

anima Working Group M. Richardson

Internet-Draft Sandelman Software Works

Intended status: Standards Track P. van der Stok

Expires: June 4, 2021 vanderstok consultancy

 P. Kampanakis

 Cisco Systems

 December 01, 2020

 Constrained Join Proxy for Bootstrapping Protocols

 draft-anima-constrained-join-proxy-01

Abstract

 This document defines a protocol to securely assign a pledge to a

 domain, represented by a Registrar, using an intermediary node

 between pledge and Registrar. This intermediary node is known as a

 "constrained Join Proxy".

 This document extends the work of

 [I-D.ietf-anima-bootstrapping-keyinfra] by replacing the Circuit-

 proxy by a stateless/stateful constrained (CoAP) Join Proxy. It

 transports join traffic from the pledge to the Registrar without

 requiring per-client state.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 4, 2021.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the

 document authors. All rights reserved.

Richardson, et al. Expires June 4, 2021 [Page 1]

Internet-Draft Join-Proxy December 2020

 This document is subject to BCP 78 and the IETF Trust's Legal

 Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info) in effect on the date of

 publication of this document. Please review these documents

 carefully, as they describe your rights and restrictions with respect

 to this document. Code Components extracted from this document must

 include Simplified BSD License text as described in Section 4.e of

 the Trust Legal Provisions and are provided without warranty as

 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2

 2. Terminology . 3

 3. Requirements Language . 4

 4. Join Proxy functionality 4

 5. Join Proxy specification 5

 5.1. Statefull Join Proxy 5

 5.2. Stateless Join Proxy 6

 5.3. Stateless Message structure 8

 6. Comparison of stateless and statefull modes 9

 7. Discovery . 10

 7.1. Pledge discovery of Registrar 11

 7.1.1. CoAP discovery 11

 7.1.2. Autonomous Network 11

 7.1.3. 6tisch discovery 11

 7.2. Pledge discovers Join Proxy 11

 7.2.1. Autonomous Network 11

 7.2.2. CoAP discovery 12

 8. Security Considerations 12

 9. IANA Considerations . 13

 9.1. Resource Type registry 13

 10. Acknowledgements . 13

 11. Contributors . 13

 12. Changelog . 13

 12.1. 00 to 01 . 13

 12.2. 00 to 00 . 14

 13. References . 14

 13.1. Normative References 14

 13.2. Informative References 15

 Appendix A. Stateless Proxy payload examples 16

 Authors' Addresses . 17

1. Introduction

 Enrolment of new nodes into networks with enrolled nodes present is

 described in [I-D.ietf-anima-bootstrapping-keyinfra] ("BRSKI") and

 makes use of Enrolment over Secure Transport (EST) [RFC7030] with

Richardson, et al. Expires June 4, 2021 [Page 2]

Internet-Draft Join-Proxy December 2020

 [RFC8366] vouchers to securely enroll devices. BRSKI connects new

 devices ("pledges") to "Registrars" via a Join Proxy.

 The specified solutions use https and may be too large in terms of

 code space or bandwidth required for constrained devices.

 Constrained devices possibly part of constrained networks [RFC7228]

 typically implement the IPv6 over Low-Power Wireless personal Area

 Networks (6LoWPAN) [RFC4944] and Constrained Application Protocol

 (CoAP) [RFC7252].

 CoAP can be run with the Datagram Transport Layer Security (DTLS)

 [RFC6347] as a security protocol for authenticity and confidentiality

 of the messages. This is known as the "coaps" scheme. A constrained

 version of EST, using Coap and DTLS, is described in

 [I-D.ietf-ace-coap-est]. The {I-D.ietf-anima-constrained-voucher}

 describes the BRSKI extensions to the Registrar.

 DTLS is a client-server protocol relying on the underlying IP layer

 to perform the routing between the DTLS Client and the DTLS Server.

 However, the new "joining" device will not be IP routable until it is

 authenticated to the network. A new "joining" device can only

 initially use a link-local IPv6 address to communicate with a

 neighbour node using neighbour discovery [RFC6775] until it receives

 the necessary network configuration parameters. However, before the

 device can receive these configuration parameters, it needs to

 authenticate itself to the network to which it connects. IPv6

 routing is necessary to establish a connection between joining device

 and the Registrar.

