	Author's Address

