Network Working Group Jeffrey Altman Internet-Draft Columbia University draft-altman-telnet-enc-des3-ofb-00.txt December 1999 Telnet Encryption: DES3 64 bit Output Feedback Status of this Memo This document is an Internet-Draft and is in full conformance with all provisions of Section 10 of RFC2026. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html. Abstract This document provides details of a Telnet ENCRYPT suboption implementing Triple DES encryption using 64-bit Output Feedback mode. 1. Command Names and Codes Encryption Type DES3_OFB64 4 Suboption Commands OFB64_IV 1 OFB64_IV_OK 2 OFB64_IV_BAD 3 OFB64_CHALLENGE 4 OFB64_RESPONSE 5 2. Command Meanings IAC SB ENCRYPT IS DES3_OFB64 OFB64_IV IAC SE The sender of this command generates a random 8 byte initial vec- tor, and sends it to the other side of the connection using the OFB64_IV command. The initial vector is sent in clear text. Only the side of the connection that is WILL ENCRYPT may send the OFB64_IV command IAC SB ENCRYPT REPLY DES3_OFB64 OFB64_IV_OK IAC SE IAC SB ENCRYPT REPLY DES3_OFB64 OFB64_IV_BAD IAC SE The sender of these commands either accepts or rejects the initial vector received in a OFB64_IV command. Only the side of the con- nection that is DO ENCRYPT may send the OFB64_IV_OK and OFB64_IV_BAD commands. 3. Implementation Rules Once a OFB64_IV_OK command has been received, the WILL ENCRYPT side of the connection should do keyid negotiation using the ENC_KEYID command. Once the keyid negotiation has successfully identified a common keyid, then START and END commands may be sent by the side of the connection that is WILL ENCRYPT. Data will be encrypted using the DES 64 bit Output Feedback algorithm. If encryption (decryption) is turned off and back on again, and the same keyid is used when re-starting the encryption (decryption), the intervening clear text must not change the state of the encryption (decryption) machine. If a START command is sent (received) with a different keyid, the en- cryption (decryption) machine must be re-initialized immediately fol- lowing the end of the START command with the new key and the initial vector sent (received) in the last OFB64_IV command. If a new OFB64_IV command is sent (received), and encryption (decryp- tion) is enabled, the encryption (decryption) machine must be re- initialized immediately following the end of the OFB64_IV command with the new initial vector, and the keyid sent (received) in the last START command. If encryption (decryption) is not enabled when a OFB64_IV command is sent (received), the encryption (decryption) machine must be re- initialized after the next START command, with the keyid sent (re- ceived) in that START command, and the initial vector sent (received) in this OFB64_IV command. 4. Algorithm DES 64 bit Output Feedback key1 key2 key3 | | | v v v +-------+ +-------+ +-------+ +->| DES-e |->| DES-d |->| DES-e |-- + | +-------+ +-------+ +-------+ | +------------------------------------+ v INPUT ------------------------------------->(+) ----> DATA Given: iV: Initial vector, 64 bits (8 bytes) long. Dn: the nth chunk of 64 bits (8 bytes) of data to encrypt (decrypt). On: the nth chunk of 64 bits (8 bytes) of encrypted (decrypted) output. V0 = DES-e(DES-d(DES-e(iV, key1),key2),key3) V(n+1) = DES-e(DES-d(DES-e(Vn, key1),key2),key3) On = Dn ^ Vn 5. Security considerations Encryption using Output Feedback does not ensure data integrity; an active attacker may be able to substitute text, if he can predict the clear-text that was being transmitted. This option was originally drafted back when CPU speeds where not necessarily fast enough to do allow use of CFB. Since then, CPU's have gotten much faster. Given the inherent weaknesses in Output Feedback mode, perhaps it should be deprecated in favor of CFB modes? 6. Acknowledgments This document was originally written by Dave Borman of Cray Research with the assistance of the IETF Telnet Working Group. Author's Address Jeffrey Altman, Editor Columbia University 612 West 115th Street Room 716 New York NY 10025 USA Phone: +1 (212) 854-1344 EMail: jaltman@columbia.edu Expires May 1999 [Page 3]