 A DTLS connection is required between Pledge and Registrar.

 This document specifies a new form of Join Proxy and protocol to act

 as intermediary between joining device and Registrar to establish a

 connection between joining device and Registrar.

 This document is very much inspired by text published earlier in

 [I-D.kumar-dice-dtls-relay].

 [I-D.richardson-anima-state-for-joinrouter] outlined the various

 options for building a join proxy.

 [I-D.ietf-anima-bootstrapping-keyinfra] adopted only the Circuit

 Proxy method (1), leaving the other methods as future work. This

 document standardizes the CoAP/DTLS (method 4).

2. Terminology

 The following terms are defined in [RFC8366], and are used

 identically as in that document: artifact, imprint, domain, Join

Richardson, et al. Expires June 4, 2021 [Page 3]

Internet-Draft Join-Proxy December 2020

 Registrar/Coordinator (JRC), Manufacturer Authorized Signing

 Authority (MASA), pledge, Trust of First Use (TOFU), and Voucher.

3. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in

 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

 capitals, as shown here.

4. Join Proxy functionality

 As depicted in the Figure 1, the joining Device, or pledge (P), in an

 LLN mesh can be more than one hop away from the Registrar (R) and not

 yet authenticated into the network.

 In this situation, it can only communicate one-hop to its nearest

 neighbour, the Join Proxy (J) using their link-local IPv6 addresses.

 However, the Pledge (P) needs to communicate with end-to-end security

 with a Registrar hosting the Registrar (R) to authenticate and get

 the relevant system/network parameters. If the Pledge (P) initiates

 a DTLS connection to the Registrar whose IP address has been pre-

 configured, then the packets are dropped at the Join Proxy (J) since

 the Pledge (P) is not yet admitted to the network or there is no IP

 routability to Pledge (P) for any returned messages.

 ++++ multi-hop

 |R |---- mesh +--+ +--+

 | | \ |J |........|P |

 ++++ \-----| | | |

 +--+ +--+

 Registrar Join Proxy Pledge

 "Joining" Device

 Figure 1: multi-hop enrolment.

 Without routing the Pledge (P) cannot establish a secure connection

 to the Registrar (R) in the network assuming appropriate credentials

 are exchanged out-of-band, e.g. a hash of the Pledge (P)'s raw public

 key could be provided to the Registrar (R).

 Furthermore, the Pledge (P) may be unaware of the IP address of the

 Registrar (R) to initiate a DTLS connection and perform

 authentication.

Richardson, et al. Expires June 4, 2021 [Page 4]

Internet-Draft Join-Proxy December 2020

 To overcome the problems with non-routability of DTLS packets and/or

 discovery of the destination address of the EST Server to contact,

 the Join Proxy is introduced. This Join Proxy functionality is

 configured into all authenticated devices in the network which may

 act as the Join Proxy for newly joining nodes. The Join Proxy allows

 for routing of the packets from the Pledge using IP routing to the

 intended Registrar.

5. Join Proxy specification

 A Join Proxy can operate in two modes:

 o Statefull mode

 o Stateless mode

5.1. Statefull Join Proxy

 In stateful mode, the joining node forwards the DTLS messages to the

 Registrar.

 Assume that the Pledge does not know the IP address of the Registrar

 it needs to contact. In that situation, the Join Proxy must know the

 (configured or discovered) IP address of a Registrar. (Discovery can

 be based upon [I-D.ietf-anima-bootstrapping-keyinfra] section 4.3, or

 via DNS-SD service discovery [RFC6763]). The Pledge initiates its

 request as if the Join Proxy is the intended Registrar. The Join

 Proxy changes the IP packet (without modifying the DTLS message) by

 modifying both the source and destination addresses to forward the

 message to the intended Registrar. The Join Proxy maintains a

 4-tuple array to translate the DTLS messages received from the

 Registrar and forward it to the EST Client. This is a form of

 Network Address translation, where the Join Proxy acts as a forward

 proxy. In Figure 2 the various steps of the message flow are shown,

 with 5684 being the standard coaps port:

Richardson, et al. Expires June 4, 2021 [Page 5]

Internet-Draft Join-Proxy December 2020

 +------------+------------+-------------+--------------------------+

 | Pledge | Join Proxy | Registrar | Message |

 | (P) | (J) | (R) | Src_IP:port | Dst_IP:port|

 +------------+------------+-------------+-------------+------------+

 | --ClientHello--> | IP_P:p_P | IP_Ja:5684 |

 | --ClientHello--> | IP_Jb:p_Jb| IP_R:5684 |

 | | | |

 | <--ServerHello-- | IP_R:5684 | IP_Jb:p_Jb |

 | : | | |

 | <--ServerHello-- : | IP_Ja:5684| IP_P:p_P |

 | : : | | |

 | : : | : | : |

 | : : | : | : |

 | --Finished--> : | IP_P:p_P | IP_Ja:5684 |

 | --Finished--> | IP_Jb:p_Jb| IP_R:5684 |

 | | | |

 | <--Finished-- | IP_R:5684 | IP_Jb:p_Jb |

 | <--Finished-- | IP_Ja:5684| IP_P:p_P |

 | : : | : | : |

 +---------------------------------------+-------------+------------+

 IP_P:p_P = Link-local IP address and port of Pledge (DTLS Client)

 IP_R:5684 = Global IP address and coaps port of Registrar

 IP_Ja:5684 = Link-local IP address and coaps port of Join Proxy

 IP_Jb:p_Rb = Global IP address and port of Join proxy

 Figure 2: constrained statefull joining message flow with Registrar

 address known to Join Proxy.

5.2. Stateless Join Proxy

 The stateless Join Proxy aims to minimize the requirements on the

 constrained Join Proxy device. Stateless operation requires no

 memory in the Join Proxy device, but may also reduce the CPU impact

 as the device does not need to search through a state table.

 When a client joining device attempts a DTLS connection to the

 Registrar, it uses its link-local IP address as its IP source

 address. This message is transmitted one-hop to a neighbouring (join

 proxy) node. Under normal circumstances, this message would be

 dropped at the neighbour node since the pledge is not yet IP routable

 or it is not yet authenticated to send messages through the network.

 However, if the neighbour device has the Join Proxy functionality

 enabled, it routes the DTLS message to a specific Registrar.

 Additional security mechanisms need to exist to prevent this routing

 functionality being used by rogue nodes to bypass any network

 authentication procedures.

Richardson, et al. Expires June 4, 2021 [Page 6]

Internet-Draft Join-Proxy December 2020

 If an untrusted pledge that can only use link-local addressing wants

 to contact a trusted Registrar, it sends the DTLS message to the Join

 Proxy.

 The Join Proxy extends this message into a new type of message called

 Join ProxY (JPY) message and sends it on to the Registrar.

 The JPY message payload consists of two parts:

 o Header (H) field: consisting of the source link-local address and

 port of the Pledge (P), and

 o Contents (C) field: containing the original DTLS message.

 On receiving the JPY message, the Registrar retrieves the two parts.

 The Registrar transiently stores the Header field information. The

 Registrar uses the Contents field to execute the Registrar

 functionality. However, when the Registrar replies, it also extends

 its DTLS message with the header field in a JPY message and sends it

 back to the Join Proxy. The Registrar SHOULD NOT assume that it can

 decode the Header Field, it should simply repeat it when responding.

 The Header contains the original source link-local address and port

 of the pledge from the transient state stored earlier and the

 Contents field contains the DTLS message.

 On receiving the JPY message, the Join Proxy retrieves the two parts.

 It uses the Header field to route the DTLS message retrieved from the

 Contents field to the Pledge.

 The Figure 3 depicts the message flow diagram:

Richardson, et al. Expires June 4, 2021 [Page 7]

Internet-Draft Join-Proxy December 2020

 +--------------+------------+---------------+-----------------------+

 | EST Client | Join Proxy | Registrar | Message |

 | (P) | (J) | (R) |Src_IP:port|Dst_IP:port|

 +--------------+------------+---------------+-----------+-----------+

 | --ClientHello--> | IP_P:p_P |IP_Ja:p_Ja |

 | --JPY[H(IP_P:p_P),--> | IP_Jb:p_Jb|IP_R:p_Ra |

 | C(ClientHello)] | | |

 | <--JPY[H(IP_P:p_P),-- | IP_R:p_Ra |IP_Jb:p_Jb |

 | C(ServerHello)] | | |

 | <--ServerHello-- | IP_Ja:p_Ja|IP_P:p_P |

 | : | | |

 | : | : | : |

 | | : | : |

 | --Finished--> | IP_P:p_P |IP_Ja:p_Ja |

 | --JPY[H(IP_P:p_P),--> | IP_Jb:p_Jb|IP_R:p_Ra |

 | C(Finished)] | | |

 | <--JPY[H(IP_P:p_P),-- | IP_R:p_Ra |IP_Jb:p_Jb |

 | C(Finished)] | | |

 | <--Finished-- | IP_Ja:p_Ja|IP_P:p_P |

 | : | : | : |

 +---+-----------+-----------+

 IP_P:p_P = Link-local IP address and port of the Pledge

 IP_R:p_Ra = Global IP address and join port of Registrar

 IP_Ja:p_Ja = Link-local IP address and join port of Join Proxy

 IP_Jb:p_Jb = Global IP address and port of Join Proxy

 JPY[H(),C()] = Join Proxy message with header H and content C

 Figure 3: constrained stateless joining message flow.

5.3. Stateless Message structure

 The JPY message is constructed as a payload with medi-type

 aplication/cbor

 Header and Contents fields togther are one cbor array of 5 elements:

 1. header field: containing a CBOR array [RFC7049] with the pledge

 IPv6 Link Local address as a cbor byte string, the pledge's UDP

 port number as a CBOR integer, the IP address family (IPv4/IPv6)

 as a cbor integer, and the proxy's ifindex or other identifier

 for the physical port as cbor integer. The header field is not

 DTLS encrypted.

 2. Content field: containing the DTLS encrypted payload as a CBOR

 byte string.

Richardson, et al. Expires June 4, 2021 [Page 8]

Internet-Draft Join-Proxy December 2020

 The join_proxy cannot decrypt the DTLS ecrypted payload and has no

 knowledge of the transported media type.

 JPY_message =

 [

 ip : bstr,

 port : int,

 family : int,

 index : int

 payload : bstr

]

 Figure 4: CDDL representation of JPY message

 The content fields are DTLS encrypted. In CBOR diagnostic notation

 the payload JPY[H(IP_P:p_P)], will look like:

 [h'IP_p', p_P, family, ident, h'DTLS-content']

 Examples are shown in Appendix A.

6. Comparison of stateless and statefull modes

 The stateful and stateless mode of operation for the Join Proxy have

 their advantages and disadvantages. This section should enable to

 make a choice between the two modes based on the available device

 resources and network bandwidth.

Richardson, et al. Expires June 4, 2021 [Page 9]

Internet-Draft Join-Proxy December 2020

 +-------------+----------------------------+------------------------+

 | Properties | Stateful mode | Stateless mode |

 +-------------+----------------------------+------------------------+

 | State |The Join Proxy needs | No information is |

 | Information |additional storage to | maintained by the Join |

 | |maintain mapping between | Proxy. Registrar needs |

 | |the address and port number | to store the packet |

 | |of the pledge and those | header. |

 | |of the Registrar. | |

 +-------------+----------------------------+------------------------+

 |Packet size |The size of the forwarded |Size of the forwarded |

 | |message is the same as the |message is bigger than |

 | |original message. |the original,it includes|

 | | |additional source and |

 | | |destination addresses. |

 +-------------+----------------------------+------------------------+

 |Specification|The Join Proxy needs |New JPY message to |

 |complexity |additional functionality |encapsulate DTLS message|

 | |to maintain state |The Registrar |

 | |information, and modify |and the Join Proxy |

 | |the source and destination |have to understand the |

 | |addresses of the DTLS |JPY message in order |

 | |handshake messages |to process it. |

 +-------------+----------------------------+------------------------+

 Figure 5: Comparison between stateful and stateless mode

7. Discovery

 It is assumed that Join Proxy seamlessly provides a coaps connection

 between Pledge and coaps Registrar. In particular this section

 replaces section 4.2 of [I-D.ietf-anima-bootstrapping-keyinfra].

 The discovery follows two steps:

 1. The pledge is one hop away from the Registrar. The pledge

 discovers the link-local address of the Registrar as described in

 {I-D.ietf-ace-coap-est}. From then on, it follows the BRSKI

 process as described in {I-D.ietf-ace-coap-est}, using link-local

 addresses.

 2. The pledge is more than one hop away from a relevant Registrar,

 and discovers the link-local address of a Join Proxy. The pledge

 then follows the BRSKI procedure using the link-local address of

 the Join Proxy.

 Once a pledge is enrolled, it may function as Join Proxy. The Join

 Proxy functions are advertised as descibed below. In principle, the

Richardson, et al. Expires June 4, 2021 [Page 10]

Internet-Draft Join-Proxy December 2020

 Join Proxy functions are offered via a "join" port, and not the

 standard coaps port. Also the Registrar offer a "join" port to which

 the stateless join proxy sends the JPY message. The Join Proxy and

 Registrar MUST show the extra join port number when reponding to the

 .well-known/core request addressed to the standard coap/coaps port.

 Three discovery cases are discussed: coap discovery, 6tisch discovery

 and GRASP discovery.

7.1. Pledge discovery of Registrar

 The Pledge and Join Proxy are assumed to communicate via Link-Local

 addresses.

7.1.1. CoAP discovery

 The discovery of the coaps Registrar, using coap discovery, by the

 Join Proxy follows section 6 of [I-D.ietf-ace-coap-est]. The

 extension to discover the additional port needed by the stateless

 proxy is described in Section 7.2.2 by using rt=brski-proxy.

7.1.2. Autonomous Network

 In the context of autonomous networks, the Join Proxy uses the DULL

 GRASP M_FLOOD mechanism to announce itself. Section 4.1.1 of

 [I-D.ietf-anima-bootstrapping-keyinfra] discusses this in more

 detail. The Registrar announces itself using ACP instance of GRASP

 using M_FLOOD messages. Autonomous Network Join Proxies MUST support

 GRASP discovery of Registrar as decribed in section 4.3 of

 [I-D.ietf-anima-bootstrapping-keyinfra] .

7.1.3. 6tisch discovery

 The discovery of Registrar by the pledge uses the enhanced beacons as

 discussed in [I-D.ietf-6tisch-enrollment-enhanced-beacon].

7.2. Pledge discovers Join Proxy

7.2.1. Autonomous Network

 The pledge MUST listen for GRASP M_FLOOD [I-D.ietf-anima-grasp]

 announcements of the objective: "AN_Proxy". See section

 Section 4.1.1 [I-D.ietf-anima-bootstrapping-keyinfra] for the details

 of the objective.

Richardson, et al. Expires June 4, 2021 [Page 11]

Internet-Draft Join-Proxy December 2020

7.2.2. CoAP discovery

 In the context of a coap network without Autonomous Network support,

 discovery follows the standard coap policy. The Pledge can discover

 a Join Proxy by sending a link-local multicast message to ALL CoAP

 Nodes with address FF02::FD. Multiple or no nodes may respond. The

 handling of multiple responses and the absence of responses follow

 section 4 of [I-D.ietf-anima-bootstrapping-keyinfra].

 The presence and location of (path to) the Join Proxy resource are

 discovered by sending a GET request to "/.well-known/core" including

 a resource type (rt) parameter with the value "brski-proxy"

 [RFC6690]. Upon success, the return payload will contain the root

 resource of the Join Proxy resources. It is up to the implementation

 to choose its root resource; throughout this document the example

 root resource /jp is used. The example below shows the discovery of

 the presence and location of Join Proxy resources.

 REQ: GET coap://[FF02::FD]/.well-known/core?rt=brski-proxy

 RES: 2.05 Content

 <coaps://[IP_address]:jp-port/jp>; rt="brski-proxy"

 Port numbers are assumed to be the default numbers 5683 and 5684 for

 coap and coaps respectively (sections 12.6 and 12.7 of [RFC7252] when

 not shown in the response. Discoverable port numbers are usually

 returned for Join Proxy resources in the <href> of the payload (see

 section 5.1 of [I-D.ietf-ace-coap-est]).

8. Security Considerations

 It should be noted here that the contents of the CBOR map used to

 convey return address information is not protected. However, the

 communication is between the Proxy and a known registrar are over the

 already secured portion of the network, so are not visible to

 eavesdropping systems.

 All of the concerns in [I-D.ietf-anima-bootstrapping-keyinfra]

 section 4.1 apply. The pledge can be deceived by malicious AN_Proxy

 announcements. The pledge will only join a network to which it

 receives a valid [RFC8366] voucher.

 If the proxy/Registrar was not over a secure network, then an

 attacker could change the cbor array, causing the pledge to send

 traffic to another node. If the such scenario needed to be

 supported, then it would be reasonable for the Proxy to encrypt the

 CBOR array using a locally generated symmetric key. The Registrar

Richardson, et al. Expires June 4, 2021 [Page 12]

Internet-Draft Join-Proxy December 2020

 would not be able to examine the result, but it does not need to do

 so. This is a topic for future work.

9. IANA Considerations

 This document needs to create a registry for key indices in the CBOR

 map. It should be given a name, and the amending formula should be

 IETF Specification.

9.1. Resource Type registry

 This specification registers a new Resource Type (rt=) Link Target

 Attributes in the "Resource Type (rt=) Link Target Attribute Values"

 subregistry under the "Constrained RESTful Environments (CoRE)

 Parameters" registry.

 rt="brski-proxy". This BRSKI resource is used to query and return

 the supported BRSKI resource using the additional BRSKI port of

 Join Proxy or Registrar.

10. Acknowledgements

 Many thanks for the comments by Brian Carpenter.

11. Contributors

 Sandeep Kumar, Sye loong Keoh, and Oscar Garcia-Morchon are the co-

 authors of the draft-kumar-dice-dtls-relay-02. Their draft has

 served as a basis for this document. Much text from their draft is

 copied over to this draft.

12. Changelog

12.1. 00 to 01

 o Registrar used throughout instead of EST server

 o Emphasized additional Join Proxy port for Join Proxy and Registrar

 o updated discovery accordingly

 o updated stateless Join Proxy JPY header

 o JPY header described with CDDL

 o Example simplified and corrected

Richardson, et al. Expires June 4, 2021 [Page 13]

Internet-Draft Join-Proxy December 2020

12.2. 00 to 00

 o copied from vanderstok-anima-constrained-join-proxy-05

13. References

13.1. Normative References

 [I-D.ietf-6tisch-enrollment-enhanced-beacon]

 Dujovne, D. and M. Richardson, "IEEE 802.15.4 Information

 Element encapsulation of 6TiSCH Join and Enrollment

 Information", draft-ietf-6tisch-enrollment-enhanced-

 beacon-14 (work in progress), February 2020.

 [I-D.ietf-ace-coap-est]

 Stok, P., Kampanakis, P., Richardson, M., and S. Raza,

 "EST over secure CoAP (EST-coaps)", draft-ietf-ace-coap-

 est-18 (work in progress), January 2020.

 [I-D.ietf-anima-bootstrapping-keyinfra]

 Pritikin, M., Richardson, M., Eckert, T., Behringer, M.,

 and K. Watsen, "Bootstrapping Remote Secure Key

 Infrastructures (BRSKI)", draft-ietf-anima-bootstrapping-

 keyinfra-45 (work in progress), November 2020.

 [I-D.ietf-anima-constrained-voucher]

 Richardson, M., Stok, P., and P. Kampanakis, "Constrained

 Voucher Artifacts for Bootstrapping Protocols", draft-

 ietf-anima-constrained-voucher-09 (work in progress),

 November 2020.

 [I-D.ietf-anima-grasp]

 Bormann, C., Carpenter, B., and B. Liu, "A Generic

 Autonomic Signaling Protocol (GRASP)", draft-ietf-anima-

 grasp-15 (work in progress), July 2017.

 [I-D.ietf-core-multipart-ct]

 Fossati, T., Hartke, K., and C. Bormann, "Multipart

 Content-Format for CoAP", draft-ietf-core-multipart-ct-04

 (work in progress), August 2019.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

Richardson, et al. Expires June 4, 2021 [Page 14]

Internet-Draft Join-Proxy December 2020

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer

 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,

 January 2012, <https://www.rfc-editor.org/info/rfc6347>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object

 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,

 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8366] Watsen, K., Richardson, M., Pritikin, M., and T. Eckert,

 "A Voucher Artifact for Bootstrapping Protocols",

 RFC 8366, DOI 10.17487/RFC8366, May 2018,

 <https://www.rfc-editor.org/info/rfc8366>.

13.2. Informative References

 [I-D.kumar-dice-dtls-relay]

 Kumar, S., Keoh, S., and O. Garcia-Morchon, "DTLS Relay

 for Constrained Environments", draft-kumar-dice-dtls-

 relay-02 (work in progress), October 2014.

 [I-D.richardson-anima-state-for-joinrouter]

 Richardson, M., "Considerations for stateful vs stateless

 join router in ANIMA bootstrap", draft-richardson-anima-

 state-for-joinrouter-03 (work in progress), September

 2020.

 [RFC4944] Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,

 "Transmission of IPv6 Packets over IEEE 802.15.4

 Networks", RFC 4944, DOI 10.17487/RFC4944, September 2007,

 <https://www.rfc-editor.org/info/rfc4944>.

 [RFC6690] Shelby, Z., "Constrained RESTful Environments (CoRE) Link

 Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,

 <https://www.rfc-editor.org/info/rfc6690>.

 [RFC6763] Cheshire, S. and M. Krochmal, "DNS-Based Service

 Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013,

 <https://www.rfc-editor.org/info/rfc6763>.

 [RFC6775] Shelby, Z., Ed., Chakrabarti, S., Nordmark, E., and C.

 Bormann, "Neighbor Discovery Optimization for IPv6 over

 Low-Power Wireless Personal Area Networks (6LoWPANs)",

 RFC 6775, DOI 10.17487/RFC6775, November 2012,

 <https://www.rfc-editor.org/info/rfc6775>.

Richardson, et al. Expires June 4, 2021 [Page 15]

Internet-Draft Join-Proxy December 2020

 [RFC7030] Pritikin, M., Ed., Yee, P., Ed., and D. Harkins, Ed.,

 "Enrollment over Secure Transport", RFC 7030,

 DOI 10.17487/RFC7030, October 2013,

 <https://www.rfc-editor.org/info/rfc7030>.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for

 Constrained-Node Networks", RFC 7228,

 DOI 10.17487/RFC7228, May 2014,

 <https://www.rfc-editor.org/info/rfc7228>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

 Application Protocol (CoAP)", RFC 7252,

 DOI 10.17487/RFC7252, June 2014,

 <https://www.rfc-editor.org/info/rfc7252>.

Appendix A. Stateless Proxy payload examples

 The examples show the get coaps://[192.168.1.200]:5965/est/crts to a

 Registrar. The header generated between Client and registrar and

 from registrar to client are shown in detail. The DTLS encrypted

 code is not shown.

 The request from Join Proxy to Registrar looks like:

 85 # array(5)

 50 # bytes(16)

 00000000000000000000FFFFC0A801C8 #

 19 BDA7 # unsigned(48551)

 0A # unsigned(10)

 00 # unsigned(0)

 58 2D # bytes(45)

 <cacrts DTLS encrypted request>

 In CBOR Diagnostic:

 [h'00000000000000000000FFFFC0A801C8', 48551, 10, 0,

 h'<cacrts DTLS encrypted request>']

 The response is:

 85 # array(5)

 50 # bytes(16)

 00000000000000000000FFFFC0A801C8 #

 19 BDA7 # unsigned(48551)

 0A # unsigned(10)

 00 # unsigned(0)

 59 026A # bytes(618)

 <cacrts DTLS encrypted response>

Richardson, et al. Expires June 4, 2021 [Page 16]

Internet-Draft Join-Proxy December 2020

 In CBOR diagnostic:

 [h'00000000000000000000FFFFC0A801C8', 48551, 10, 0,

 h'<cacrts DTLS encrypted response>']

Authors' Addresses

 Michael Richardson

 Sandelman Software Works

 Email: mcr+ietf@sandelman.ca

 Peter van der Stok

 vanderstok consultancy

 Email: consultancy@vanderstok.org

 Panos Kampanakis

 Cisco Systems

 Email: pkampana@cisco.com

Richardson, et al. Expires June 4, 2021 [Page 17]

